

Measurement of charged hadron production in relativistic ion collision systems

Larionova Daria

For the PHENIX collaboration

Co-authors: Y. Berdnikov, A. Berdnikov, D. Kotov, Iu. Mitrankov

We acknowledge support from Russian Ministry of Education and Science, state assignment for fundamental research (code FSEG-2020-0024) in the φ meson part of the analysis

Quark-Gluon Plasma

QGP – is a state of matter which exists at extremely high temperature and/or density. This state is thought to consist of asymptotically free strong-interacting quarks and gluons, which are ordinarily confined inside atomic nucleons or other hadrons.

Collision Systems

1. Reference collisions:

p+p

2. Small collsion systems:

p+Al, **d+Au**, ³**He+Au**Cold Nuclear Matter effects
QGP effects

3. Large collision systems:

Cu+Au, Au+Au, U+U
Cold Nuclear Matter effects
QGP effects

Measurements of charged particles multiplicity with the BBC (3.0 < | η | < 3.9)

Centrality characterized by N_{part}: Number of nucleons which suffered at least one inelastic nucleon-nucleon collision

N_{coll}: Number of inelastic nucleon-nucleon collisions

N_{part} and N_{coll} from Glauber calculations

PHENIX

(Pioneering High Energy Nuclear Interaction experiment)

Detectors in the central spectrometer arms ($|\eta|$ < 0. 35)

Charged Particle Tracking & Momentum measurements:

Drift-Chambers (DC) and first layer of pad chambers (PC1)

Identification of charged hadrons:

Tine-of-Flight (TOF) with start signal from the Beam-Counters (BBC)

Centrality identification:

BBC detectors (beam-beam counters)

Invariant spectra

The lines are Levy function fits.

Nuclear modification factors

To measure the modification of the spectrum of produced particles in heavy-ion collisions relative to the spectrum in p+p collisions, nuclear modification factors (R_{AB}) are employed:

$$R_{AB}(p_T) = \frac{1}{N_{coll}} \frac{d^2 N_{AB}(p_T)/dy dp_T}{d^2 N_{pp}/dy dp_T}$$

Light hadron R_{AB} in p+AI, d+AI and ³He+Au

³He+Au

Light hadron R_{AB} in p+Al, d+Al and ³He+Au

³He+Au

Light hadron R_{AB} in small and large systems

PH ENIX

Light hadron R_{AB} in small and large systems

p_ (GeV/c)

0-20%, 3He+Au, |y|<0.35, |s,m = 200 GeV

1.5

p_T(GeV/c)

Baryon enhancement

Baryon Puzzle - Anomalous large ratio of protons (3 quarks) to π -mesons (2 quarks) yields in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV discovered by PHENIX

PHENIX collaboration, Phys.Rev.Lett.91:172301,2003

PHENIX collaboration, Phys.Rev.C69:034909,2004

Strong centrality dependence of p/π ratio

Recombination model of QGP hadronization

Recombination

Phase space at the hadronization is filled with partons

- Single parton description may not be valid anymore
- \triangleright No need to create $\bar{q}q$ pairs via splitting/string breaking
- Partons that are "close" to each other in phase space (position and momentum) can simply recombine into hadrons

Recombination vs. fragmentation:

- Competing mechanisms
- ightharpoonup Recombination naturally enhances baryon/meson ratios at intermediate p_T

Fragmentation

Baryon puzzle was successfully explained in the frame of recombination models, so baryon enhancement can be used as tool for exploring small systems

PH*ENIX

The ratio of p/π

Au+Au

p+Al

d+Au

³He+Au

The ratio of K/π

Au+Au

p+Al

d+Au

³He+Au

Strangeness enhancement

Strangeness enhancement

Comparison of hadron R_{AB} in light systems

- $ightharpoonup R_{AB}$ values for π^{\pm} and K^{\pm} in p+AI, 3 He+Au and d+Au collisions are consistent within uncertainties.
- $\succ K^{\pm}/\pi^{\pm}$ in p+Al, ³He+Au and d+Au are consistent within uncertainties.
- No strangeness enhancement in small system collisions: $R_{AB}^{\varphi,K^{\pm},K^{*}} \approx R_{AB}^{\pi^{\pm},\pi^{0}}$

- $holdsymbol{>} R_{AB}^{\overline{p}} pprox {f 1}$ in p+Al collisions in all centralities in the intermediate p_T range.
- > Smaller slope of $R_{AB}^{\pi,K}(p_T)$ in p+Al collisions than in 3 He+Au and d+Au.
- **No baryon enhancement in p+Al collisions**: all measured light hadron R_{AB} values are consistent in all centralities of p+Al collisions. No enhancement of \bar{p} R_{AB} values over meson R_{AB} values in p+Al collisions was observed.
- \triangleright In central collisions \bar{p}/π^- in p+Al is smaller than in ${}^3\text{He+Au}$ and d+Au, but this difference disappears in peripheral collisions.

Light hadron dominant production mechanism in p+Al collisions differs from light hadron dominant production mechanism in d+Au and ³He+Au

Light hadron dominant production mechanism in p+Al collisions differs from light hadron dominant production mechanism in d+Au and ³He+Au

That might indicate that:

1. condition in p+Al collisions are not sufficient for QGP formation

or

2. the system is too small for recombination to cause a noticeable increase in proton production

Further study is needed

Light hadron dominant production mechanism in p+Al collisions differs from light hadron dominant production mechanism in d+Au and ³He+Au

That might indicate that:

1. condition in p+Al collisions are not sufficient for QGP formation

or

2. the system is too small for recombination to cause a noticeable increase in proton production

Further study is needed

Thank you for attention!