核天体物理:用极小探寻极大

柳卫平

wpliu@ciae.ac.cn

中国原子能科学研究院

上海交大

2021年5月19日

万物是怎么形成的

- ・研究领域
- ・国际进展
- ・我国情况
- ・关键科学问题
- ・展望与建议

宇宙大爆炸的图

origin of elements

其他核素 (2H,3He,6Li,7Li)<0.00001

Human Body Ingredients

The four ingredients below are essential parts of the body's protein, carbohydrate and fat architecture.

OXYGEN 65.0%

Critical to the conversion of food into energy.

CARBON

18.5% The so-called backbone of the building blocks of the body and a key part of other important compounds, such as testosterone and estrogen.

HYDROGEN

9.5% Helps transport nutrients, remove wastes and regulate body temperature. Also plays an important role in energy production.

NITROGEN

3.3% Found in amino acids, the building blocks of proteins; an essential part of the nucleic acids that constitute DNA.

(Percentage of body weight. Source: Biology, Campbell and Reece, eighth edition.)

Other Key Elements

Calcium 1.5% Lends rigidity and strength to bones and teeth; also important for the functioning of nerves and muscles, and for blood clotting.

Phosphorus 1.0% Needed for building

and maintaining bones and teeth; also found in the molecule ATP (adenosine triphosphate), which provides energy that drives chemical reactions in cells

Potassium 0.4% Important for electrical

Important for electrical signaling in nerves and maintaining the balance of water in the body.

Sulfur 0.3%

Found in cartilage, insulin (the hormone that enables the body to use sugar), breast milk, proteins that play a role in the immune system, and keratin, a substance in skin, hair and nails.

Chlorine 0.2% Needed by nerves

to function properly; also helps produce gastric juices.

Sodium 0.2%

Plays a critical role in nerves' electrical signaling: also helps regulate the amount of water in the body.

Magnesium 0.1%

Plays an important role in the structure of the skeleton and muscles: also found in molecules that help enzymes use ATP to supply energy for chemical reactions in cells.

Iodine (trace amount) Part of an essential hormone produced by the thyroid gland; regulates metabolism.

Iron (trace amount) Part of hemoglobin, which carries oxygen in red blood cells.

Zinc (trace amount) Forms part of some enzymes involved in digestion.

PBOL Pro)8K m 2 Be-JRC 7 (32) 18 JUNA 0 12/10/160 100+160 >2851-+0 1. 56Fp たちみ PAN からゆる、つうしそ For PRE 又一行师、了路水知题

平稳核燃烧 stellar burning

star evolution 星体演化 HI 心的表别 B \$25 28-7 13(2,2)100 Salf-AD \$ 7 8 OL ZPV Wear made stor staff Vg R MO

Primordial and stellar elements syntheses

Primordial and stellar elements syntheses

中子星并合 NSM

2017 \$ MANJO MANZ LIGO -> J 2 2005 8-10 2000 Golos? 3(3/12) SN1987A

天体演化中的核过程

- 小质量恒星在经历某个轻元素燃烧阶段后,因剩下的核芯区质量不足以通过引力收缩使下一级聚变反应点火,随着核燃烧的结束 而走向死亡,形成各类白矮星
- 大质量恒星,在经历H、He、C、Ne、O和Si各平稳核燃烧阶段后,呈现由内至外依次为Fe核芯、未燃尽的Si、Mg、Ne、O、C、He和H的分层结构
- 由于铁以上的聚变反应成为吸能过程,失去了阻止其引力塌缩的能源,最终导致II型超新星爆发
- 冲击波抛向星际空间的大量外层物质变为气体和尘埃,进而凝聚成新的恒星;占初始质量一小部分的残体形成中子星或黑洞

2021年5月

上海2021

Nuclear reaction: alchemist in universe

Peak: finger print of nuclear physics: Shell model magic number

Nuclear reaction: alchemist in universe

Peak: finger print of nuclear physics: Shell model magic number

核天体物理的研究领域

- · 对微观尺度(10⁻¹⁵ m)的核过程的了解,可以解释对宇观尺度(10¹⁴ m)的天文
 观测,构成了学科发展和交叉的动力和挑战,使核天体物理始终处于物理学科的
 前沿
- ・应用核物理的知识和规律阐释恒星中核过程产生的能量及其对恒星结构和演化的 影响,自然界中化学元素的起源

