

The State University of New York

arXiv:2111.15559 arXiv:2105.05713 arXiv:2109.01631 arXiv:2105.01638 arXiv:2109.00604 arXiv:2102.08158 arXiv:2106.08768

Imaging nuclear structure in heavy-ion collisions Jiangyong Jia

Collaborators: Giuliano Giacalone and Chunjian Zhang

Brookhaven National Laboratory

Seminar 12/07/2021

Office of Science | U.S. Department of Energy

Hydrodynamic response to initial state

Previous works: PRC34.185, PRC61.021903, PRC61.034905, PRC.80.054903, nucl-th/0411054, 0712.0088, 1409.8375, 1507.03910, 1609.01949,1711.08499, 2007.00780.2103.05595. H. Stocker, W. Geiner, BA Li, E. Shuryak, PBM, U. Heinz, P. Philip, N.Xu, Q. Shou, P. Sorensen, F. Videbaek, A. Tang, P. Dasgupta, R. Chatterjee, D. Krivastava, F.Wang, H. Xu, Jaki. M. Luzum, P.Carzon...

Influence of shape fluctuations in relativistic heavy ion collisions

A. Rosenhauer, H. Stöcker, J. A. Maruhn, and W. Greiner Phys. Rev. C 34, 185 – Published 1 July 1986

Focus particle production in UCC tip-tip vs bodybody, start consider effect of collective flow

Bao-An Li Phys. Rev. C 61, 021903(R) - Published 12 January 2000

PDF Article References Citing Articles (2)

Elliptic flow in central collisions of deformed nuclei

P. Filip 🖂

Physics of Atomic Nuclei **71**, 1609–1618 (2008) Cite this article

51 Accesses | 13 Citations | Metrics

Modern concept of elliptic flow and eccentricies, still focus on UCC region

Anisotropic Flow and Jet Quenching in Ultrarelativistic $\mathbf{U} + \mathbf{U}$ Collisions

Ulrich Heinz and Anthony Kuhlman Phys. Rev. Lett. 94, 132301 - Published 6 April 2005

Phys. Rev. C 80, 054903 – Published 5 November 2009

Parameterization of deformed nuclei for Glauber modeling in relativistic heavy ion collisions

Q.Y. Shou^{a, b} $\stackrel{\boxtimes}{\sim}$ ⊠, Y.G. Ma^a, P. Sorensen^c, A.H. Tang^c, F. Videbæk^c, H. Wang^c

Collision geometry and flow in uranium + uranium collisions

Andy Goldschmidt, Zhi Qiu, Chun Shen, and Ulrich Heinz Phys. Rev. C **92**, 044903 – Published 7 October 2015

Spectra and elliptic flow of thermal photons from full-overlap U+U collisions at energies available at the BNL Relativistic Heavy Ion Collider

Pingal Dasgupta, Rupa Chatterjee, and Dinesh K. Srivastava Phys. Rev. C **95**, 064907 – Published 15 June 2017

Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions

Giuliano Giacalone, Jacquelyn Noronha-Hostler, Matthew Luzum, and Jean-Yves Ollitrault Phys. Rev. C **97**, 034904 – Published 6 March 2018

Possible octupole deformation of $^{208}\mathrm{Pb}$ and the ultracentral v_2 to v_3 puzzle

P. Carzon, S. Rao, M. Luzum, M. Sievert, and J. Noronha-Hostler Phys. Rev. C **102**, 054905 – Published 9 November 2020

Sophisticated e-by-e hydrodynamic model comparison including deformations.

Observing the Deformation of Nuclei with Relativistic Nuclear Collisions

Giuliano Giacalone Phys. Rev. Lett. **124**, 202301 – Published 19 May 2020

$$v_2^2$$
-p_T correlation

Constraining the quadrupole deformation of atomic nuclei with relativistic nuclear collisions

Giuliano Giacalone Phys. Rev. C **102**, 024901 – Published 3 August 2020

Phys. Rev. C **98**, 054907 – Published 26 November 2018

Probing the Neutron Skin with Ultrarelativistic Isobaric Collisions

Hanlin Li, Hao-jie Xu, Ying Zhou, Xiaobao Wang, Jie Zhao, Lie-Wen Chen, and Fuqiang Wang Phys. Rev. Lett. **125**, 222301 – Published 23 November 2020

Article

References

PDF

Export Citation

Shape of nuclei

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}$$

$$R(\theta,\phi) = R_0 \left(1+\beta_2 [\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}]+\beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m}+\beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m}\right)$$

Triaxial spheroid: $a \neq b \neq c$.

