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A particle is scattered from a target. 

l The particle is trapped by the target
l A direct scattering event
l The particle is temporarily trapped by the target

      Significance of resonant states1

 Physical importance of resonant states



11Li208Pb spatial distribution 

 Resonances play important roles in the formation of exotic nuclei

Measurements of Interaction 
Cross Sections and Nuclear Radii 
in the Light p-Shell Region, 
I.Tanihata etal., PRL55, 2676 
(1985).

Relativistic Hartree-Bogoliubov 
Description of the Neutron Halo in 
11Li,  
J.Meng and P.Ring, PRL77, 3963 
(1996);

 Explanation on neutron halo



  Prediction on giant halo

Giant Halo at the 
Neutron Drip Line,  
J.Meng and P.Ring, 
PRL80,  460 (1998)

Pairing correlations and resonant states 
in the relativistic mean field theory, 
N.Sandulescu, L.S.Geng, etal, PRC2003exotic 

nuclei



  Understanding of deformation halo

The observed large Coulomb breakup cross section of 31Ne is interpreted easily and 
simply in terms of p-wave neutron halo  together with the deformed core 30Ne. 
Zhang, Smith, Kang, Zhao, Microscopic self-consistent study of neon halos with 
resonant contributions, PLB 730 (2014) 30–35



Single-particle neutron Nilsson diagram for 
39Mg from the relativistic mean-field 
approach with the complex-scaling method. 
The crossing between the deformed levels 
7/2−[303] and 1/2−[321] originating from the 
0f7/2 and 1p3/2 shells, respectively, results 
in a deformed subshell closure at N = 28 and 
β2 ≈ 0.3.

K. Fossez, J. Rotureau, N. Michel, Quan Liu, 
and W. Nazarewicz, , Single-particle and 
collective motion in unbound deformed 39Mg, 
PRC 94, 054302 (2016)



deformed 
“Core”

deformed
“Core+Halo”



Performing spherical Hartree-Fock-
Bogoliubov calculations with state-of-
the-art Skyrme plus pairing 
functionals, a collective halo is 
predicted in drip-line Cr isotopes.

  Explanation of the halo phenomena in medium-mass nuclei





29F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons 
occupying the 2p3/2 orbital.

By applying the Gamow shell model, a two-neutron halo structure is suggested in 31F built 
from both continuum coupling and nucleon-nucleon correlations.

  Recent progress on halo



Rep.Prog.Phys.80(056001)2017

11Be、19C等单中子晕，11Li、22C等Borromean晕，8B、17F等
质子晕，8He等四中子晕



T Baumann et al 2007 Nature 449 1022

Nuclear chart showing the most neutron-rich isotopes from C to Cl

Dripline(201712)



Calculated probabilities for given isotopes to be bound with respect to one- or two-neutron 
(proton) removal. The gray region indicates nuclei that have been calculated, while the height 
of the boxes corresponds to the estimated probability that a given nucleus is bound with respect 
to one- or two-neutron (proton) removal in the neutron-rich (deficient) region of the chart. The 
inset shows the residuals with experimental ground-state energies.

S. R. Stroberg 
etal., Ab 
Initio Limits 
of Atomic 
Nuclei, PRL 
126, 022501 
(2021)



Neutron shell structure and 
deformation in neutron-drip-line 
nuclei

New magic number appears in 
N ≈ 28 odd-N nuclei with weakly 
bound or resonant neutrons. 

  Shell structure near dripline and new magic number

Hamamoto, PRC95, 044325 (2017)

Hamamoto, PRC 85, 064329 (2012)N=16

new magic 
number



Change of shell structure and 
magnetic moments of odd-N 
deformed nuclei towards the neutron 
drip line, I.Hamamoto, J. Phys. G: 
Nucl. Part. Phys. 37 (2010) 055102

One-particle properties of deformed N 
≈ 28 odd-N nuclei with weakly bound 
or resonant neutrons, I.Hamamoto, 
PRC79, 014307 (2009)

2p1/2,2p3/2 ?

N=28



  Level inversion and island of inversion



L.G.Cao, Z.Y.Ma, 
PRC60 (2002) 024311

The single particle resonances in the continuum play an important role in the 
description of the nuclear dynamical processes, such as the collective giant 
resonances. 