天体元素核合成的各种过程

Nuclear burning inside sun

Photons take a long and tortuous path

Nuclear burning inside sun

2021年5月

上海2021

Combination of stages

2021年5月

Combination of stages

2021年5月

Some of the great discovery of astrophysics

- 3K microwave background radiation, 1965, experimental support for Big-Bang theory
- Detection of solar neutrino, 1960, gave the hints of neutrino oscillation
- Detection of ${}^{26}AI \gamma$ -ray, 1980, direct support of explosive nuclear synthesis, and triggering γ -ray astronomy
- Detection of SN1987A supernova explosion, 1987
- Experimental explanation of solar neutrino missing, 2021年5月 上海2021

核天体物理处于国际物理学科前沿

- ・基金委数理科学13个优先领域中
- 恒星的形成、演化与太阳活动
- 极端条件下的核物理和核天体物理
- ・2007 美国DOE核科学中长期规划中
- What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes?
- What is the origin of simple patterns in complex nuclei?
- What is the nature of neutron stars and dense nuclear matter?
- What is the origin of the elements in the cosmos?元素起源
- What are the nuclear reactions that drive stars and stellar explosions?驱动恒星演化和爆发的核反应
- ・美国科学院在发现杂志上认为世纪之谜的第三个问题:
 铁到铀元素是如何合成出来的?

近十多年来核天体物理研究新进展

- ・许多地面加速器实验室测量了一系列缺少截面数据的天体 物理反应,其中不少重要反应需要以不稳定核作炮弹。
- ・人造卫星上的X-射线和 γ-射线探测器揭示了新星、X-射 线暴和超新星中核合成的详细信息
- ・意大利格兰萨索地下核天体物理实验室(LUNA)直接测量了恒星氢燃烧阶段若干关键的反应,其中有个别测量接近了天体物理感兴趣的Gamow窗口能区
- ・地下实验室中的探测器已经测到来自太阳核芯和超新星的
 中微子,直接揭示了太阳核芯中的核反应并基本肯定了通用的超新星模型

上海2021

Element synthesis network

Element synthesis network

$$\frac{dY_i}{dt} = \sum_j N_j^i \lambda_j Y_j + \sum_{j,k} N_{j,k}^i \rho N_A < \sigma V >_{jk,i} Y_j Y_k$$
$$+ \sum_{j,k,l} N_{j,k,l}^i \rho^2 N_A^{2} < \sigma V >_{jkl,i} Y_j Y_k Y_l$$

2021年5月

上海2021

Element synthesis network

Important nuclear physics data

- S-factor, focus on NP, down to astrophysics energies
- Reaction rates, direct input to network calculation
- Direct capture, direct reactions
- Resonance, level scheme, level width, and partial width
- Mass and decay half-life and branching ratio

$^{11}C(p, \gamma)^{12}N$ example

${}^{11}C(p, \gamma){}^{12}N$ example

2021年5月

上海2021

24

r过程的简单模拟

r过程的简单模拟

How elements become heavier

NSM 和 r 过程重元素产生

JUNA

W. P. Liu

深地核天体物理直接测量必要性 Why underground

我国研究基础

- ・我国的实验核天体物理研究起步于上世纪90年代初期。 次 级束流线,北京93,兰州97,CSR07
- ・开创和发展了利用低能次级束和高强度稳定束进行核天体物 理研究的新领域,并在国际核天体物理学界占有了一席之地
- CSR和320 kV高压平台上完成了若干重要的核天体物理 研究工作。首次测量了近质子滴线短寿命核素⁶³Ge,
 ⁶⁵As, ⁶⁷Se和⁷¹Kr的质量
- r和 rp过程远离核的质量和核素丰度的网络计算,以及温度、密度及核-核相互作用对天体环境中电子俘获率影响的 计算

我国核天体物理研究

- **直接测量**, ⁶Li(p,γ)⁷Be等
- · 间接测量, ⁷Be(p, γ)⁸B, …, ¹³C(α,n)¹⁶O中子源反
 应等
- · 衰变测量, rp过程中53Ni附近核的衰变等
- ・质量测量, rp过程核等
- ·理论计算, 衰变, 质量
- ·网络计算,rp过程,r-过程
- ・天文观测,NLTE, 贫金属星
- ·对关键科学问题进行全面研究!

