

NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUTE"

Experimental study of halo in isobar-analog states

A.S. Demyanova

NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUTE"

LXXI International conference "NUCLEUS – 2021.

Nuclear physics and elementary particle physics. Nuclear physics technologies"

The discovery of the neutron halo is one of the most important achievements of nuclear physics at the end of the last century:

- 1) For the first time, nuclei with anomalously large sizes were found.
- 2) Neutron matter was first detected in an external field. Those. nuclei were synthesized, in which the symmetric nuclear matter (core) is spatially separated from neutrons. The term "exotic nuclei" itself was originally referred to these nuclei.
 Neutron halo

The main property of the halo is an increased radius of valence neutrons, 2 to 3 times the size of the core.

The halo was discovered in the ground states of the nuclei lying on the border of stability with the help of a new "tool" - beams of radioactive nuclei used to measure the total cross sections $\sigma \sim \pi R^2$.

LXXI International conference "NUCLEUS – 2021

Current overview on halo phenomena:

* Neutron halos phenomenon extends far beyond what was known before:

- 1. Halos exist not only in the drip-line nuclei but also in the stable ones.
- 2. Halos can be formed not exclusively in the ground states but in the excited states as well.
- 3. Halos can exist in particle unstable states.
- * Three independent methods (Diffraction, Rainbow, ANC) of measuring the radii of particle unstable states were developed. More work is required.

* Signatures of neutron halos were observed in the excited states of:

- **1.** Some "non-exotic" nuclei ${}^{13}C(1/2_{1}^{+})$ and ${}^{9}Be(1/2_{1}^{+}, 5/2_{1}^{+})$
- 2. Some drip-line nuclei: ¹¹Be (5/2⁺₁, 3/2⁺₁), ¹²Be (1⁻₁), ¹⁴Be(2⁺₁)
- * New structures (like rotating halos) could appear.
- * There is much more rare phenomena proton halo. The Coulomb barrier prevents substantial proton separation from the core. Currently proton halo was observed in ⁸B, ¹⁷F, ¹³N
- ³ LXXI International conference "NUCLEUS 2021

Halo in isobar-analog states

The purpose of this research is to search and study **nucleonic halo** in the **isobaric analog states (IASs)** of nuclei. Our group is one of the first who started works in this area. Isobaric invariance leads to the fact that the states of two neighboring nuclei obtained by replacing a neutron with a proton and having the same quantum numbers, including isospin, are analogous, i.e. they have in the first approximation the same structure and radii. In the case of isobaric analogs having halo, the situation is more complicated: replacing the neutron in the halo state with a proton does not necessarily lead to the appearance of a similar proton structure. The fact is that the appearance of a halo is determined by the proximity of the valence nucleon to the emission threshold, and it can be very different for a neutron and a proton.

Isobar-analog states of ⁶He, ⁶Li, ⁶Be, ¹²B, ¹²C, ¹²N, ¹⁴N and ¹⁴O nuclei The arrows show the decay thresholds.

⁴ LXXI International conference "NUCLEUS – 2021

Modified diffraction model (MDM)

Diffraction radii are defined from positions of minima/maxima in angular distributions $d\sigma/d\Omega$

 R_{dif} is the only parameter of the model. This parameter has dimension of length and could be directly connected with real (*rms*) nuclear radius

Model:

 $\mathsf{R}_{\mathsf{rms}} (\mathsf{exc.st.}) = \mathsf{R}_{\mathsf{rms}} (\mathsf{gr.st.}) + [\mathsf{R}_{\mathsf{dif}} (\mathsf{exc.st.}) - \mathsf{R}_{\mathsf{dif}} (\mathbf{0})]$

It has been known for a long time that the charge exchange reactions have much in common with the inelastic scattering A.M. Lane, Nucl. Phys. 35, 676 (1962) MDM was successfully applied to (³He,t) reactions

A. S. Demyanova et al., JETP Lett. 104, 526 (2016) A.S. Demyanova et al., Phys. Atom. Nucl., 80, 831 (2017): proton halo was observed for the 2.37-MeV state of ¹³N nucleus