Figure:  Single-particle 
levels for 120Sn calculated 
in the relativistic mean field 
theory. 
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  Role in the formation of giant resonance

Single-particle 
resonant levels
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Nucleosynthesis 
in supernovae

Properties of the resonant states play a important role in the nucleosynthesis

Nucleosynthesis 
in red giants

Nucleosynthesis in 
binary systems

  Stellar nucleosynthesis



  More researches on resonances

z Ikuko Hamamoto, One-particle resonant levels in a deformed potential, 
PRC72, 024301 (2005)

z Ikuko Hamamoto, Neutron decay width of one-particle resonant levels 
in deformed nuclei, PRC77, 054311 (2008)

z Chen Xu, etal., Molecular structure of highly excited resonant states in 
24Mg and the corresponding 8Be + 16O and 12C + 12C decays, PRC81, 
054319 (2010)

z T.N.Leite, etal., 12O resonant structure evaluated by the two-proton 
emission process, PRC80, 014606 (2009)

z Takayuki Myo, etal., Five-body resonances of 8He using the complex 
scaling method, PLB 691, 150 (2010)



u R-Matrix method, E.Wigner etal., PR 72, 29 (1947).
u K-Matrix method, J.Humblet etal., PRC 44, 2530 (1991).
u The phase-shift method, J.R.Taylor, Scattering Theory: The 

Quantum Theory on Nonrelativistic Collisions (Wiley, New York, 
1972).

u Theory of continous spectrum, NPA 635, 31 (1998); NPA 422, 
103 (1984).

u J-Matrix method, H.A.Yamani etal., J.Math.Phys.16, 410 
(1975);  A.M.Shirokov, etal., PRC79, 014610 (2009).

u Coupled-Channel Approach (CCA), I.Hamamoto, PRC 72, 
024301 (2005); Z.P.Li etal., PRC 81, 034311 (2010).

Methods for resonant states2



u Jost function method 
      B.N.Lu, E.G.Zhao, and S.G.Zhou, PRL 109, 072501 (2012); 
       B.N.Lu, E.G.Zhao, and S.G.Zhou, PRC 88, 024323 (2013). 
u Real stabilization method (RSM)
     A.U.Hazi and H.S.Taylor, PRA 1, 1109 (1970)；
       Y.K.Ho, Phys. Rept. 99, 1 (1983).
       ══> RMF-RSM 
       L. Zhang, S.G. Zhou etal., PRC 77, 014312(2008). 
u Analytic continuation in the coupling constant (ACCC)
      V.I.Kukulin etal., Theory of Resonances: Principles and Applications 

(Kluwer Academic, Dordrecht, 1989).
      ══> RMF-ACCC
       S.C.Yang, J.Meng, S.G.Zhou, CPL 18, 196 (2001).
       S.S.Zhang, J.Meng, S.G.Zhou etal., PRC 70, 034308  (2004).
       J.Y.Guo, R.D.Wang, and X.Z.Fang, PRC 72, 054319(2005).
       J.Y.Guo and X.Z.Fang, PRC 74, 024320 (2006).



u Complex Scaling Method (CSM)

u Green's function method
E.N.Economou, Green’s Fucntion in Quantum Physics, Springer-Verlag, 
Berlin, 2006. 
Y. Zhang, M. Matsuo, and J. Meng, Persistent contribution of unbound 
quasiparticles to the pair correlation in the continuum Skyrme-Hartree-
Fock-Bogoliubov approach, Phys Rev C, 2011, 83:054301.
══> RMF-GF
T.T.Sun, S.Q.Zhang, Y.Zhang, J.N.Hu, J.Meng, Green's function method for 
single-particle resonant states in relativistic mean field theory, Phys.Rev.C 
90, 054321(2014). T.T.Sun etal., Phys.Rev.C 95, 054318 (2017). 

Kiyoshi Kato, J. Phys.: Conf. Ser. 49, 73 (2006).
A. T. Kruppa, etal., PRC37, 383 (1988).
B. Gyarmati and A. T. Kruppa, PRC34, 95(1986).
A. T. Kruppa, etal , PRL79, 2217 (1997).
K. Arai, PRC74, 064311 (2006).



1. Jian-You Guo etal., Application of the complex scaling method in relativistic mean-field theory, 
Phys.Rev.C 82, 034318 (2010).

