

ALICE prospects for LHC Run 3 and beyond Luciano Musa (CERN)

RHIC – BES online seminar

2021 September 14

Outline

- ① Introduction
- ② ALICE Upgrade
- ③ Physics prospects for Run 3 and Run 4 (few selected topics)
- ④ Future perspectives

The ALICE Collaboration

42 Countries, 173 Institutes 1946 Members about **1000 signing authors**

Main stages

- 1992: Expression of interest
- 1997: ALICE approval
- 2000 2007: construction
- 2002 early 2008: Installation
- 2009 2018: physics campaign

Heavy Ion Collisions at the LHC

• The LHC collides most of the time protons on protons

p-Pb

• Approximately one month of running time is dedicated to heavy-ions each year (primarily Pb ions)

рр

(*) collisions energy in Run 1 and 2 $\,$

Xe-Xe

Pb-Pb

L. Musa (CERN) – ALICE Programme for Run 3 and beyond, 14 September 2021

QGP: asymptotic state of QCD

Quark Gluon Plasma (QGP): at extreme temperatures and densities quarks and gluons behave quasi-free and are not localized to individual hadrons anymore

ALICE and the Little Bang

Explore the deconfined phase of QCD matter

LHC Pb-Pb \Rightarrow **large energy density** (initial $\varepsilon > 15$ GeV/fm³) & **large volume** (~5000 fm³)

Visualization by J.E. Bernhard, arXiv:1804.06469

Study the time evolution of the collision

- Initial stage
- Macroscopic properties
- Colour deconfinement

- Parton interactions
- Expansion dynamics
- Hadronic phase

- Heavy flavour production
- Quarkonia
- Photons, low-mass dileptons
- Jets
- Ultra Peripheral Collisions

The ALICE detector (version 1: Run 1 + Run 2)

ALICE data taking and publications

System	Year(s)	√s _{NN} (TeV)	L _{int}
Pb-Pb	2010, 2011 2015, 2018	2.76 5.02	~75 μb⁻¹ ~800 μb⁻¹
Xe-Xe	2017	5.44	~0.3 µb⁻¹
p-Pb	2013 2016	5.02 5.02, 8.16	~15 nb ⁻¹ ~3 nb ⁻¹ , ~25 nb ⁻¹
рр	2009-2013 2015, 2017 2015-2018	0.9, 2.76, 7, 8 5.02 13	~200 mb ⁻¹ , ~100 nb ⁻¹ ~1.5 pb ⁻¹ , ~2.5 pb ⁻¹ ~1.3 pb ⁻¹ ~36 pb ⁻¹
Run 1	Run 2		

352 ALICE papers on arXiv so far

http://alice-publications.web.cern.ch/submitted

ALICE plans for Run 3 and 4

Long-term LHC schedule

Run 3 luminosity targets

Pb-Pb (**13 nb**⁻¹): x 10 increase wrt Run 1 + Run2 (max interaction rate 50 kHz)

ALICE continous detector readout (no trigger) and recording

⇒ x 50 increase in statistics for most observables (minimum-bias rate limited to 1 kHz in Runs 1 and 2)

not only Pb-Pb, but also pp (200/pb), p-Pb (~0.6/pb) and O-O (~1/nb)

ALICE Detector Version 2.0 (Upgrades for Run 3 and 4)

ALICE

- From LoI to last TDR: 2013 2015 🗸
- Construction: 2016 2019
- Installation: 2020 2021
- Global commissioning: ongoing

ALICE

L. Musa (CERN) – ALICE Programme for Run 3 and beyond, 14 September 2021

ALICE Detector Version 2.0 (Upgrades for Runs 3 and 4)

ALICE Detector Version 2.0 (Upgrades for Run 3+)

GEM-based TPC readout

Monolithic-pixel - ITS2

Pixel Muon Forward Tracker (MFT)

New Online/Offline (O2)

Fast Interaction Trigger FIT

Muon Spectrometer

L. Musa (CERN) – ALICE Programme for Run 3 and beyond, 14 September 2021

New Central Trigger Processor (CTP) Upgrade of R/O for EMCal, PHOS, TRD, HMPID, ZDC

TPC Upgrade for continuous readout

Goal: TPC continuous readout (⇔ no gating grid)

