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Introduction

I Models used for large-scale prediction of nuclear deformations:
macro-microscopic (e.g., Finite Range Droplet Model FRDM),
Hartree–Fock–Bogolyubov calculations with different effective interaction
potentials.

I Purpose of this work: construct simple phenomenological model capable of
prediction of deformation of majority of medium and heavy nuclei through
extension of a simple Nilsson model.
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Nilsson deformed shell model
I Single-particle Hamiltonian of the spherical SM with the harmonic

oscillator potential (Göppert–Mayer & Jensen, 1949):

Ĥ = − ~2

2m
∆ + Vls

∂V (r)

∂r
(̂l · ŝ) + D l̂2 +

m

2
ω2r2.

I Axially-deformed potential of the Nilsson model (1955):

Ĥ = − ~2

2m
∆ + C (̂l · ŝ) + D l̂2 +

m

2
(ω2

xx
2 + ω2

yy
2 + ω2

z z
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where ωx = ωy = ω⊥ = ω0

(
1 + β2

3

)
, and ωz = ω‖ = ω0

(
1− 2β2

3

)
.

I conservation of volume after deformation: ωxωyωz = const. Then

ω0 = ω̊0

(
1− β2

2
3 −

2β3
2

27

)− 1
6 , where ω̊0 ≈ 41A−

1
3 to reproduce rms

radius of magic nuclei.



4/ 29

Nilsson deformed shell model
Solution of the Schrödinger equation via diagonalization of the Hamiltonian in
the axially-deformed oscillator basis 〈r|NlΛΣ〉 with different β2 leads to the
Nilsson diagrams εi (β2):

[C. Gustafson et al., Ark.
Fys. 36, 613 (1967)]
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Nilsson deformed shell model
Location of the equilibrium deformation point

Total nuclear energy in the ground state is defined as E (β2) =
∑
εi (β2).

Minimum of the function corresponds to the equilibrium deformation
point.

[D. R. Bès, Z. Szymański, Nucl. Phys. 28, 42
(1961)]

[Z. Szymański, Nucl. Phys. 28, 63 (1961)]
Good agreement with data in the region of strongly deformed rare-earth
and actinide nuclei. (BCS treatment of pairing correction is included.)
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Nilsson deformed shell model
Location of the equilibrium deformation point
Less satisfactory agreement in other regions of the NZ chart. The
minimum of the potential energy curve can be too shallow. Example:
77Kr.

[РҪ. Рғ. РҶСЇСҖРөР„Р«Рў, РЎ. Р№. Р¤СҐРњРҷР„, РѕРһ 68, 1407 (2005)]

(Here axially deformed Woods–Saxon potential is used instead of the
Nilsson potential.)
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Nilsson deformed shell model
Reasons of the failure

I Inaccurate approximation of the average nuclear field, lacking
description of two-body interactions, etc.

I One of the main reasons: total single-particle energy does not form a
correct expression of the nuclear energy due to double summation of
the interaction energy. In reality E =

∑
i
εi − 1

2
∑
i 6=j

〈i , j |V̂ |i , j〉.

I The approach practically not used after introduction of the
Strutinsky shell correction method.
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Parameterization of the nuclear shape
Non-axial ellipsoid

β = 0; γ = 0 β = 0,4; γ = 0

β = 0,4; γ = 60 β = 0,4; γ = 30

Axial deformation
β ≥ 0
Non-axiality 0 ≤ γ ≤ π

3

Ellipsoid semi-axes

a0 = β cos γ

a2 =
1√
2
β sin γ

a2 = 1−
√

5
4π

a0+

√
15
2π

a2

b2 = 1−
√

5
4π

a0−
√

15
2π

a2

c2 = 1 +

√
5
π
a0
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Deformed Woods–Saxon form-factor

 0

 0.5

 1

R 0

4a

Single-particle potentials defined in terms of the form-factor

f (θ, φ) =
1

1 + e
r−R(θ,φ)
a(θ,φ)

,

where R(θ, φ) is the radius (with restriction of volume conservation
abc = const)