2. Quan Liu, Jian-You Guo etal., Resonant states of deformed nuclei in the complex scaling 
method, Phys.Rev.C 86, 054312 (2012).

3. Quan Liu, Zhong-Ming Niu, and Jian-You Guo, Resonant states and pseudospin symmetry in 
the Dirac-Morse potential, Phys.Rev.A 87, 052122 (2013).

4. Zhong-Lai Zhu, Zhong-Ming Niu, Dong-Peng Li, Quan Liu, and Jian-You Guo, Probing single-
proton resonances in nuclei by the complex-scaling method, Phys.Rev.C 89, 034307 (2014).

5. Min Shi, Quan Liu, Zhong-Ming Niu, and Jian-You Guo, Relativistic extension of the complex 
scaling method for resonant states in deformed nuclei, Phys.Rev.C 90, 034319 (2014).

Ø RMF-CSM  

Ø RMF-CGF  

1. Min Shi, Jian-You Guo, Quan Liu, Zhong-Ming Niu, and Tai-Hua Heng, Relativistic extension 
of the complex scaled Green function method, Phys.Rev.C 92, 054313 (2015)

2. Xin-Xing Shi, Min Shi, Zhong-Ming Niu, Tai-Hua Heng, and Jian-You Guo, Probing 
resonances in deformed nuclei by using the complex-scaled Green's function method, 
Phys.Rev.C 94, 024302 (2016)

3. Relativistic extension of the complex scaled Green’s function method for resonances in 
deformed nuclei, Min Shi, Xin-Xing Shi, Zhong-Ming Niu, Ting-Ting Sun, and Jian-You Guo, 
Eur. Phys. J. A  53: 40 (2017)

Ø RMF-CMR  

1. Niu Li, Min Shi, Jian-You Guo, Zhong-Ming Niu, and Haozhao Liang, Probing Resonances of 
the Dirac Equation with Complex Momentum Representation, Phys.Rev.Lett. 117, 062502 
(2016)

2. Ya-Juan Tian, Quan Liu, Tai-Hua Heng, and Jian-You Guo, Research on the halo in 31Ne with 
the complex momentum representation method, Phys.Rev.C 95, 064329 (2017)

3. Zhi Fang, Min Shi, Jian-You Guo, Zhong-Ming Niu, Haozhao Liang, and Shi-Sheng Zhang, 
Probing resonances in the Dirac equation with quadrupole-deformed potentials with the 
complex momentum representation method, Phys.Rev.C 95, 024311 (2017)

4. Ke-Meng Ding, Min Shi, Jian-You Guo, Zhong-Ming Niu, and Haozhao Liang, Resonant 
continuum relativistic mean field plus BCS in complex momentum representation,  Phys.Rev.C 
98, 014316 (2018). 

  Our researches on resonant states



Ø Among the continuum states, resonant states can be considered as an extension 
of bound states because they result from correlations and interactions.

Ø As pointed out by Berggren  [NPA109, 265(1968)], the properties of resonant 
states, including the orthogonality and completeness,  in many ways quite 
analogous to those of  the ordinary bound states.”

Ø As the physical similarity between the resonant and bound states, the bound 
method can be used. Especially for many-body system, CSM is more convenient. 

 Complex scaling method (CSM) is an effective method for resonances

      Complex scaling method and its application3

Ø  N.Moiseyev, Quantum theory of resonances: calculating energies, widths and 
cross-sections by complex scaling, Phys. Rept. 302, 211 (1998);

Ø Takayuki Myo etal., Recent development of complex scaling method for many-
body resonances and continua in light nuclei, Prog.Part.Nucl.Phys.79, 1 (2014);

Ø J.Carbonell  etal., Bound state techniques to solve the multiparticle scattering 
problem, Prog.Part.Nucl.Phys.74, 55 (2014).

