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Introduction

» Models used for large-scale prediction of nuclear deformations:
macro-microscopic (e.g., Finite Range Droplet Model FRDM),
Hartree—Fock—Bogolyubov calculations with different effective interaction
potentials.

> Purpose of this work: construct simple phenomenological model capable of
prediction of deformation of majority of medium and heavy nuclei through
extension of a simple Nilsson model.
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Nilsson deformed shell model

» Single-particle Hamiltonian of the spherical SM with the harmonic
oscillator potential (Goppert—Mayer & Jensen, 1949):
h? oV(r)

A=—-——A+V
2m t Vs or

(1-8) + DI + gw2r2.

> Axially-deformed potential of the Nilsson model (1955):

N K2 AL m
A= —%A + C(1-8) + DI? + 5(w§x2 +w§y2 +wlz?),

where wy = wy =wy = wo <1+%)'a”d Wy = w| Zw0< _%)

» conservation of volume after deformation: wywyw, = const. Then
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Nilsson deformed shell model
Solution of the Schrédinger equation via diagonalization of the Hamiltonian in
the axially-deformed oscillator basis (r|N/AL) with different 3, leads to the

Nilsson diagrams €;(32):

[C. Gustafson et al., Ark.
Fys. 36, 613 (1967)]
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Nilsson deformed shell model

Location of the equilibrium deformation point

Total nuclear energy in the ground state is defined as E(32) = >_ €i(52).
Minimum of the function corresponds to the equilibrium deformation

point.
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Fig. 3. The electric quadrupole moments for the shifts I+IV. The experimental values are taken
from ref. ). The Coulomb effects are included in the dotted curve, but not in the dashed curve.

[D. R. Bes, Z. Szymanski, Nucl. Phys. 28, 42
(1961)]
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Fig. 4. Equilibrium deformations versus A. The solid line refers to the values of the density

deformation parameter & computed from the experimental quadrupole moments 1) by means

of eq. (11). They are to be compared with the calculated potential deformation ¢ (dashed line).
The level scheme corresponds to the variant 2 of table 1.

[Z. Szymanski, Nucl. Phys. 28, 63 (1961)]

Good agreement with data in the region of strongly deformed rare-earth
and actinide nuclei. (BCS treatment of pairing correction is included.)



Nilsson deformed shell model
Location of the equilibrium deformation point
Less satisfactory agreement in other regions of the NZ chart. The

minimum of the potential energy curve can be too shallow. Example:
7K.
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[PC. Pr. PYCICXKPeP,P«Py, PY. PNe. PIICI'PrPyP,,, PsPh 68, 1407 (2005)]
(Here axially deformed Woods—Saxon potential is used instead of the
Nilsson potential.)



Nilsson deformed shell model

Reasons of the failure

» |naccurate approximation of the average nuclear field, lacking
description of two-body interactions, etc.

» One of the main reasons: total single-particle energy does not form a
correct expression of the nuclear energy due to double summation of
the interaction energy. In reality E =) ¢; — % S (i, jIVIij).
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» The approach practically not used after introduction of the
Strutinsky shell correction method.



Parameterization of the nuclear shape

Non-axial ellipsoid

Axial deformation

B=>0
Non-axiality 0 < v < %
L — Ellipsoid semi-axes
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Deformed Woods—Saxon form-factor
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Single-particle potentials defined in terms of the form-factor
f(0,0) =

where R(0, ¢) is the radius (with restriction of volume conservation
abc = const)
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a(#, ¢) is the diffuseness parameter ("thickness of.the surface layer").



Choice of the angular dependence of the diffuseness

a(,¢) ~ R(6,9) a(6,¢) = const grad f(6,9) = const

respypxcrp, ~ 1 fm = thickness of the surface layer is constant at
different points of the surface:

2 1
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Single-particle shell-model potential

Parameters of the potential

> Use the real part of the spherical global optical potential from [A. Koning,
J. Delaroche, Nucl. Phys. A 713, 231 (2003)]

U(r,E) = Vi (r. E) — iW(r, E) — iWp(r, E)+
+ \/50(/’, E)(l : S) + I'Wso(r7 E)(l . S) + Vc(r),

where each term V(r,E) = V(E)f(a, R, r).

> Parameterized V(E) = V(E,A,Z), R=R(A,Z), a= a(A, Z) for pand n
from experimental cross sections of nucleon scattering on spherical nuclei
24 < A < 209.

» Parameter values at E = eF approximately correspond to the average
nuclear potential in the near-surface area which affects deformation the
most.