Solution: Replace MWPC with 4-GEMs

100 m² single-mask foils GEM production

Read Out Chamber

- GEM provides ion backflow suppression to < 1%</p>
- ⇒ 524 000 pads readout continuously ⇒ 3.4 TByte/sec

New Inner Tracking System and Muon Froward Tracker

Based on MAPS technology (ALPIDE)

- 10 m² active silicon area
- 12.5 G-pixels
- Spatial resolution ~5µm
- Max particle rate ~ **100 MHz /cm²**

Inner Tracking System upgrade (ITS2)

- Closer to the IP: first layer at \approx 22 mm •
- Smaller pixels: 28 x 29 μ m² •
- Lower material budget: 0.35% X₀ .
- \Rightarrow improved pointing resolution (x 3) \Rightarrow Improved tracking efficient at low p_{T}

New Muon Forward Tracker (MFT)

- New forward vertex detector upstream muon • absorber
- ⇒ improved muon pointing resolution

Perspectives: upgrades for Run 4

ITS3: ultra-thin, truly cylindrical layers improvement in the measurement of low p_T charm and beauty hadrons and low-mass dielectrons

LoI: CERN-LHCC-2019-018

FoCal: forward EM calo with Si readout for isolated γ measurement in 3.4 < η < 5.8 in p-Pb *Lol ALICE-PUBLIC-2019-005*

ALICE in Runs 3-4: Main Physics Goals

QGP radiation

⇒ Thermal di-leptons, photons

Heavy-quarks interaction in the QGP

 \Rightarrow Thermalization and diffusion coefficient of heavy quarks (R_{AA}, collective flow, baryon-to-meson ratio)

Quarkonium melting and regeneration in the QGP \Rightarrow Charmonia down to zero p_T

Emergence of QCD collectivity from pp to AA ⇒ Origin of collectivity, search for QGP signals (E-loss, radiation)

Nuclear and hadronic physics

⇒ High-precision measurements of light, hyper-nuclei, and hadron-hadron strong interaction

Vertexing Low p_T Hadron/e/µ ID High rate

ALICE in Runs 3-4: Main Physics Goals

QGP radiation

⇒ Thermal di-leptons, photons

Heavy-quarks interaction in the QGP

 \Rightarrow Thermalization and diffusion coefficient of heavy quarks (R_{AA}, collective flow, baryon-to-meson ratio)

Quarkonium melting and regeneration in the QGP \Rightarrow Charmonia down to zero p_T

Emergence of QCD collectivity from pp to AA ⇒ Origin of collectivity, search for QGP signals (E-loss, radiation)

Nuclear and hadronic physics

⇒ High-precision measurements of light, hyper-nuclei, and hadron-hadron strong interaction

Thermal radiation – direct photons

Direct photons carry information on the medium's temeprature space-time evolution

Prompt photons ($p_T > 5 \text{ GeV/c}$)	direct photons
 described by NLO pQCD 	-
 Test initial conditions: N_{coll} scaling, PDF modification 	
 Thermal photons (p_T < 3 GeV/c) Influenced by flow evolution Spectrum, collective flow (comparison to hydrodynamic) 	models)

Decay photons

• Large background from neutral meson decays (π^0 , η , ω , ...)

Jet-medium interaction

Scattering of hard partons with thermalized partons

γ detection in ALICE

- Photon conversion in detector material $X/X_0 = (11.4 \pm 0.5)\%$
- Calorimetry : PHOS and EMCal

Thermal radiation – direct photons

Direct photons carry information on the medium's temeprature space-time evolution

Prompt photons ($p_T > 5 \text{ GeV/c}$)di• described by NLO pQCD• Test initial conditions: N _{coll} scaling, PDF modification	rect photons
 Thermal photons (p_T < 3 GeV/c) Influenced by flow evolution Spectrum, collective flow (comparison to hydrodynamic means the second sec	odels)
Decay photons • Large background from neutral meson decays $(\pi^0, \eta, \omega,)$	
Jet-medium interactionScattering of hard partons with thermalized partons	
v detection in ALICE	

- Photon conversion in detector material $X/X_0 = (11.4 \pm 0.5)\%$
- Calorimetry : PHOS and EMCal

Direct photons in Run 1

PLB 754 (2016) 235

Consistent with thermal radiation $T_{slope} = 304 \pm 40 \text{ MeV}$

LHC results consistent with RHIC, but **uncertainties are very large** Run 3 data should clarify if also at the LHC there is a "photon puzzle"