 Complex scaling method (CSM) has been applied in many fields. In web of 
science, we search for the paper with key words: Complex scaling method. 
About  papers have been found in the recent  years. Several 
reviews are listed in the following: 



z Takayuki Myo, etal., Analysis of 6He Coulomb breakup in 
the complex scaling method, PRC63, 054313(2001)

z Kenichi Yoshida, Role of low-l component in deformed wave 
functions near the continuum threshold, PRC72, 064311 
(2005)

z A. T. Kruppa, Scattering amplitude without an explicit 
enforcement of boundary conditions, PRC75, 044602 (2007)

z Takayuki Myo, etal., Five-body resonances of 8He using the 
complex scaling method, PLB691, 150 (2010)

Ø CSM + few-body model

 CSM has gained very success in nuclear physics



z N. Michel, etal., Gamow Shell Model Description of Neutron-Rich Nuclei, 
PRL89, 042502 (2002).

z N. Michel, etal., Gamow shell model description of weakly bound nuclei 
and unbound nuclear states, PRC67, 054311 (2003).

z G. Hagen,etal., Gamow shell model description of weakly bound nuclei 
and unbound nuclear states, PRC 73, 064307 (2006)

z N. Michel, etal., Antibound states and halo formation in the Gamow 
shell model, PRC74, 054305 (2006).

z J. Rotureau, etal., PRL97, 110603 (2006).
z N. Michel, Shell Model in the Complex Energy Plane, 

JPG36,013101(2009)
z J. G. Li, N. Michel, W. Zuo, and F. R.Xu, Unbound spectra of neutron-

rich oxygen isotopes predicted by the Gamow shell model, PRC 103, 
034305 (2021)

Ø CSM + Shell model  => Gamow Shell Model



Ø CSM + HFB  => Gamow-Hartree-Fock-Method

z A.T.Kruppa, and etal., Particle-Unstable Nuclei in the 
Hartree-Fock Theory, PRL79, 2217(1997)

z A.T.Kruppa, Resonances in the Hartree-Fock BCS 
theory, PRC63, 044324(2001)

z N. Michel, etal., Gamow-Hartree-Fock-Bogoliubov 
method: Representation of quasiparticles with 
Berggren sets of wave functions, PRC78, 044319 
(2008)



As is indicated in “Physics Reports 302 (1998) 211”

 Idea of complex scaling method



r
r e 

 

Continuum st. 

Spectrum of 
Hamiltonian

Bound states

Resonant states

r
r e 

  

Non-Resonant states

 A many-body system can be described with Schrödinger equation as

   H r E r 
 

The continuum is structured. The phase shift 
function δ(E) may show steep rises by nearly π；
these phenomena are called resonances. 
Mathematical considerations reveal that this 
behavior of the phase shift may be associated with 
a pole if the scattering amplitude at Eres= E - iΓ/2. 

ØY. K. Ho, Phys. Rep. 99, 
1 (1983);
ØN.Moiseyev, Phys. Rept. 

302, 211 (1998);
ØN.Michel etal., 

JPG36,013101(2009)

  Complex scaling method



The starting point of CSM is a coordiante-transformation

'r r gr e r  
   

g∈G (space dilation group), and Θ is of complex number.
Usually,Θ is adopted as a pure imaginary parameter iθ (θ is real)

       / 2Ni iU r e re r 
      

  

The transformed Hamiltonian

 ( )H r E r    
 

The corresponding transformation operator U(θ) is defined as

The transformed Schrödinger equation

   1H U HU  
[1] J.Aguilar and J.M.Combes, 

Commun.Math.Phys.22,269(19
71);

 [2] E.Balslev and J.M.Combes, 
ibid.22,280(1971); 

 [3] B.Simon, ibid.27,1(1972)

The transformation was introduced by Aguilar, Balslev, Combes and Simon.



ABC theorem

Ø The strongly restrictive sufficient conditions are given with mathematical 
rigor in the references above. 

Ø loosely speaking they amount to the requirement that all quantities in the 
Schrödinger equation are dilation analytic.

Ø This means that there exists a finite region of θ in which their 
transforms obtained by the application of U(θ) are analytic.

Conditions:

Ø A bound state eigenvalue of  H  remains also an eigenvalue of Hθ

Ø A resonance pole Eres = E - iΓ/2 of the Green-operator of H is an 
eigenvalue of Hθ  

Ø The continuous part of the spectrum of H is rotated down into the 
complex energy plane by the angle 2θ .

Ø The important point is that  the wavefunctions of resonant states are 
square integrable.

Results:



The transformation of 
coordinate and momentum:

coordinate: irer 
momentum: ikek 

R.S.
Re(k)

Im(k)

B.S.