Prolate: $a=b<c \rightarrow \beta_2$, $\gamma=0$ Oblate: $a<b=c \rightarrow \beta_2$, $\gamma=\pi/3$ or $-\beta_2, \gamma=0$

7

Shape of nuclei

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}}$$

$$R(\theta,\phi) = R_0 \left(1+\beta_2 [\cos\gamma Y_{2,0}+\sin\gamma Y_{2,2}]+\beta_3 \sum_{m=-3}^3 \alpha_{3,m} Y_{3,m}+\beta_4 \sum_{m=-4}^4 \alpha_{4,m} Y_{4,m}\right)$$

Radial structure of nuclei

9

Α

Some topics in nuclear structure

- How the shape/size/skin evolves along isotopic chain
 - Strong test on nuclear structure model
- Octuple (pear-shaped) deformation
 - Octupole correlation or static deformation
 - Strong test on EDM effects

- Triaxility : infers from γ-band, Chiral and Wobbling bands.
 Have large uncertainties.
 - shape coexistance

Use shape imaging in heavy-ion collision to help?

Nuclear structure vs HI method

• Shape from B(En), radial profile from e+A or ion-A scattering

«rotational» spectrum

Probe entire mass distribution: multi-point correlations

Flow response to probe the nuclear structure

 $S(\mathbf{s}_1, \mathbf{s}_2) \equiv \langle \delta
ho(\mathbf{s}_1) \delta
ho(\mathbf{s}_2)
angle \ = \langle
ho(\mathbf{s}_1)
ho(\mathbf{s}_2)
angle - \langle
ho(\mathbf{s}_1)
angle \langle
ho(\mathbf{s}_2)
angle.$

11

Evidence of deformation in U+U vs Au+Au¹²

Shape of the initial state in HI

shape of overlap = shape of nucleon dist. projected along Euler angle $\Omega = \phi \theta \psi$

Parametric dependence

• $\mathbf{\epsilon}_{n}$ has the form $\epsilon_{n} = \epsilon_{n;0} + \sum_{m=2}^{4} \underbrace{\mathbf{p}_{n;m}(\Omega_{1},\Omega_{2})\beta_{m}}_{\text{phase factor}} + \mathcal{O}(\beta^{2})$

 γ only appear here, in the form of cos3 γ , cos6 γ,\ldots

- $R_{\perp}^2 = \langle x^2 \rangle + \langle y^2 \rangle$ has the form $\delta d_{\perp}/d_{\perp} = \delta_d + \sum_{m=2}^{4} p_{0;m}(\Omega_1, \Omega_2)\beta_m + \mathcal{O}(\beta^2)$ $d_{\perp} \equiv 1/R_{\perp}$
- Two particle correlation

$$\langle \varepsilon_n^2 \rangle \approx \langle \varepsilon_{n;0}^2 \rangle + \sum_m \langle \boldsymbol{p}_{n;m} \boldsymbol{p}_{n;m}^* \rangle \beta_m^2 \qquad \left\langle \left(\frac{\delta d_\perp}{d_\perp} \right)^2 \right\rangle \approx \langle \delta_d^2 \rangle + \sum_m \langle p_{0;m}^2 \rangle \beta_m^2$$

- Consider also the influence of R_0 and a $\frac{
 ho_0}{1 + e^{(r-R_0(1+\sum_n eta_n Y_n^0(heta, \phi))/a_0}}$ $\langle \varepsilon_n^2
 angle pprox b_0 + b_1 eta_2^2 + b_2 eta_3^2 + b_3 (R_0 - R_{0, ref}) + b_4 (a - a_{ref})$
- Again linear response to relate to final state: $v_n\proptoarepsilon_n~rac{\delta[p_T]}{[p_T]}\proptorac{\delta d_\perp}{d_\perp}$