Direct photons – projections for Run 3

Main objective for Run 3: reduction of systematic uncertainties

- x 100 statistics
- better calibration of the detector material thickness

- stat. error: $\div 10$
- syst. error: $\div \sim 2$

tungsten wire to calibrate detector material thickness

A Large Ion Collider Experiment

Thermal radiation: dileptons

Precise measurement of low-mass dielectron continuum

$M_{\rm ee}$ slope \rightarrow QGP temperature

Expected performance in RUN4

ALICE

Thermal radiation: dileptons

ALICE in Runs 3-4: Main Physics Goals

QGP radiation

➡ Thermal di-leptons, photons

Heavy-quarks interaction in the QGP ⇒ Thermalization and diffusion coefficient of heavy quarks (R_{AA}, collective flow, baryon-to-meson ratio)

Quarkonium melting and regeneration in the QGP \Rightarrow Charmonia down to zero p_T

Emergence of QCD collectivity from pp to AA ⇒ Origin of collectivity, search for QGP signals (E-loss, radiation)

Nuclear and hadronic physics

⇒ High-precision measurements of light, hyper-nuclei, and hadron-hadron strong interaction

Heavy-quark interaction wiht the QGP

charm and beauty quarks interact strongly with the QGP

at low $p_{\rm T}$ may thermalize and participate in the collective expansion

Prompt vs non-prompt D⁰ RAA consiste

High-precision data needed to get more insight on the microscopic mechanisms of heavy-flavour interaction and diffusion in the QGP

Heavy-flavour: nuclear modification factor and collective flow

Heavy-flavour: collective flow

Thermalization, coalescence hadronization, energy loss

ALI-SIMUL-308763

Precise measurements of **flow v2** (and R_{AA}) \Rightarrow insights on interaction of HQ with medium

- low p_T : HQ expected to take positive v2 from interaction with LQ and coalescence at hadronization
- high p_{T} : sensitive to the path-length dependence of energy loss

Heavy-flavour: collective flow

Thermalization, coalescence hadronization, energy loss

Precise measurements of **flow v2** (and R_{AA}) \Rightarrow insights on interaction of HQ with medium

- low p_T : HQ expected to take positive v2 from interaction with LQ and coalescence at hadronization
- high p_{T} : sensitive to the path-length dependence of energy loss

Heavy-quark hadronization in the QGP

ITS3

ITS2

16

18

 $p_{_{\rm T}}$ (GeV/c)

20

Signal over Background

10⁻¹

10⁻²

10⁻³

10⁻⁴

Λ_c^+ /D⁰ - first look in Run 2 Λ_c^0 in Run 3 and 4 Λ_{c}^{+}/D^{0} Significance 180 **ALICE** Preliminary **ALICE Upgrade** 2 160 $\Lambda_{\rm c} \rightarrow {\rm pK} \pi^+$ 0–10% Pb–Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV Pb–Pb 0-10%, $\sqrt{s_{_{\rm NN}}}$ = 5.5 TeV |v| < 0.5140 $L_{int} = 10 \text{ nb}^{-1}$ 120 Catania, fragm.+coal. 0.8 SHM (A. Andronic et al.) TAMU 100 PYTHIA8. CR Mode 2 0.6 Open marker: f_{prompt} calc. with p_{\perp} -extrapolated pp reference 80 60 0.4 ITS3 0.2 10 20 10 12 14 *p*_{_} (GeV/*c*) ALI-PREL-325749

Λ_c/D^0 for $p_T > 4$ GeV/c described by model with charm hadronization via fragmentation + coalescence

L. Musa (CERN) – ALICE Highlights and Perspectives, Corfu 2021 - 5 September 2021

Improved tracking precision of new ITS (and ITS 3 in Run 4) will enable precise measurements for charm baryons ...