Scattering states
R



 The integration path for resonances

The integration path for bound and 
resonant states

The integration path for bound states

Complex energy plane



Resonant eigensolutions of H(r) can be transformed into square integral ψθ(r). ψθ(r) 
can be approximated by an expansion with N linearly independent real square 
integral functions 
χi(r) (i = 1; 2; …… N)

The unknown coefficients ci(θ) are determined by a generalized variation principle

Solution of complex scaled equation

And, we obtain a matrix equation 

where 



where Nb and          are the numbers of bound and resonant state solutions,  the bound  solutions 
Eb with negative real values are independent of θ. The complex energies           
are the resonant state solutions, which locate in the wedge region between the positive energy 
axis and the 2θ line, are also independent of θ. The discretized energies Ec(θ) of continuum 
states, which are obtained on the 2θ lines, are θ dependent and expressed as 

When the square integral functions χi(r) are chosen, the matrix elements Hij and Nij  can be 
calculated. Then the solution of equation is obtained. The calculated complex energies can be 
shown in the following figures

Ideal 
case

Real 
case



Using the solutions of the eigenvalue, the matrix elements are calculated:

The matrix elements of the operator        are expressed as

where the biorthogonal state 

The calculation of matrix elements of operators 



Extended completeness relation

In standard quantum mechanics without complex scaling, bound and scattering 
(continuum) states form a complete set that is represented by the completeness 
relation with real eigenenergies (momenta) of the Hamiltonian H

In CSM, the momentum axis is rotated down by θ, and the poles of resonances can 
enter the semicircle for the Cauchy integration. Then, the resonances are explicitly 
included in the completeness relation of the complex-scaled Hamiltonian H(θ) as 
follows:





In 1988, Seba had proved the CSM can be used to the Dirac equation for 
the relativistic resonances

The  transformed condition is required by ABC theorem

Conditions:

Petr Seba, LMP16, 51(1988)

Under the complex scaling transformations U(θ) with a finite region of θ, all 
quantities in the Dirac equation is dilation analytic.

Results: 

The important point is that  the wavefunctions of resonant states are square integrable

Ø  A bound state eigenvalue of  H  remains also 
an eigenvalue of  Hθ 

Ø  A resonance pole εres = E - iΓ/2 of the Green-
operator of H is an eigenvalue of   Hθ  

Ø  The continuous part of the spectrum of Hθ is 
rotated down into the complex energy plane by 
the angle θ

 Relativistic extension of complex scaling method



Ø In 2004, Ivanov etal. had applied the complex scaling method to the Dirac 
Hamiltonian, and presented the positions and widths of resonance levels 
for hydrogenlike ions with (Z=1 and Z=10). I.A.Ivanov, Phys.Rev.A 69, 
023407 (2004);

Ø In 2006, Pestka etal. had discussed the relativistic resonances for Dirac- 
Coulomb with relativistic Hylleraas-CI method, G.Pestka etal., J.Phys.B39 
(2006) 2979;

Ø In 2007, Alhaidari had discussed the relativistic resonances for Dirac-
Coulomb problem with Laguerre basis A.D.Alhaidari, Phys.Rev. A75, 
042707 (2007); 

Ø In 2007, E.Ackad etal. had researched the supercritical Dirac resonance 
parameters by complex scaling method, E. Ackad and M.Horbatsch, Phys. 
Rev. A 76, 022503 (2007); 

Ø In 2008, Bylicki etal. had researched the relativistic models of atoms for the 
n-electron Dirac-Coulomb DC equation by complex scaling method, M. 
Bylicki, G. Pestka, and J. Karwowski,, Phys.Rev.A 77, 044501 (2008)

Researches on the relativistic resonances



Relativistic mean field theory (RMF)
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  The RMF-CSM formalism
Jian-You Guo etal., 
Phy.Rev.C82, 034318 
(2010)



 The corresponding density

   The Dirac equation for nucleon:

The Klein-Gordon equation for mesons and photon:

the vector and scalar potentials  are as 
following

 By solving these 
coupled equations  
iteratively with the no-
sea and the mean-field 
approximations, we 
get self-consistent 
nuclear potential V(r) 
and S(r).
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The equation of motion from RMF for nucleon can be written as

the radial part of Dirac equation is

1
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dV S M f r f rdr r
d g r g rV S M
dr r
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For complex scaling transformation, we introduce the operator
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  The theoretical details for the spherical case
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The transformed Dirac 
spinors