Parametric dependence

See 2106.08768

15

Isobar collisions as precision tool

- Unique running mode of RHIC and STAR to minimize the detector systematics
 - 0.4% precision is achieved in ratio of many observables between two isobar systems → precision imaging tool

A key question for any
$$O$$
HI observable O \overline{O}

$$\frac{O_{X+X}}{O_{Y+Y}} \stackrel{?}{=} 1 \qquad A_{X+A_X vs} A_{Y+A_Y}$$

Deviation from 1 must has its origin in the nuclear structure, which is reflected by the initial state and then survives the final state. A precision tool to study initial state and final state responses

- Many such pairs of isobars in the nuclear chart.
 - Small system isobar such as 10B and 10Be.
 - Large system isobar up to 250Cm and 250Cf

A new handle to probe heavy ion physics

Isobar collisions as precision tool

- Unique running mode of RHIC and STAR to minimize systematics
 - 0.4% precision is achieved in ratio of many observables between two isobar systems → precision imaging tool

A key question for any HI observable O

$$\frac{O_{X+X}}{O_{Y+Y}} \stackrel{?}{=} 1 \qquad {}^{A_{X+A_{X}}} vs^{A_{Y+A_{Y}}}$$

Deviation from 1 must has its origin in the nuclear structure, which is reflected by the initial state and then survives the final state. A precision tool to study initial state and final state responses

Expectation

Species	β_2	β_3	a_0	R_0
Ru	0.162	0	$0.46~\mathrm{fm}$	$5.09~\mathrm{fm}$
Zr	0.06	0.20	$0.52~\mathrm{fm}$	$5.02~\mathrm{fm}$
difference	Δeta_2^2	$\Delta \beta_3^2$	Δa_0	ΔR_0
umerence	0.0226	-0.04	-0.06 fm	0.07 fm

$$\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,\text{ref}}) + b_4 (a - a_{\text{ref}})$$

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Valid for most single- and two-particle observable: v2,v3, p(N),< p_T >,< δp_T^2 >...

Glauber results: N_{ch} dep

Glauber results: scaled

Verifies the relation: $1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta a + c_4 \Delta R$

AMPT results: scaled

Scaling approach to nuclear structure

$$\frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

21

Works well for most single- and two-particle observables: v2,v3, p(N), but also p_T >, δp_T^2 >...

Determine c_n once, and predict ratios for other parameter values.

- Constrain parameters via χ^2 analysis or Bayesian inference.
- Generalize to multi-particle observables…

Compare with isobar data

Use these ratios to probe shape and radial structure of nuclei.

Nuclear structure via v_n-ratio

- $\beta_{2Ru} \sim 0.16$ increase v₂, no influence on v₃ ratio
- $\beta_{3Zr} \sim 0.2$ decrease v₂ in mid-central, decrease v₃ ratio
- diffu. $\Delta a_0 = -0.06$ fm increase v₂ mid-central, no influe. on v₃.
 - Similar study by Haojie et.al.
- Radius $\Delta R_0 = 0.07$ fm only slightly affects v₂ and v₃ ratio.

Simultaneously constrain these parameters using different N_{ch} regions

Nuclear structure via p(N_{ch})-ratio

• $\beta_{2Ru} \sim 0.16$ decrease ratio, increase after considering $\beta_{3Zr} \sim 0.2$

24

• The bump structure in non-central region mostly sensitive to differences in surface diffuseness Δa_0 and radius ΔR_0

Nuclear structure via p(N_{ch})-ratio

- $\beta_{2Ru} \sim 0.16$ decrease ratio, increase after considering $\beta_{3Zr} \sim 0.2$
- The bump structure in non-central region mostly sensitive to differences in surface diffuseness Δa_0 and radius ΔR_0
- All these trends are quantitatively reproduced by Glauber

25

Structure via radial flow: $< p_T > \&$ its flucs. ²⁶

- Glauber model is used by assuming $\frac{\delta[p_T]}{[p_T]} \propto \frac{\delta d_{\perp}}{d_{\perp}}$
 - Variance: $\beta_{2Ru} \sim 0.16$ increase ratio, $\beta_{3Zr} \sim 0.2$ decrease it
 - AMPT has wrong <pT> responses, only for qualitative info
 - R₀ and a plays most important role