关键科学问题

- ·开展天体物理能区最重要热核反应截面的直接测量
- ·高能区带电粒子反应截面向天体物理能区的合理外推
- ・恒星平稳核燃烧阶段和爆发性天体事件中关键核反应截
 面的间接测量
- 新星、超新星和X射线暴等爆发性天体事件中远离稳定
 线核素的质量、衰变特性、反应截面和共振态性质的测量和理论
- 建立并不断完善核天体物理数据库,发展网络模拟程
 序,系统研究元素核合成的过程、天体场所及丰度分布
 和核反应如何控制恒星的演化过程和结局

M. Gulino, 唐晓东等

PRC87(2013)012801(R) 2021年5月 上海2021

rp-过程核衰变的测量

原子能院苏

俊, 柳卫平等, Phys. Rev. C 87,024312 (2013)

Isotope	T _{1/2} (ms)		Cu	50	51	52 ?	53 3.0 ⁻⁷	54 7.5 ⁻⁸	55 2.0 ⁻⁷	56 1.0 ⁻²
	Present Work	NNDC	- Ni	49 3.5 ⁻⁷	50 8.0 ⁻³	51 9.0 ⁻³	52 2.0 ⁻²	53 4.5 ⁻²	54 1.0 ⁻¹	55 1.9 ⁻¹
53Ni	52±5	55±0.7	-	48	49	50	51	52	53	54
54Ni	111±6	104±7	Co	?	3.5-8	1.0-2	2.0-2	2.0-2	2.6-1	7.5-1
⁵² Co	108±4	115±23	Fe	47 1.0 ⁻²	48 3.0 ⁻²	49 7.5 ⁻²	50 1.0 ⁻¹	51 2.5 ⁻¹	52 3.0⁴	53 5.1 ²
53Co	248±12	240±9a 247±12b	Mn	46 1.5 ⁻²	47 3.0 ⁻²	48 3.0 ⁻²	49 3.8 ⁻¹	50 7.6 ⁻¹	51 2.8 ³	52 6.84
⁵¹ Fe	298±5	305±5	-	45	46	47	48	49	50	51
⁵⁰ Mn	286±7	283.3±0 .8			A: Ma t ^m : L	ass ifetime=t×10) ^m (sec)	1E-1 1E-2 1E-3 1E-3	-1E00 e-1E-1 e-1E-2 e-1E-3	
					gray l	box: stable		1E-5	-1E-4	

近物所CSR上的质量测量

涂小林, 徐瑚珊等, PRL106(2011)102501; 徐瑚珊等, ApJL 766(2013)8

2021年5月

10

5

0

50

100

Time (s)

Energy (10¹⁶ erg/g/s)

上海2021

200

Lanzhou

AME03

我国研究已覆盖核天体物理的关键环节

上海2021

我国核天体物理研究的里程碑 Milestone of Nuclear Astrophysics in China

- ・在地面实验室对恒星氢燃烧、氦燃烧和碳燃烧阶段若干重要热核反应进 行直接测量
- ・中子俘获反应的直接测量对更好地了解s-过程
- ・基于我国已有的和即将竣工的放射性离子束大科学工程,对恒星平稳和 爆发性核燃烧中的(p,γ)、(n,γ)、(α,p)、(α,n)和(α,γ)反应截面进 行间接测量
- · 对新星、超新星和X射线暴等爆发性天体事件中所涉及的远离稳定线核 素的质量、衰变特性、反应截面和共振态性质进行实验测量和理论研究
- ・加强在这个领域从事研究的核物理学家、天体物理模型学家和天文学家
 之间的协作
- ・建设地下核天体物理实验室JUNA,将恒星平稳演化阶段关键反应的直 接测量推进到伽莫夫窗口