The transformed Hamiltonian

The transformed Dirac equation
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By using the formula
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In order to solve the Dirac equation, the basis expansion method is 
used. The Dirac spinors f(r) and g(r) are expanded by a set of basis. 
Such as {Rnl(r), n=1,2,…}

Here
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The transformed Dirac equation becomes
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The matrix elements of unit operator
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l The harmonic oscillator functions are used as the basis set to 
diagonalize the Hamiltonian
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The matrix elements of kinetic energy operator



More details can be found in the paper:  
Jian-You Guo etal., Computer Physics Communications 181, 550 (2010)
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The matrix elements of potential energy operator



l The Laguerre polynomial are used as the basis set to diagonalize the 
Hamiltonian

   / 2 2 1
1 03/ 2

0

, / , 1, 2,3,l x lnl
nl n

NR r x e L x x r b n
b

 
     

 2 1nl

n
N

n l



  

The matrix elements of unit operator
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The matrix elements of potential energy operator
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the matrix and 



The dependence on the rotated 
angle θ

 Θ           E                      Γ
 10     3.42637553    0.02554493007
 20     3.42637422    0.02554487094
 30     3.42637356    0.02554710731
 40     3.42637420    0.02554930672
 50     3.42637545    0.02554929359
 60     3.42637606    0.02554717623
 70     3.42637547    0.02554508319
 80     3.42637452    0.02555479468 

The exponential model

01, 100, 1.0a.u.N b    

 2( ) 7.5 , 0rV r r e S r 

The adopted potential 
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  Numerical check for the formalism



The dependence on the size of 
basis N

30 40 50 60 70 80 90 100
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b0=1, 

 

 

Im
(E

) [
a.

u.
]

N

   N                 E                          Γ
   30 3.42638378 0.02557000000
   40 3.42637992 0.02556000000
   50 3.42637800 0.02555757161
   60 3.42637694 0.02555421281
   70 3.42637631 0.02555215337
   80 3.42637590 0.02555082142
   90 3.42637563 0.02555000000
   100 3.42637545 0.02555000000

   N                 E                          Γ
   30          4.83482424 2.23557000
   40          4.83482786       2.23556000
   50          4.83482981 2.23555276
   60          4.83483095 2.23554986
   70          4.83483166 2.23554812
   80          4.83483212 2.23554702
   90          4.83483243 2.23555000
  100         4.83483265 2.23555000



The dependence on the scaling 
parameter b0

b0/b00         E                  Γ
 1        3.42637484     0.02555000000
 2        3.42637487     0.02554724236
 3        3.42637516     0.02554829200
 4        3.42638000     0.02555000000
 5        3.42638000     0.02557000000
 6        3.42640000     0.02561000000
 7        3.42643000     0.02570000000
 8        3.42666000     0.02621000000
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R

e(
E)

 [a
.u

.]

b0/b00

b0/b00         E                  Γ
 1      4.83483341      2.23554000
 2      4.83483337      2.23554418
 3      4.83483300      2.23554499
 4      4.83483000      2.23555000
 5      4.83483000      2.23556000
 6      4.83481000      2.23561000
 7      4.83480000      2.23568000
 8      4.83416000      2.23677000



-------------------------------------------------------------------------------------
This work                                    Ref.[1] 
E (a.u.) Γ (a.u.) E (a.u.) Γ (a.u.)
-----------------------------------------------------------------------
2.9498916193 23.064483506 2.9465842 23.06811
3.4263754496 0.0255492936 3.4266874221 0.0255518009
4.2703307927 17.435033899 4.2687950416 17.439000786
4.8348326472 2.2355457803 4.8354225415  2.2361196639
5.0657602535 11.952101919 5.0654945401  11.955326382
5.2775971948  6.7777667228 5.2780344286  6.7796704926
--------------------------------------------------------------------------------------

Comparison of energies and widths in this work with Ref. [1] for the resonant 
states with κ = −1

[1]  A.D. Alhaidari, PRA75, 042707(2007)



The nonrelativistic limit of our calculations associated with the model potential 
for κ = −1 against known nonrelativistic results elsewhere. 