Probing the Neutron Skin

Related to the EOS of symmetry energy, in particular the slope parameter "L"

$$E(
ho,lpha)pprox E_{
m SNM}(
ho)+E_{
m sym}(
ho)\cdot lpha^2 \; lpha \; = \; (
ho_{
m n}-
ho_{
m p})/
ho
onumber \ E_{
m sym}(
ho)pprox J+Lx+rac{1}{2}K_{
m sym}x^2 \qquad x=(
ho-
ho_{
m sat})/3
ho_{
m sat}$$

Fundamental importance in nuclear and astro-physics

Distribution has more sophisticated form, but typically parameterized with WS

Constraints from structure and lowenergy heavy-ion experiments

Hydro-response to Neutron skin

Sensitive to L parameter via hydro response: $\langle p_{\perp} \rangle \sim d_{\perp} \equiv \sqrt{N_{\text{part}}/S_{\perp}}$

H. Xu et.al.2111.14812

Insensitive to final state effects, direct probe of the initial state:

Skin by peripheral isobaric collision

Enhanced skin contribution in the collisions reduces net charge

H. Xu et.al. 2105.04052

$$R_{\Delta Q} \equiv \frac{\Delta Q_{\text{RuRu}}}{\Delta Q_{\text{ZrZr}}} = \frac{q_{\text{RuRu}} + \alpha/(1-\alpha)}{q_{\text{ZrZr}} + \alpha/(1-\alpha)}$$

 $\alpha \simeq -0.352$ is net-Q ratio in nn vs pp collisions

Large neutron skin of 96Zr is sensitive to L parameter

A direct link to Neutron Skin

Using relation for WS:
$$R^2 \equiv \langle r^2
angle pprox \left(rac{3}{5} R_0^2 + rac{7}{5} \pi^2 a^2
ight) / \left(1 + rac{5}{4\pi^2} \sum_n eta_n^2
ight)$$

30

Neutron skin expressed by R and a parameters for nucleons and protons:

$$\Delta r_{np} \approx \frac{R^2 - R_p^2}{R(\delta + 1)} \approx \frac{3(R_0^2 - R_{0,p}^2) + 7\pi^2 (a^2 - a_p^2)}{\sqrt{15}R_0 \sqrt{1 + \frac{7\pi^2}{3}\frac{a^2}{R_0^2}} (1 + \delta + \frac{5}{8\pi^2}\sum_n \beta_n^2)} \quad \delta = (N - Z)/A$$

The difference between two isobar can be expressed as

Evample: 2102 05505

$$\Delta(\Delta r_{np}) = \Delta r_{np,1} - \Delta r_{np,2} \approx \frac{\Delta Y - \frac{7\pi^2}{3} \frac{\bar{a}^2}{\bar{R}_0^2} \left(\frac{\Delta Y}{2} + \bar{Y} \left(\frac{\Delta a}{\bar{a}} - \frac{\Delta R_0}{\bar{R}_0}\right)\right)}{\sqrt{15\bar{R}_0} \left(1 + \bar{\delta} + \frac{5}{8\pi^2} \sum_n \overline{\beta_n^2}\right)}$$

where $Y \equiv 3(R_0^2 - R_{0,n}^2) + 7\pi^2 (a^2 - a_n^2)$ $\Delta x = x_1 - x_2$ $\bar{x} = (x_1 + x_2)/2$

Can obtain skin diff. from $\Delta R_0 \Delta a$ for nucleons and known $\Delta R_0 \Delta a$ for protons

LAMPIC. 2103.03333								
	⁹⁶ Ru ⁹⁶ Zr		⁶ Zr	Direct calc.:	$\Delta(\Delta r_{nn}) = 0.0296 \text{ fm} - 0.1606 \text{ fm} = -0.1310$			
	R	а	R	а				
р	5.060	0.493	4.915	0.521	Formula	$\Lambda(\Lambda r) = -0.1310 \text{ fm}$		
n	5.075	0.505	5.015	0.574	i unnula.	$\Delta(\Delta I_{np}) = -0.1319 \text{ m}$		
p+n	5.067	0.500	4.965	0.556				

How to do system (isobar) scan

arXiv:2106.08768

In central collisions

$$a' = ig\langle arepsilon_2^2 ig
angle_{|eta_2=0} \propto 1/A \ a = ig\langle v_2^2 ig
angle_{|eta_2=0} \propto 1/A$$

b', b are ~ independent of system

Systems with similar A fall on the same curve. Fix a and b with two isobar systems with known β_n , then make predictions for third one Similar approach also works for R_0 and diffusivity.

