原子核结构与中高能重离子碰撞交叉学科理论讲习班

高能重离子碰撞中手征反常效应的实验测量

寿齐烨 复旦大学

2021年7月, 湖州

Outline

- Introduction from experimental perspective
- Search for the Chiral Magnetic Effect
- Search for the Chiral Magnetic Wave
- Summary

What is chiral anomaly?

Chiral magnetic effect

E/B

Chiral anomaly in condensed matters

Dirac/Weyl semimetal + $E/B \longrightarrow J$

BNL + 石溪团队 Chiral magnetic effect in ZrTe5 Nature Phys. 12, 550–554 (2016)

复旦修发贤、晏湖根课题组 The discovery of dynamic chiral anomaly in a Weyl semimetal NbAs Nature Commun. 11, 1259 (2020)

Beyond condensed matters, in heavy-ion collisions

Quarks from QGP + E/B from spectators $\longrightarrow J$

Topological structure of vacuum gauge fields symmetries in strong interactions

Dirac/Weyl semimetal + $E/B \longrightarrow J$

The possible local violation of P (parity) and/or CP (charge-parity)

Heavy-ion collisions

Criticality, Collectively, Chirality

Anomalous chiral effects

Chiral magnetic effect (CME)

Chiral separation effect (CSE)

Chiral electric separation effect (CESE)

Chiral vortical effect (CVE)

Chiral magnetic wave (CMW = CSE + CME)

Chiral vortical wave (CVW)

 $\overrightarrow{J} = \mu_5 \overrightarrow{B} \qquad (\overrightarrow{J_V} = \mu_A \overrightarrow{B})$ $\overrightarrow{J_A} = \mu_V \overrightarrow{B}$ $\overrightarrow{J_A} = \sigma_{\chi e}(e\overrightarrow{E})$ $\overrightarrow{J} = \mu_5 \overrightarrow{\omega}$ $\overrightarrow{J}_{V,A}^{f} = q_f \frac{N_c e}{2\pi^2} \mu_{A,F}^{f} \overrightarrow{B}$ $\partial_t(\delta n) + \frac{\mu_0 \omega}{2\pi^2 \chi_{\mu_0}} \partial_x(\delta n) = 0$

Experimental observables: various charge separations

Chiral magnetic effect (CME)

Chiral separation effect (CSE)

Chiral electric separation effect (CESE)

Chiral vortical effect (CVE)

Chiral magnetic wave (CMW = CSE + CME)

Chiral vortical wave (CVW)

CME and CMW

How can we experimentally detect such kind of charge separations?

CME and CMW

How can we experimentally detect such kind of charge separations? A needle in a haystack

Signal and background in experiments

A good observable: sensitive to the signal rather than the background

Reality

Solenoidal Tracker at RHIC

14 countries, 65 institutes, 668 members

A Large Ion Collider Experiment

41 countries, 177 institutes, 1800 members

Compact Muon Solenoid

45 countries, 198 institutes, 2100 members

Experimental setup

HC	RHIC
2.76 TeV 5.02 TeV	Au+Au BES (7-62 GeV) Au+Au 200 GeV Cu+Cu Isobar (Zr+Zr)
5.44 TeV	U+U 192 GeV Isobar (Ru+Ru)
.02 TeV .16 TeV	p(d)+Au 200 GeV Cu+Au

With inclusive and identified particles at varied kinematic windows

Intuitive expectation

B lifetime

Bg

B direction

15/42

CME and CMW

γ correlator (δ , κ and H)

How can we experimentally detect such kind of charge separations? A needle in a haystack

Charge asymmetry dependent flow

Measurement of CME with y correlator

 $dN_{\alpha}/d\phi = 1 + 2v_{1,\alpha}cos\Delta\phi + 2v_{2,\alpha}cos(2\Delta\phi) + \dots$ + $2a_{1,\alpha}\sin\Delta\phi$ + $2a_{2,\alpha}\sin(2\Delta\phi)$ + ...

```
\gamma_{112} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_2) \rangle
            = < \cos\Delta\varphi_{\alpha} \cos\Delta\varphi_{\beta} > - < \sin\Delta\varphi_{\alpha} \sin\Delta\varphi_{\beta} >
\delta_{11} = \langle \cos(\varphi_{\alpha} - \varphi_{\beta}) \rangle
          = < \cos\Delta\varphi_{\alpha} \cos\Delta\varphi_{\beta} > + < \sin\Delta\varphi_{\alpha} \sin\Delta\varphi_{\beta} >
Sensitive to CME
```

$$\begin{aligned} \gamma_{112} &= \kappa v_2 F - H \\ \delta_{11} &= F + H \\ H &= (\kappa v_2 \delta_{11} - \gamma_{112}) / (1 + \kappa v_2) \end{aligned}$$

 $\gamma_{132} \equiv \langle \cos(\phi_{\alpha} - 3\phi_{\beta} + 2\Psi_2) \rangle$ $\gamma_{123} \equiv \langle \cos(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_3) \rangle$

Not sensitive to CME

Y112 at RHIC

- The observed γ_{112} shows nontrivial structure

Stronger centrality dependence of SS than that of OS

Y₁₁₂ at RHIC

Phys. Rev. Lett. 113, 052302 (2014)

Strong collision energy dependence at RHIC BES

Y112 at LHC

- Stronger centrality dependence of SS than that of OS

• Little or no difference for γ_{112} between 0.2, 2.76 and 5.02 TeV collisions

Y112 at LHC

J. Phys.: Conf. Ser. 612 (2015) 012044

ALI-PREL-88970

- $\gamma_{112}(\pi)$ and $\gamma_{112}(K)$ are quite similar
- Difference between $\gamma_{112}(p)$ and $\gamma_{112}(\pi)$

Interpretation?