-------------------------------------------------------------------------------------
E (a.u.) Γ (a.u.) References
-------------------------------------------------------------------------------------
3.426390331 0.025548962 [2]
3.426390310 0.025548961 [3]
3.4263903 0.025549 [1]
3.426389933 0.025551206 This work
3.426391372 0.025552643 Nonrelativistic
-------------------------------------------------------------------------------------
4.834806841 2.235753338 [2]
4.834806841 2.235753338 [3]
4.8348069 2.2357529 [1]
4.834806471 2.235753125 This work
4.834805545 2.235756250  Nonrelativistic
--------------------------------------------------------------------------------------
[2] S.A. Sofianos, S.A. Rakityansky, J. Phys. A 30 (1997) 3725.
[3] A.D. Alhaidari, J. Phys. A 37 (2004) 5863.



The Yukawa potential

Resonance energies for 
the κ=l states in the 
Yukawa potential in 
comparison with those in 
J-matrix calculation. The 
complex rotation angle 
θ=1.0 radians and the 
atomic units ħ = m = 1.
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The potential 
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  RMF-CSM for neutron resonances in nuclei



  RMF-CSM for proton resonances in nuclei



 CSM for the resonances in deformed nuclei
The non-relativistic case Liu, Guo etal., Phys.Rev.C 86, 

054312 (2012)Neutron single-particle levels in 31Ne

The interactions are adopted from 
Hamamoto, Phys.Rev.C 81(R), 
021304(R)(2010)

Ø The bound states remain on the negative energy axis.
Ø The resonance poles fall on the fourth quadrant
Ø The continuous spectrum is rotated down into the complex energy plane by 

the angle 2θ .



 Variation of energy spectrum with θ in the complex energy plane



    Determination of resonance parameters
Resonance 
parameters from 
the θ trajectories



Comparison with the coupled 
channel method for the 
single-particle levels in 31Ne

Hamamoto, PRC81,021304(R), (2010) Liu, Guo, etal., PRC 86, 054312 (2012)



The complex scaled Hamiltonian

Shi, Liu, Niu, and Guo,  
Phys.Rev.C 90, 034319 (2014).

The Dirac matrix eq.

RMF-CSM for the resonances in deformed nuclei
The relativistic case



Ø The bound states, resonant states, and 
continuum are, respectively, labeled as 
open squares, color open circles, and 
open circles. 

Ø The solid line rotating with θ marks the 
position of the continuum spectra.

    The single particle states in 31Ne

Shi, Liu, Niu, and Guo,  
Phys.Rev.C 90, 034319 (2014).



The eigenvalues 
of Hθ with the 
deformation 
parameter β2 = 
0.0, 0.1, 0.2, and 
0.3 in the 
calculations



The single-particle 
levels in 31Ne in the 
RMF-CSM 
calculations

Shi, Liu, Niu, and Guo,  
Phys.Rev.C 90, 034319 
(2014).

Ø The single-particle levels for the 
bound states are in agreement with 
those obtained in the non-
relativistic calculation with spin-
orbit coupling by hand. 

Ø The single-particle levels for the 
resonant states are also in 
agreement with those obtained by 
the coupling-channel method



  The RMF-CGF formalism

To make it more intuitive and easier to determine resonance parameters, 
we have developed a relativistic complex-scaled Green function method.

    Complex scaled Green’s function method4

Complex scaled Green function is defined as

The level density of Hθ is defined as

  The RMF-CGF formalism

Shi, Guo, Liu, Niu, 
Heng,  Phys.Rev.C 92, 
054313 (2015).



Ø The resonant state corresponds to the peak appearing in the density of energy 
level ρ(E).

Ø When θ is small, there exists oscillating phenomenon in ρ(E). With the increasing 
of  θ,  the oscillating disappears.

Ø When the background is removed off, the peak is more clear, which can be used 
accurately to determine the resonant parameters.

The extended completeness relation:

  The RMF-CGF formalism

By using the extended completeness 
relation, the level density becomes



The continuum level density is 
obtained by subtracting the 
background as

The resonant state corresponds to 
the peak appearing in the density 
of energy level ρ (ε).

Shi, Guo, Liu, Niu, Heng,  
Phys.Rev.C 92, 054313 (2015).





There exist some shortcomings in CSM

Ø Need to introduce a unphysical parameter: complex 
rotation angle θ.

Ø CSM is only applicable to the dilation analytic potential. 