5 LXXI International conference "NUCLEUS – 2021

ANC method of measuring the radii of the halo states (d,p)-reaction

Transfer reactions are mainly peripheral **For peripheral reactions** Asymptotic normalization coefficients (ANC) can be calculated with proper approximation **On base of ANC RMS radius** of the last neutron can be calculated

L.D. Blokhintsev et al., Sov. J. Part. Nucl. 8, 485 (1977) Z.H. Liu et al., Phys. Rev. C 64, 034312 (2001) T.L.Belyaeva et al., Phys. Rev. C 90, 064610 (2014)

R(halo) may be extracted from ANC

6 LXXI International conference "NUCLEUS – 2021


```
Observation of halos in 2^{-} and 1^{-}.
```

```
R_{\rm b} = 4.01 \pm 0.61 and 5.64 \pm 0.90 fm
ANC method was used for halo
radius extraction on base of
^{11}B(d,p)^{12}B, E_d = 11.8 MeV
We did our own experiment
{}^{11}B(d,p){}^{12}B, E_d = 21.5 \text{ MeV and}
applied ANC
T. L. Belyaeva et al., Phys. Rev. C 98
034602 (2018).
```

¹²C (Asymptotic normalization coefficients. MDM analysis: Increased ANC)

We did our own experiment ${}^{11}B({}^{3}He,d){}^{12}C$ at $E({}^{3}He) = 25 \text{ MeV}$

ANC analysis: Increased

radii (signs of halo)

A.S. Demyanova et al., Phys. Rev. C 102, 054612 (2020)

We did our own experiment ${}^{12}C({}^{3}He,t){}^{12}N at E({}^{3}He) = 40 MeV$

radii (signs of halo)

A.S. Demyanova et al., JETP Letters, 111,409(2020)

We revealed that ¹²B, ¹²N, and ¹²C in the IAS with T=1 and spin-parities 2- and 1- have increased radii and exhibit properties of neutron and proton halo states.

Triplet ${}^{12}B - {}^{12}C - {}^{12}N$: overview of results

		^{12}B			$^{12}\mathrm{C}$		¹² N	
7 π	E_x	$R_{ m rms}$	D_1	E_x	$R_{ m rms}$	D_1	E_x	$R_{ m rms}$
J_f	(MeV)	(fm)	%	(MeV)	(fm)	%	(MeV)	(fm)
1^{+}	0.0	2.39 ± 0.02	11	15.11	2.40 ± 0.06	30	0.0	2.47 ± 0.07
								2.8 ± 0.4
2^{-}	1.67	2.73 ± 0.11	53	16.57	2.88 ± 0.13	47	1.19	2.8 ± 0.2
1^{-}	2.62	3.00 ± 0.11	62	17.23	2.94 ± 0.13	52	1.80	3.3 ± 0.2

 D_1 – the probability of the last nucleon to be outside the range of the interaction D_2 – the contribution of the asymptotic part of the wave function to the rms radius

Isospin triplet ¹⁴C – ¹⁴N – ¹⁴O

We expect halo/halo like states in isobar-analog states (IAS) 1⁻ T=1

¹⁴C (ANC)

It was known

Z. H. Liu, Chin. Phys. Lett. 19, 1071 (2002). Observation of halos in 1⁻ and 0⁻ Increased radii: R_h = 4.57 and 5.78 fm

ANC method was used for halo radius extraction on base of ¹³C(d,p)¹⁴C, E_d = 17.7 MeV

S. Yu. Mezhevych et al., Nucl. Phys. A 753, 13 (2005) - rms radius of valence neutron wave function was found to be 5.16 fm

¹⁴N (ANC)

We analyzed existing exp data Increased radius for 1⁻ state: $R_h = 5.9 \pm 0.3$ fm, $D_1 = 42\%$, $D_2 = 90\%$

the ANC analysis showed the signs of a proton halo in the 8.06-MeV 1⁻ state of ¹⁴N. This result was obtained for the first time.

¹⁴O (MDM)

We analyzed existing exp data Increased radius for 1⁻ state: R_{rms} = 2.6 fm

Theoretical analysis is in progress Signs of halo?