Suggests $|\beta_2|_{Au} \sim 0.18 + 0.02$, larger than NS model of 0.13+-0.02 Note: 197Au is a odd-mass nuclei, β_2 not measured.

Higher-order correlations

A wide range of possibilities, focus only one topic...

Triaxiality V:
$$R(\theta, \phi) = R_0 \left(1 + \beta_2 [\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2}] \right)^{34}$$

v_2^2 -p_T correlation at LHC

B Bally, M Bender, G Giacalone, V Somà 2108.09578

$$R(\theta,\phi) = R_0 \left(1 + \frac{\beta_2 \left[\cos\gamma Y_{2,0} + \sin\gamma Y_{2,2}\right]}{1 + \beta_2 \left[\cos\gamma Y_{2,0} + \sin\gamma Y_{2,2}\right]} \right)$$

Clear sensitivity to the triaxiality of 129Xe.

Influence of triaxiality on initial state

Use variance to constrain β_2 , use skewness to constrain γ

(β_2, γ) diagram in heavy-ion collisions

The (β_2, γ) dependence in 0-1% $\langle \varepsilon_2^2 \rangle \approx [0.02 + \beta_2^2] \times 0.235$ $\rho = \frac{\langle \varepsilon_2^2 \delta d_\perp \rangle}{\langle \varepsilon_2^2 \rangle \sqrt{\langle (\delta d_\perp)^2 \rangle}}$ approximated by: $\langle \varepsilon_2^2 \delta d_\perp / d_\perp \rangle^2 \rangle \approx [0.005 - (0.07 + 1.36\cos(3\gamma))\beta_2^3] \times 10^{-2}$

Collision system scan to map out this trajectory: calib. coefficients with species with known β , γ , then predict for species of interest.

37

Contrast Glauber model with STAR data

Require high-stat. hydro simulation to quantify the response!

nuclear structure shape/size landscapes

0.3

0.2

A lot of possibilities, need to identify most impactful ones!

Thoughts on scan strategy

- Even-even nuclei (0⁺ ground state) can be compared with Nuclear Structure exp.
 - We collided several odd-mass ones ☺

A list of large systems from RHIC and LHC

	β_2	β_3	β_4		β_2	β_3	β_4
²³⁸ U	0.286 [9]	0.078 [10]	0.094 [10]	²⁰⁸ Pb	0.06 [9]	0.04[11]	?
¹⁹⁷ Au	-(0.13-0.16) [12, 13]	?	-0.03 [12]	¹²⁹ Xe	0.16 [12]	?	?
⁹⁶ Ru	$0.16 \ [14]$?	?	⁹⁶ Zr	0.06 [14]	0.20-0.27	0.06 [12]

• A partial list of isobar pairs

- Mapping the nuclear structure within each isobar pair.
- Control system-size dependence hydro-response by stepping between different isobar pairs
- How to optimize the choices?