Ø There is a singularity in the mean-field of nucleon 
movement when θ is very large. CSM is not applicable to 
very broad resonance in nuclei.

Complex momentum representation (CMR)



   Dirac equation in momentum representation
   RMF-CMR method for spherical nuclei

Liu, shi, Guo, etal., 
PRL117, 062502 
(2016).

    Complex momentum representation5

By assuming

Dirac equation becomes 

Here



   Integral path in momentum space Liu, shi, Guo, etal., 
PRL117, 062502 
(2016).

  Wavefunction in coordinate space

 with 



CMR advantages:

Ø CMR describes the bound 
states, resonant states, and 
continuum on an equal footing

Ø The bound states populate on 
the imaginary axis in the 
complex momentum plane

Ø The resonant states locate at 
the fourth quadrant

Ø The continuum follows the 
contour

Ø The bound states and resonant 
states are independent on the 
contour.

   Solution of Dirac equation in CMR



Wavefunction for the resonant state is expanded much wider than the free states 
which agrees the Heisenberg uncertainty principle: a less well defined momentum 
corresponds to a more well-defined position for bound and resonant states.



   RMF-CMR for deformed nuclei

   Dirac equation in momentum representation

  The Dirac spinor is expanded as

   where



Understanding of deformation halo in 37Mg with RMF-CMR

Single-
particle 
spectra in 
37Mg 

Radial density distributions in the coordinate 
space for the bound states 1/2[110] and 
1/2[310], and the resonant state 1/2[301] 
with β2 = 0.4 

Fang etal, 
PRC 95, 
024311 (2017) 



   Explanation on halo in 31Ne
There appears the inversion in 
the levels for the resonant 
states

I.Hamamoto, PRC81, 021304(R) (2010). 



ØCalculated probabilities of 
p1/2, p3/2, f5/2, f7/2, h9/2, and 
h11/2  components in the 
level 1/2[310]

ØDensity distributions of 
resonant states with a long 
tail.



I. Hamamoto, PRC 85, 064329 (2012)

Interpretation of halo in 19C with 
complex momentum representation 
method

X.N.Cao, Q.Liu, J.Y.Guo, JPG 45, 
085105 (2018)

N=16

   Explanation on halo in 19C



Interpretation of halo in 19C with 
complex momentum representation 
method





CMR for n-\alpha scattering

Ø CMR is used to study the elastic 
scattering of n-\alpha system, 
the continuum level density, 
phase shift, and cross section 
are obtained. 

Ø The calculated results and 
experimental data are in good 
consistence.



Ø Density distributions in 124Zr 
with a long tail.

Ø The top panel displays the ratio 
of the neutron density of the 
single-particle levels to the total 
neutron density. 

Ø The bottom panel displays the 
proton, neutron, and total matter 
densities marked by the black 
solid, red dot, and blue dashed 
lines, respectively

Density distributions in 124Zr
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Arima etal., PLB30, 517(1969); 
Hecht etal., NPA137, 129 (1969)

Pseudospin  doublets

Re-define the quantum 
numbers of states

Pseudospin  doublets:

Here

Similar to the spin  doublets

The splitting of both spin and pseudospin doublets play critical roles in the shell 
structure evolutions. It is a fundamental task to explore the origin of SS and PSS, 
as well as the mechanism of their breaking.

Pseudospin symmetry in resonant states





Symmetry in resonant states in the RMF-CMR calculations

Ting-Ting Sun,etal., PRC 99, 034310 (2019)



The upper components of Dirac 
spinors for the bound 
pseudospin doublet in 210Pb

The lower components of Dirac 
spinors for the bound 
pseudospin doublet in 210Pb

upper 
component

lower 
component

Pseudospin symmetry in wavefunctions-bound



The upper components of Dirac 
spinors for the resonant 
pseudospin doublet in 210Pb

The lower components of Dirac 
spinors for the resonant 
pseudospin doublet in 210Pb

Pseudospin symmetry in wavefunctions-resonant

lower 
component

upper 
component



Summary

Perspective

l Development and perfection of theoretical formalism
l Prediction and explanation of novel phenomena in nuclei 
l New observables related to resonant states 

l Significance of resonant states is explained. 
l Relativistic CSM,CGF, and CMR are introduced.
l Exploration of resonant states in nuclei is presented.

Thank you！

       Summary and perspective6