我国核天体物理发展的计划

- 利用北京、兰州和上海的大科学工程,通过间接测量(p,γ)和
 (n,γ)反应充实关键核天体物理反应数据库,从轻核推到中等
 质量核区,并启动r过程的间接测量
- 通过国际合作,开展平稳和爆发性核过程的直接测量,检验和 改进Fowler及Hindrance低能外推模型
- ・开展快速质子俘获(rp)和快速中子俘获(r)过程相关核素
 的衰变性质和质量测量,得出核天体物理网络计算的重要输入量
- ・启动锦屏山地下实验室核天体物理实验
- ・通过实验与理论相结合,将反应、衰变和质量数据带入网络计算,与天文观测丰度数据相比较

2021年5月

结论

- 核天体物理是国际前沿的交叉学科,尚存在许多挑战性的科学问题
- 我国通过在核天体物理领域近二十年的研究工作,开创和发展了利用低能放射性束流开展关键核天体物理反应测量的新领域,取得了 一系列开创性的研究成果,在国际核天体物理学界占有了一定的地位
 - 未来瞄准核天体物理关键科学问题,利用国内外的大科学平台,系 统测量关键核天体物理反应及衰变数据,将实验数据代入网络计 算,并与天文观测相比较,在恒星演化和元素核合成方面取得创新 成果

具体研究示例: 圣杯反应间接研究

- 复杂的反应机制
 - 无主导共振贡献
 - 2个阈下共振(6.92,

7.12)

- 基态外部俘获贡献
- E1与E2并存

Sayre PRL 109 (2012) Morais NPA 857 (2011) Adhikari PLB 682 (2009), JPG 44 (2017)

基态ANC存在240 倍的分歧 13.9 to 3390 fm^{-1/2}

中国原子能科学研究院 Resonances and Interferences

- 复杂的反应机制
 - 无主导共振贡献
 - 2个阈下共振(6.92,

7.12)

基态外部俘获贡献

外部俘获与共振强烈干涉

hina National Nuclear Corporation

Adhikari PLB 682 (2009), JPG 44 (2017)

• E1与E2并存

倍的分歧

13.9 to 3390 fm^{-1/2}

中国原子能科学研究院 Resonances and Interferences

- 复杂的反应机制
 - 无主导共振贡献
 - 2个阈下共振(6.92,

7.12)

基态外部俘获贡献

外部俘获与共振强烈干涉

• E1与E2并存

中国原子能科学研究院 Resonances and Interferences

- 复杂的反应机制
 - 无主导共振贡献
 - 2个阈下共振(6.92,

7.12)

基态外部俘获贡献

外部俘获与共振强烈干涉

• E1与E2并存

13.9 to 3390 fm^{-1/2}

¹²C(¹¹B,⁷Li)¹⁶O

PID

PID

PID

PID

PID

DWBA analyze

Y P Shen, B Guo*, et al, PLB 797 (2019) 134820

	SA for ¹¹ B ground state		
	35 ₀	2D ₂	35 ₀ /2D ₂
Coupled	0.66±0.09	0.73±0.09	0.90
Kurath	-0.509	0.629	0.81
Rudchik	-0.638	-0.422	1.5

11B 基态谱幅度

50

Uncortainty course	Relative error		-
	$2D_2$	$3S_0$	-
Entrance channel potential	2.1%	1.5%	-
Exit channel potential	5.1%	8.3%	
$(\alpha + d)$ binding potential	8.9%	3.5%	
$(\alpha + {}^{7}\text{Li})$ binding potential	5.2%	3.4%	
ANC for $\alpha + d \rightarrow {}^{6}Li$	4.7%	4.7%	
Target thickness	5.0%	5.0%	
Statistics	2.6%	2.8%	
Total	13.8%	12.2%	

(α+12C)束缚态参数确定

(α+12C)束缚态参数确定

显著影响核合成模型预言的核素丰度

E2 S-factor: $45^* \rightarrow 70\pm7 \text{ keV-b}$ Total S-factor: $140^* \rightarrow 162 \text{ keV-b}$ * R. J. deBoer et al, Rev. Mod. Phys. 89, 035007 (2017).