Jetp Lett, vol. 112, iss. 8, pp. 463 – 470

New experiment will be done in 2020/2021 (JYFL, Finland)

Isospin triplet A=6 ⁶He - ⁶Li - ⁶Be

Among these triplet states, the neutron halo in 6 He is well known. A proton-neutron halo is predicted in the excited state of 0+, 3.56 MeV in 6 Li, which lies only 137 keV below the 6 Li \rightarrow 4 He + p + n threshold. Its radius is not known, but it is predicted by about 0.25 Fm larger than the radius of 6 He [Arai]. We can expect the appearance of a two-proton halo in the ground state of 6 Be. The table shows the known radii of states shown in Fig.

A S Demyanova et al. (2018),in The 3rd International Conference on Particle Physics and Astrophysics, KnE Energy & Physics, pages 1–9. DOI 10.18502/ken.v3i1.1715

Nucleus	E*, MeV	Ιπ	R _{rms} , fm
⁶ Li	0.00	1+	2.36 ± 0.03
⁶ Li	3.56	0+	2.73 (prediction)
⁶ He	0.00	0+	$\boldsymbol{2.50\pm0.05}$

The resulting radius for the state 0⁺, 3.56 MeV in ⁶Li practically equals to the radius of the ground state of its "Borromean" isobar analogue ⁶He. It is equal 2.49 ± 0.16 fm. It can be said preliminary that 0⁺, 3.56 MeV state in ⁶Li is "Borromean" also and is neutron-proton halo.

10_{LXXI} International conference "NUCLEUS – 2021

⁶Be nucleus

[MeV]

E

¹¹LXXI International conference "NUCLEUS – 2021

Multiplet A = 8

There are experimental and theoretical literature data on the single-proton halo in ⁸B. Experimentally halo at g.s. ⁸B was determined from increased quadrupole moment and total cross-sections. The question arises whether the presence of a neutron halo in the ⁸Li mirror nucleus is possible. An article by Minamisono et al. find a halo in ⁸B and the value of the quadrupole moment for ⁸Li speaks of a thin neutron skin around the core. This is so far the only experimental work where the possibility of an exotic structure in ⁸Li is considered. In the experimental work of PNPI (Gatchina), the halo in ⁸B is confirmed and the halo in ⁸Li is rejected.

The red indicates the state with a halo at ⁸B and a possible exotic halo state at ⁸Li.

12LXXI International conference "NUCLEUS – 2021

Conclusions

- Triplet A=12: similar radii were obtained for 2⁻ and 1⁻ states (T=1). Neutron halo was confirmed by ANC for ¹²B. Possible proton halo in ¹²C and ¹²N.
- Triplet A=14: similar radii were obtained for 1⁻ state (T=1). Proton halo was observed in ¹⁴N for the first time.
- Triplet A=6: It can be said preliminary that 0⁺, 3.56 MeV state in ⁶Li is "Borromian" also and is neutronproton halo. ⁶Be analysis is in progress.
- ANC can be applied for resonance states
- 13_{LXXI} International conference "NUCLEUS 2021

Collaboration

• NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUTE"

A.A.Ogloblin, A.S.Demyanova, A.N.Danilov, S.V. Dmitriev, V.I. Starastsin, V.M. Sergeev

- Moscow State University, Physical Department S.A.Goncharov
- Mexico University T.L.Belyaeva
- JINR Yu.E. Penionzhkevich, Yu.G. Sobolev, V.A. Maslov
- MEPhI Yu.B. Gurov, B.A. Chernyshev
- University of Jyväskylä, Jyväskylä, Finland W. Trzaska, G. P. Tyurin
- Khlopin Radium Institute, St.-Petersburg, Russia S. V.
 Khlebnikov
- Institute of Nuclear Physics, Republic of Kazakhstan D.
 Janseitov, N.Burtebaev, Y. Muhkamejanov
- 14_{LXXI} International conference "NUCLEUS 2021

Acknowledgements

Work was partly supported by RSF grant # 18-12-00312

Российский

15_{LXXI} International conference "NUCLEUS – 2021