2102.08158

A	isobars	A	isobars	A	isobars
36	Ar, S	106	Pd, Cd	148	Nd, Sm
40	Ca, Ar	108	Pd, Cd	150	Nd, Sm
46	Ca, Ti	110	Pd, Cd	152	Sm, Gd
48	Ca, Ti	112	Cd, Sn	154	Sm, Gd
50	Ti, V, Cr	113	Cd, In	156	Gd, Dy
54	Cr, Fe	114	Cd, Sn	158	Gd, Dy
64	Ni, Zn	115	In, Sn	160	Gd, Dy
70	Zn, Ge	116	Cd, Sn	162	Dy, Er
74	Ge, Se	120	Sn, Te	164	Dy, Er
76	Ge, Se	122	Sn, Te	168	Er, Yb
78	Se, Kr	123	Sb, Te	170	Er, Yb
80	Se, Kr	124	Sn, Te, Xe	174	Yb, Hf
84	Kr, Sr, Mo	126	Te, Xe	176	Yb, Lu, Hf
86	Kr, Sr	128	Te, Xe	180	Hf, W
87	Rb, Sr	130	Te, Xe, Ba	184	W, Os
92	Zr, Nb, Mo	132	Xe, Ba	186	W, Os
94	Zr, Mo	134	Xe, Ba	187	Re, Os
96	Zr, Mo, Ru	136	Xe, Ba, Ce	190	Os, Pt
98	Mo, Ru	138	Ba, La, Ce	192	Os, Pt
100	Mo, Ru	142	Ce, Nd	198	Pt, Hg
102	Ru, Pd	144	Nd, Sm	204	Hg, Pb
104	Bu Pd	146	Nd Sm		

Future Opportunities

STAR proposed to explore such opportunities in the next few years

- Part1: calibrate systematics with two species around ¹⁹⁷Au: ²⁰⁸Pb & ¹⁹⁸Hg opportunistically
 - 208 Pb $\sqrt{s}=0.2$ RHIC vs 5 TeV @LHC: Precision on IS and pre-equilibrium dynamics
 - ²⁰⁸Pb $\sqrt{s}=0.2$ vs ¹⁹⁷Au $\sqrt{s}=0.2$ TeV: Quantify effects of Au deformation
 - ¹⁹⁸Hg $\sqrt{s}=0.2$ TeV: with known β_2 cross-check the consistency of β_{2Au} , γ in ¹⁹⁷Au.
- Part2: explore more exotic regions for triaxial and octupole deformations
 - Scan a isotopic chain: ¹⁴⁴Sm ($\beta_2=0.08$), ¹⁴⁸Sm ($\beta_2=0.14$, triaxial), ¹⁵⁴Sm ($\beta_2=0.34$)
 - Compare a pair with equal mass: 154 Sm ($\beta_2 = 0.34$) and 154 Gd ($\beta_2 = 0.31$)

potentially for 2026 if running

But priority is sPHENIX, very limited possibility at RHIC.

• Maybe at LHC beyond 2030 (RUN5)? See CERN yellow report

Table 4: Parameters and performance for a range of light nuclei with a moderately optimistic value of the scaling parameter p = 1.5 in (5).

	$^{16}O^{8+}$	$^{40}{ m Ar}^{18+}$	${}^{40}\mathrm{Ca}^{20+}$	$^{78}{ m Kr}^{36+}$	$^{129}{ m Xe}^{54+}$	$^{208}\text{Pb}^{82+}$
γ	3760.	3390.	3760.	3470.	3150.	2960.
$\sqrt{s_{ m NN}}/{ m TeV}$	7.	6.3	7.	6.46	5.86	5.52

- Other heavy ion facilities such as NICA? $\sqrt{s_{NN}}$ up to 11 GeV
 - Measure the same isobar pair at different energies.

Manifestation of nuclear structure are \sqrt{s} and rapidity dependent!

Energy dependence of nucleon size

Sensitive to the nucleon width parameter (size of nucleon)

- IP-Glasma ~ 0.3; v-USPhydro ~ 0.5; Trajectum~0.7; JETSCAPE (T_RENTo) ~ 1.1
- w(IP-Glasma) < w(v-USPhydro) < w(Trajectum) < w(JETSCAPE)
 Slide from You Zhou

v_n²-p_T has strong sensitivity to nucleon width

42

Questions

- How are nuclear shape and radial profile inferred from hydrodynamic response related to properties measured in nuclear structure experiments?
- How does the uncertainty brought by nuclear structure impact the initial state of heavy-ion collisions and extraction of QGP transport properties?
- What is the energy and longitudinal dependence of nuclear structure?

INSTITUTE for NUCLEAR THEORY

"Intersection of nuclear structure and high-energy nuclear collisions"

January 23 – February 24, 2023

Giuliano Giacalone, Jiangyong Jia, Dean Lee, Matthew Luzum, Jaki Noronha-Hostler, Fuqiang Wang