 10^{0} ${}^{12}C(\alpha,\gamma_0){}^{16}O$ (E2) 10^{-1} S factor (MeV b) ۰0⁻² 10⁻³ Uncertainty from capture data $\frac{\text{ANC}_{\text{GS}}}{\text{ANC}_{\text{Sub}}} = 58 \text{ fm}^{-1/2} \text{ m}^{-1/2} \text{ (deBoer et al.)}$ $ANC_{GS} = 337(45) \text{ fm}_{5}^{-1/2} \text{ ANC}_{Sub}^{GS} = 1.55(9) \times 10^{5} \text{ fm}^{-1/2}$ (this work) 10^{-4} 3 0 Center of Mass Energy (MeV) -matrix calculation by R. J. deBoer China National Nuclear Corporati

¹⁶O基态ANC约束显著提高了S因子精度

S因子误差50% ⇒ 10% <u>Y. P. Shen</u>, B. Guo*, R. J. DeBoer*, et al. *Phys. Rev. Lett.*, **124**, 162701 (2020)

该工作得到PRL两位审稿人好评:

- To my knowledge this isZ the first time the GS ANC is extracted using the ¹²C(¹¹B, ⁷Li)¹⁶O.
- The ¹²C(α,γ) reaction is a long-standing issue in nuclear astrophysics ... The appearance here is that (¹¹B, ⁷Li) with the chosen kinematics satisfies both direct and peripheral criteria."

引力波并合模型工作

荷兰阿姆斯特丹大学、美国 芝加哥大学、中科院天文台 等单位的联合团队在天体物 理顶级期刊ApJL上发表的利 用引力波约束¹²C(α,γ)¹⁶O反 应截面的结果与我们的结果

-致

mer, M. Renzo, S. E. de Mink et al., Astrophys. J. Lett. 902, 36 (2020)

具体研究示例:太阳中微子研究

How nuclear physics connected with solar neutrino problem

How nuclear physics connected with solar neutrino problem

Predicted reaction rates = Absorption cross section (nuclear physics input, e.g. ³⁷Ca or ⁴⁰Ti β -decay)× Solar neutrino flux (solar model + nuclear physics input, e.g. ⁷Be(p, γ)⁸B reaction) ^{2021年5月}

Where does neutrino come from?

W.P. Liu, PRL77(1996)611

RIB production

W.P. Liu, PRL77(1996)611

RIB production (d,n) or (d,p) measurement

W.P. Liu, PRL77(1996)611

上海2021

ANC method

For peripheral transfer reaction: B(d,n)A

two virtual captures:

 $B + p \rightarrow A$

$$\frac{d\sigma}{d\Omega} = \sum \frac{(C_{Bpl_Aj_A}^A)^2 (C_{npl_dj_d}^d)^2}{b_{Bpl_Aj_A}^2 b_{npl_dj_d}^2} \sigma_{l_Aj_Al_dj_d}^{DWBA}$$

$$(C_{np}^d)^2 = 0.76 \, fm^{-1}$$
 known value

$$(C_{Bp}^{A})^{2}$$
 can be obtained from

上海2021

The Cross Section for E1 capture

1

$$B(E1; j\pi \rightarrow j_f \pi_f) = \frac{1}{(2I_1 + 1)(2I_2 + 1)} \sum_m \sum_{I m_I} |T_{1m}|^2 =$$

$$\frac{e_{eff}^{2}}{k^{2}}\sum_{\mathcal{P}}\lambda(\mathcal{P}_{f}) I)C_{\mathcal{P}_{f}I}^{2} |\int_{R_{N}}^{\infty} r^{2}dr f_{\mathcal{P}}(kr)W_{\eta,\mathcal{P}+1/2}(2\kappa r)|^{2}$$