Single-particle shell-model potential

Terms of the potential
(r 0 ¢) nucl(r 0 ¢)+ Vls(r 0 ¢) + VCoul(r 0 ¢)

» Nuclear interaction
Vnucl(r 6 gZ5) nuclfnucl(r 9 ¢)

» Spin-orbit interaction
Vis(r, 6, ¢) = X2 Uis(F + F),
PYPYPx F = ([Vfis(r,0,6) x B] - 8).
» Coulomb potential
3 gZe? »
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Calculation of single-particle states

» Schrodinger equation solved by diagonalization of the Hamiltonian
H=T+V.

> Matrix elements (N'/'m’s'|H|NIms) calculated in the isotropic
harmonic oscillator basis.

(ro|Nims) = Uni(r) Yim(0, 9)(0]s).

> Cut-off Npay = 11.

» Volume integration reduced to calculation of spherical harmonic
expansion coefficients «(r) of functions of f, gg g; K and
subsequent 1D integration wrt. r.

» Full time of eigenvalue computation for p and n at a fixed
deformation 5-10 s.



Single-particle levels of 1*°Sm

€p [MeV]
€q [MeV]

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

(Negative 3 values taken along the v = 60° line.)



Pairing correction

Levels of the single-particle spectrum are double degenerate (Cramers).
Nucleon pairing taken into account using the BCS method:

N>
AE=) (2v - )ek———GkaJr Gan,
k=Nq k=N k=Ny

where the pairing gap width A is estimated from difference of masses of 4
neighbour nuclei, and the interaction constant G, particle numbers vy,
and energies of quasiparticle levels e, are determined by solution of the
BCS equations.

Ny Py N> determine the range of interacting states.

Ny =1,
Ny = 2NE.



Surface diffuseness as a function of deformation
Spherical 33 Crag
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Surface diffuseness as a function of deformation
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Surface diffuseness as a function of deformation

» Which parameter of the WS potential to adjust — R, V/, or a?

» Deformation <= increased density of single-particle states near the
Fermi surface.

» Diffuseness <= surface energy (i. e., total energy of nucleons in
the surface layer).

» Connection between the deformation and the diffuseness parameter a
which was measured only for spherical nuclei. Its value should have a
minimum near the equilibrium deformation point.



Surface diffuseness as a function of deformation
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We choose a(/3,7) = ap (1 + kB (377)) where

Y(x) = 14 p1x + pax? + p3x3. Derivative 1’ should be negative at
~v = 0° and positive at v = 60° with the same absolute value.
Finally, po = —3(1 — q) — p1, p3 = 2(1 — q).



Surface diffuseness as a function of deformation
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Based on key nuclei 52Cr (spherical), ""Rb (prolate), 8Pt (oblate) Py
18173 (prolate) two strategies of variation of diffuseness are proposed.
(a) Magic nuclei: k = +0.006.

(b) All others: k = —0.018, g = 0.8, p1 = —0.4.



Surface diffuseness as a function of deformation
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Results

%8Ga
Ee3 y-eTa cnapriaHnA C y4etom cnapueanns (Mogens BCS+) :
Y Y
> 300 30°
0 0.1 0.2 03 0.4 0.5 o 0.5
B B

This work FRDM BRUSLIB | AMEDEE CDFE

B v B2 Ba B2 v Ba B2 Pa B2 v B2

0.17 34 0.165 0.027 | —0.207 45 —0.006 | —0.23 0.04 | —0.20 0.022 + 0.002




Results

SKr

Bes y4era cnapueanna C y4eTom cnapweannn (Moens BES+)

o 0.1 0.2 0.3 0.4 0.5 ] 0.1 0.2 0.3 0.4 0.5
B B
This work FRDM BRUSLIB | AMEDEE CDFE
B v B2 Ba B2 v Ba B2 Ba B2 B2

0.38 0 0.406 0.168|0.402 0 —0.010|—0.20 0.01|—0.15 0.412 + 0.065




Results

181 Ta
Bes yveTa cnapusakna C y4erom cnapusanya (Mofens BCS+)
60° 60°
Y B Y
. 30° 30°
“ “ » = 20° . 20°
5 6
o Q‘.l E;S 0‘.4 0‘5 ] ‘
B B

This work FRDM BRUSLIB | AMEDEE CDFE

B v B2 Ba B2 v Ba| P2 Ba| B2 v B2

0.23 0 0.245 0.043]0.255 0 —0.076|0.28 —0.04|0.30 0.253 +0.015
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Overall evaluation
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Overall evaluation

95Cd _ 132Cd
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Conclusions

v

A simple model of deformation of medium and heavy nuclei based on
the Nilsson model is formulated.

Connection between deformation energy and surface diffuseness is
shown.

Only 3 additional parameters are introduced.

Calculations of potential energy surfaces are performed on 107 nuclei
from %0Cr to 2*'Am.

Very small variation (< 1%) of the diffuseness parameter was enough
for satisfactory description of wide range of data, comparable with
much more complex models.
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