Search for Chiral Magnetic Wave (CMW) with ALICE at the LHC

Prottay Das (for the ALICE Collaboration) National Institute of Science Education and Research HBNI

Outline:

- Motivation
- Experimental observable
- ALICE detectors
- Analysed data, event and track cuts
- Results
- Summary and outlook

LXXI International Conference NUCLEUS – 2021

Motivation

- C QCD vacuum: degenerate
- Generates chirality imbalance: $N_L^f - N_R^f = 2Q_W$

Axial and vector currentsInduces parity odd domains

Spin: Momentum f(x) ALICE

Chiral Magnetic Effect (CME): $j_v = \frac{N_c e}{2\pi^2} \mu_A B$

Chiral Separation Effect (CSE): $j_A = \frac{N_c e}{2\pi^2} \mu_v B$

Chiral Magnetic Wave: CME + CSE

[1] Phys.Rev.Lett. 81 (1998) 512-515[2] Phys.Rev.D. 101 (2020) 096014

Chiral symmetry restoration

Deconfinement

- Deconfinement
- QCD vacuum transitions

- Deconfinement
- QCD vacuum transitions
- Extremely strong magnetic field (~10¹⁵ T)

- Deconfinement
- QCD vacuum transitions
- Extremely strong magnetic field (~10¹⁵ T)

All the necessary conditions are possible to be achieved in heavy-ion collisions

Phys.Rev.Lett. 81 (1998) 512-515

Anisotropic flow

Spatial anisotropy — Momentum anisotropy

Phys.Rev.D 48 (1993) 1132-1139

Anisotropic flow

- Spatial anisotropy Momentum anisotropy
- Characterised by:

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{2}N}{2\pi p_{T}dp_{T}dy}(1+\Sigma 2v_{n}\cos[n(\varphi-\Psi_{n,R})])$$

Fourier coefficients

Phys.Rev.D 48 (1993) 1132-1139

Observables

For illustration purpose

[1] Phys.Rev.Lett. 107 (2011) 052303
[2] Phys.Rev.C 100 (2019) 6, 064908
[3] Phys. Rev. C 103 (2021) 034906

Observables

For illustration purpose

[1] Phys.Rev.Lett. 107 (2011) 052303
[2] Phys.Rev.C 100 (2019) 6, 064908
[3] Phys. Rev. C 103 (2021) 034906

Observables

ALICE detectors

172-21 ICN - 2021

Creator:cairo 1.14.6 (http://cairographi CreationDate:Mon Mar 6 15:35:55 2017 CreationDate:Mon Mar 6 15:35:55 2017 LanguageLevel:3

Time Projection Chamber (TPC): (|η| < 0.9)

Primary vertex and tracking

Momentum measurement

PID through dE/dx

V0: V0A (2.8 < η < 5.1) & V0C (-3.7 < η < -1.7)

Trigger, centrality

Analysis details

No. of events	~45x10 ⁶
Kinematic range	$ \eta < 0.8$ 0.2< $p_{\tau} < 0.5 \text{ GeV/c (pions)}$ 0.2< $p_{\tau} < 1.0 \text{ GeV/c (hadrons)}$
Non flow suppression	$ \Delta \eta > 0.4$ between subevents
Charge asymmetry (A _{ch})	0.2< <i>p</i> _T <10 GeV/ <i>c</i> , η <0.8, 10 uniform bins (-0.1 to 0.1)
Centrality (%)	0 - 80

Elliptic flow (v_2) vs charge asymmetry (A_{ch})

Triangular flow (v_3) vs charge asymmetry (A_{ch})

Comparison of $r^{Norm}_{\Delta v_2}$ in ALICE to STAR and CMS

LXXI ICN - 2021

Comparison of $r^{Norm}_{\Delta v_3}$ in ALICE to STAR and CMS

LXXI ICN - 2021

Centrality dependence of $r^{Norm}_{\Delta v_n}$

Comparison of $r^{Norm}_{\Delta v_2}$ with AMPT model

AMPT: No CMW and violation of charge conservation -> Slope consistent with zero

Summary

 \checkmark First measurement of normalised $\Delta v_{_2}$ and $\Delta v_{_3}$ slope of charged hadrons and ALICEpions in Pb-Pb collisions in ALICE.

but compatible with $r_{\Delta v_3}^{Norm}$ $r_{\Delta v_2}^{Norm} > 0$ indicates that background dominates the

consistent with zero from AMPT model

Analysis ongoing in high statistics data taken in 2018

K

THANK YOU