ANC or spec factor $\lambda(\underline{j}_{f}I)$ is the kinetic factor

 $e_{eff} = eN/A$ for Protons

-eZ/A for Neutrons

上海2021

Results-7Be

3/27/19

(b) (CH₂), 2.30X10 25 30 10 15 20 5 Total Energy (MeV) W.P. Liu PRL77(1996)611 威海暑**和 BA 616(1997)131c**

(a) (CD₂),

Results-7Be

2.28X10

5

4

3

5

3

2

1

0

Energy Loss (MeV) 0

ICARUS and neutrino oscillation

Two process: Absorption $v_e + 40 \text{Ar} \rightarrow 40 \text{K}^* + e^ 40K^* \rightarrow 40K + \gamma$ $\gamma + e \rightarrow \gamma' + e'$ $M(e^{-}) = 2$

Scattering

® 262年最JS homepage 上海2021

⁴⁰Ti and ⁴⁰Ar Mirror symmetry

Mirror symmetry in mass 40

40**T**j

-2

-1

⁴⁰Ti and ⁴⁰Ar Mirror symmetry

⁴⁰Ti and ⁴⁰Ar Mirror symmetry

Focal plane detectors

⁴⁰Ti selection

上海2021
Delayed coincidence technique

66

⁴⁰Ti β-delayed protons

上海2021

Reaction rates for ICARUS

- $\overline{B(GT) + B(F)}$ from this work
- $\sigma/B-E_x$ relation from
- Ormond et al., Phys. Lett. B345(1995)343.
- \rightarrow Absorption cross section = 13.8(6) Ξ 10⁻¹⁰ pb
- ⁸B solar neutrino flux of
- $F = 6.6(1.0) \times 10^{6} \text{ cm}^{-2}\text{s}^{-1}$ (Bahcall et al.)
- →ICARUS reaction rate
- 9.1(1.4) SNU (once for two days)
- =2.6 (Fermi) + 6.5 (Gamow-Teller)

Short summary

The missing of solar neutrinos must come from other reasons than nuclear reaction and detector efficiency, (neutrino oscillation).

2021年5月

上海2021

Advice for us

- Even with simple device we can still today attack most important problems
- But, one should be very careful and should work hard (sometimes for long time) experimental developments, everyone knows physics, but the key is to get more precise and background free data

- » [1] Burbidge E M, Burbidge G R, Fowler W A et al. Rev. Mod. Phys., 1957, 29: 547
- » [2] Cameron A GW. Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis. Atomic Energy of Canada Ltd, 2013
- » [3] FowlerWA. Rev. Mod. Phys., 1984, 56: 149
- » [4] Woosley S E, Heger A, Weaver T A. Rev. Mod. Phys., 2002, 74: 1015
- » [5] Kappeler F, Galino R, Bisterzo S et al. Rev. Mod. Phys., 2011, 83: 157
- » [6] Rolfs C E, Rodney W S. Cauldrons in the Cosmos. The University of Chicago Press, 1988
- » [7] 柳卫平, 张玉虎, 郭冰等. 核物理与等离子体物理发展战略, 第四章核天体物理. 科学出版社, 2017
- » [8] Horowitz C J et al. J. Phys. G: Nucl. Partic. Phys., 2019, 46: 083001
- » [9] Committee on the Physics of the Universe Board on Physics and Astronomy Division on Engineering and Physical Sciences, National Research Council of the National Academies. Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century. National Academy Press, 2003
- » [10] 周小红. 原子核物理评论, 2018, 35: 339
- » [11] LiuWP et al. Sci. China Phys. Mech. & Astro., 2018, 59: 642001
- » [12] 钱永忠. 物理, 2013, 42(7): 468
- » [13] 唐晓东,李阔昂,宇宙中元素的起源,中国物理学会期刊,2019年
- » [14] 郭冰, 柳卫平, 李志宏, 核天体物理, 原子能出版社, 2017年
- » [15] 李志宏, 核天体物理学, 原子能出版社, 2019年

71

/50