Heavy-quark hadronization in the QGP

ALI-PREL-325749

Λ_c/D^0 for $p_T > 4$ GeV/c described by model with charm hadronization via fragmentation + coalescence

L. Musa (CERN) – ALICE Highlights and Perspectives, Corfu 2021 - 5 September 2021

Improved tracking precision of new ITS (and ITS 3 in Run 4) will enable precise measurements for charm baryons and access to beauty baryons

 B_s^0 production expected to be enhanced

Hadronization of beauty quarks via recombination + onbanced strange quark production in the QGP

sensitive to beauty-quark hadronization and strangeness enhancement

sensitivity to discriminate azimuthal anisotopy for prompt and non-prompt D_s^+ (charm vs. beauty)

Strange heavy-flavour baryons

 $\Xi_c^{0,+}$ natural candidate to see the combined effect of charm baryon enhancment and the further enhancement in a stangeness-rich QGP

Determining transport coefficients

Measuring R_{AA} and v_2 to determine transport coefficients

Pinning down hadronization mechanisms is also crucial to measure QGP diffusion coefficient

ALICE in Runs 3-4: Main Physics Goals

QGP radiation

➡ Thermal di-leptons, photons

Heavy-quarks interaction in the QGP

 \Rightarrow Thermalization and diffusion coefficient of heavy quarks (R_{AA}, collective flow, baryon-to-meson ratio)

Quarkonium melting and regeneration in the QGP \Rightarrow Charmonia down to zero p_T

Emergence of QCD collectivity from pp to AA ⇒ Origin of collectivity, search for QGP signals (E-loss, radiation)

Nuclear and hadronic physics

⇒ High-precision measurements of light, hyper-nuclei, and hadron-hadron strong interaction

Quarkonium interaction with the hot medium

J/ψ dissociation and (re)generation at the LHC

Quarkonium interaction with the hot medium

J/ψ dissociation and (re)generation at the LHC

 J/ψ suppression reduced at low \textit{p}_{T}

⇒ cc regeneration balancing the screening in the QGP

Significant elliptic flow of heavy-flavour

 π : JHEP 1809(2018)006 D: arXiv: 2005.11131 J/ψ: arXiv:2005.14518 b → e: arXiv: 2005.11130 Y(1S): PRL 123(2019)192301

Quarkonium interaction with the hot medium

 J/ψ elliptic flow

Transport model underestimate data for $p_T > 5$ Gev/c

\Rightarrow Important to separate prompt and non-prompt J/ ψ and consider path-dependent energy loss

L. Musa (CERN) – ALICE Programme for Run 3 and beyond, 14 September 2021

 $\psi(2S)$ / J/ ψ sensitive to binding mechanism of deconfined c quarks

⇒ Small model uncertainties

ψ(2S) Run 3-4

- Centrality dependence consistent with progressive suppression in a hotter and longer-lived medium
- Y(2S) suppression stronger wrt Y(1S) consistent with lower binding energy
- Recombination effects small

Suppression of bottomonium

R_{AA} of Y(1S) and Y(2s)

Run 2

L. Musa (CERN) – ALICE Programme for Run 3 and beyond, 14 September 2021

Quarkonium interaction with the medium

Elliptic flow of Y(1S)

Uncertainties too large to unravel a small v₂

Experimental precision may not be enough

ALICE in Run 3-4: main physics goals

QGP radiation

➡ Thermal di-leptons, photons

Heavy-quarks interaction in the QGP

 \Rightarrow Thermalization and diffusion coefficient of heavy quarks (R_{AA}, collective flow, baryon-to-meson ratio)

Quarkonium melting and regeneration in the QGP \Rightarrow Charmonia down to zero p_T

Emergence of QCD collectivity from pp to AA ⇒ Origin of collectivity, search for QGP signals (E-loss, radiation)

Nuclear and hadronic physics

⇒ High-precision measurements of light, hyper-nuclei, and hadron-hadron strong interaction

High-rate pp programme: high-multiplicity

Is QGP formed in pp or p-Pb collisions?

pp data sample of 200 pb⁻¹: access to multiplicities ~15x the average, similar to Pb-Pb 65% centrality, and estimated energy density similar to central Pb-Pb

ALICE-PUBLIC-2020-005

ALICE-PUBLIC-2020-005

ALI-SIMUL-1 ALI-SIMUL-160917

- Multistrange baryon (/pion) increase within pp: a major finding and surprise
- Need much higher reach/statistics to understand the underlying physics
 - Extend Ω/p measurment in pp well within Pb-Pb multiplicity range ٠
 - Multi-differential measurement of Ω/p in jets and "underlaying event" •

- Is pp flow driven by hydrodynamic expansion?
- Use 4-particle cumulants to measure flow (v₂) of identified hadrons in pp at multiplicities for which mass ordering is seen in Pb-Pb