Surprise in the small system collisions

- Agreement between pPb and Pb-Pb results
- A common underlying mechanism that generates the observed γ_{112}

Pb results
that generates the observed γ112

Surprise in the small system collisions

- Agreement between pPb and Pb-Pb results
- A common underlying mechanism that generates the observed γ_{112}

Pb results that generates the observed γ112

Study of the background: what are they and how large?

Study of the background: collective flow

$$\gamma_{112} \equiv \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{2}) \rangle$$

$$= \langle \cos(\phi_{\alpha} - \Psi_{2}) \cos(\phi_{\beta} - \Psi_{2}) \rangle$$

$$- \langle \sin(\phi_{\alpha} - \Psi_{2}) \sin(\phi_{\beta} - \Psi_{2}) \rangle$$

$$\gamma_{112}^{bkg} = \kappa_{2} \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle \langle \cos 2(\phi_{\beta} - \Psi_{RP}) \rangle = \kappa_{2} \, \delta \, v_{2}$$

$$\gamma_{123} \equiv \langle \cos(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_{3}) \rangle$$

$$\gamma_{123}^{bkg} = \kappa_{3} \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle \langle \cos 3(\phi_{\beta} - \Psi_{3}) \rangle$$

$$= \kappa_{3} \, \delta \, v_{3},$$
If pure background:

$$\frac{\Delta \gamma_{112}}{\Delta \delta v_2} \approx \frac{\Delta \gamma_{123}}{\Delta \delta v_3}$$

Study of the background: collective flow

 Ψ_{PP} and Ψ_{RP} are sensitive to different component of γ_{112}

 $a = v_2 \{ \Psi_{ZDC} \} / v_2 \{ \Psi_{TPC} \}$ $A = \Delta \gamma \{ \Psi_{ZDC} \} / \Delta \gamma \{ \Psi_{TPC} \}$ $f_{CME} = (A/a - 1) / (1/a^2 - 1)$

Study of the background: collective flow

Event Shape Engineering

Events with the desired initial spatial anisotropy can be experimentally selected by q₂

 $\Delta \gamma_{112}$ is approximately proportional to v_2

Study of the background: resonance decay

Nuclear Physics A 982, 535 (2019)

 γ_{112} is contaminated by major backgrounds arising from local charge conservation/resonance decay coupled with the elliptical anisotropy

Experimental search for the CME: current status

- Current consensus of the CME component (upper limit) in $\gamma < 10\%$
- Important and urgent task: optimal observables and a comprehensive understanding, and ...

• γ correlator has been used to investigate charge separation for a decade, and it's clear that the LCC+flow driven background as well as the contamination from the resonance decay play dominate roles

Experimental search for the CME: current status

Colliding deformed nuclei

Isobars: different chemical elements that have the same number of nucleons. For example, ${}^{96}_{44}Ru$ (Ruthenium) and ${}^{96}_{40}Zr$ (Zirconium): up to 10% variation in B field

U238 Finite v2 + no B field In most central collisions (body-body)

Observable	$^{96}_{44}$ Ru + $^{96}_{44}$ Ru vs $^{96}_{40}$ Zr + $^{96}_{40}$ Zr
Flow	\approx
CME	>
CMW	>
CVE	\approx

Measurement of CMW with charge asymmetry dependent flow

$$\Delta v_2 = v_2^- - v_2^+ \sim rA_{ch}$$
$$A_{ch} = (N^+ - N^-) / (N^+ + N^-)$$
Sensitive to CMW

 $\Delta v_3 = v_3^- - v_3^+ \sim rA_{ch}$ Not sensitive to CMW

The linear dependences between v_2 and A_{ch} are clearly observed, matching CMW expectation

$v_2 vs A_{ch}$ at RHIC

Phys. Rev. Lett. 114, 252302 (2015)

Positive slope and the rise-fall trend can be observed in BES

- •
- Little difference between RHIC and LHC results

The linear dependences between v_2 and A_{ch} are clearly observed, matching CMW expectation

Surprise again in the small system collisions

- Agreement between pPb and Pb-Pb results
- A common underlying mechanism generates the observed $v_2 vs A_{ch}$

Phys. Rev. C. 100 (2019) 064908

Pb results generates the observed $v_2 vs A_{ch}$

Study of the background: what are they and how large?

Local charge conservation

Study of the background: local charge conservation

- $p_{\rm T}$ shows a clear $A_{\rm ch}$ dependence
- Indication of the local charge conservation

dependence charge conservation

Study of the background - local charge conservation

Study of the background - Isospin chemical potential

The isospin effect doesn't play a significant role

- the mechanism are quite different
- The relationship of v_2 vs A_{ch} is contaminated by the local charge conservation
- Important and urgent task: extract the CMW fraction

CMW couldn't exist alone without CME, however, the observables and

Summary

How can we correctly capture the signal of the anomalous chiral effects, if they exist in QGP?

A ideal observable should

- be self-analysing
- clearly distinguish the signal and the background

We've already learnt a lot about the collectivity of the QGP no matter CME can be found or not.

- Theorists and experimentalists should always work together
- People used to only see what they believe stay objective
- A good research takes time be persistent

It is by logic that we prove, but by intuition that we discover. To know how to criticize is good, to know how to create is better.

Thank you for your attention!

/ intuition that we discover. to know how to create is better. —Henry Poincaré