- If a QGP is formed, would we see energy loss? Energy loss not observed to date in pp and p-Pb!
- Strong extension of current limits with future high multiplicity samples
- pp and p-Pb complementary: independently vary energy density and system size

ALICE in Run 3-4: main physics goals

QGP radiation

⇒ Thermal di-leptons, photons

Heavy-quarks interaction in the QGP

 \Rightarrow Thermalization and diffusion coefficient of heavy quarks (R_{AA}, collective flow, baryon-to-meson ratio)

Quarkonium melting and regeneration in the QGP \Rightarrow Charmonia down to zero p_T

Emergence of QCD collectivity from pp to AA ⇒ Origin of collectivity, search for QGP signals (E-loss, radiation)

Nuclear and hadronic physics

⇒ High-precision measurements of light, hyper-nuclei, and hadron-hadron strong interaction

Strong interaction between hadrons

ALICE measurements on topic

Phys. Rev. C 99 (2019) 024001			
Phys. Lett. B 797 (2019) 134822			
Phys. Rev. Lett. 123 (2019) 11200			
Phys. Rev. Lett. 124 (2020) 092301			
Phys. Letters B 805 (2020) 135419			
Phys. Lett. B 811 (2020) 135849			
Nature 588 (2020) 232-238			
arXiv:2104.04427			
arXiv: 2105.05578			
arXiv:2105.05683			
arXiv:2105.05190			

- $\circ~$ First assessment for p- Ξ^- and p- Ω^-
- o Accessible even for Ω - Ω in Run 3

Strong interaction between hadrons

ALICE measurements on topic

р-р, р-Л, Л–Л (рр)
$\Lambda{-}\Lambda$ (p-Pb)
p-Ξ [_] (p-Pb)
р-К (рр)
р-Σ (рр)
source size in pp
р-Ω (рр)
N Λ – N Σ (pp)
р-ф (рр)
K-p (Pb-Pb)
p-/p, p-/ Λ , Λ -/ Λ (pp)

Strong interaction among any pair of hadrons from momentum correlations at femtometer distances

- $\circ~$ First assessment for p- Ξ^- and p- Ω^-
- $\circ~$ Accessible even for $\Omega^{-}\!\!-\!\Omega^{-}$ in Run 3

ALICE in Run 3-4: main physics goals

QGP radiation

➡ Thermal di-leptons, photons

Heavy-quarks interaction in the QGP

 \Rightarrow Thermalization and diffusion coefficient of heavy quarks (R_{AA}, collective flow, baryon-to-meson ratio)

Quarkonium melting and regeneration in the QGP

 \Rightarrow Charmonia down to zero p_{T}

Emergence of QCD collectivity from pp to AA

⇒ Origin of collectivity, search for QGP signals (E-loss, radiation)

Nuclear and hadronic physics

⇒ High-precision measurements of light, hyper-nuclei, and hadron-hadron strong interaction

and much more

⇒ e.g. fluctuation of conserved charges, vorticity and polarization, CME, jet internal structure, UPC, nPDF, ...

ALICE 3: a new dedicated heavy-ion detector for Run 5+ (> 2030)

Novel measurements of electromagnetic and hadronic probes of the QGP at very low momenta ⇒ mechanism of hadron formation in the QGP, QGP transport properties, QGP electrical conductivity, QGP radiation and access to the pre-hydrodynamization phase, Chiral Symmetry restoration, ...

Expression of Interest arXiv:1902.01211

Also submitted as input to the European Strategy for Particle Physics Update (Granada, May 2019)

Timeline

- Conceptual studies ongoing 2019-2021
- Public workshop in October 2021
- Submit a LoI to the LHCC by 2021
- Construction and installation by LS4

Conclusions

A wealth of results based on full Run 2 samples offered

- detailed insights into **QGP properties**
- advances in high-density QCD

Run 3 and 4

- Tenfold increase of statistics and strong enhancement of vertexing and tracking at low $p_{\rm T}$
- ⇒ more precision on QGP global properties
- ⇒ gain better insight into the QGP microscopic properties and dynamics
- ⇒ gain insight into HI-like phenomena observed in small systems?

Plans for next generation dedicated HI detecor for Run 5 and beyond (ALICE v. 3.0)