R = R0

(
sin2 θ cos2 φ

a2
+

sin2 θ sin2 φ
b2

+
cos2 θ
c2

)− 1
2

;

a(θ, φ) is the diffuseness parameter ("thickness of the surface layer").
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Choice of the angular dependence of the diffuseness
a(θ,φ) ~ R(θ,φ) a(θ,φ) = const grad f(θ,φ) = const

rСЅРұРҳСҐР„ ≈ 1 fm =⇒ thickness of the surface layer is constant at
different points of the surface:(

grad f (r , θ, φ)|r=R(θ,φ)

)2
=

1
16a2(θ = 0, φ = 0)

= const.
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Single-particle shell-model potential
Parameters of the potential

I Use the real part of the spherical global optical potential from [A. Koning,
J. Delaroche, Nucl. Phys. A 713, 231 (2003)]

U(r ,E ) = −VV (r ,E )− iWV (r ,E )− iWD(r ,E )+

+ VSO(r ,E )(l · s) + iWSO(r ,E )(l · s) + VC (r),

where each term V (r ,E ) ≡ V (E )f (a,R, r).

I Parameterized V (E ) = V (E ,A,Z ), R = R(A,Z ), a = a(A,Z ) for p and n
from experimental cross sections of nucleon scattering on spherical nuclei
24 ≤ A ≤ 209.

I Parameter values at E = εF approximately correspond to the average
nuclear potential in the near-surface area which affects deformation the
most.
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Single-particle shell-model potential
Terms of the potential

V (r , θ, φ) = Vnucl(r , θ, φ) + Vls(r , θ, φ) + VCoul(r , θ, φ)

I Nuclear interaction

Vnucl(r , θ, φ) = −Unuclfnucl(r , θ, φ).

I Spin-orbit interaction

Vls(r , θ, φ) = λ̄2πUls(F̂ + F̂+),

РүРұРҳ F̂ = ([∇fls(r , θ, φ)× p̂] · ŝ).
I Coulomb potential

VCoul(r , θ, φ) =
3
4π

qZe2

R3
Coul
×

2π∫
0

dφ′
π∫

0

sin θ′dθ′
R(θ′φ′)∫
0

(r ′)2dr ′√
r2 + (r ′)2 − 2rr ′ cosβ

.
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Calculation of single-particle states

I Schrödinger equation solved by diagonalization of the Hamiltonian
Ĥ = T̂ + V̂ .

I Matrix elements 〈N ′l ′m′s ′|Ĥ|Nlms〉 calculated in the isotropic
harmonic oscillator basis.

〈rσ|Nlms〉 = UNl(r)Ylm(θ, φ)〈σ|s〉.

I Cut-off Nmax = 11.
I Volume integration reduced to calculation of spherical harmonic

expansion coefficients α(r) of functions of f , ∂f∂θ ,
∂f
∂φ , Kλ and

subsequent 1D integration wrt. r .
I Full time of eigenvalue computation for p and n at a fixed

deformation 5–10 s.
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Single-particle levels of 150Sm
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(Negative β values taken along the γ = 60◦ line.)
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Pairing correction

Levels of the single-particle spectrum are double degenerate (Cramers).
Nucleon pairing taken into account using the BCS method:

∆E =

N2∑
k=N1

(2v2k − nk)ek −
∆2

G
− G

N2∑
k=N1

v4k +
1
2
G

N2∑
k=N1

nk ,

where the pairing gap width ∆ is estimated from difference of masses of 4
neighbour nuclei, and the interaction constant G , particle numbers vk ,
and energies of quasiparticle levels ek are determined by solution of the
BCS equations.
N1 Рҷ N2 determine the range of interacting states.

N1 = 1,

N2 = 2NF .
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Surface diffuseness as a function of deformation
Spherical 52
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Surface diffuseness as a function of deformation
Deformed 76
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Surface diffuseness as a function of deformation

I Which parameter of the WS potential to adjust — R , V , or a?
I Deformation ⇐⇒ increased density of single-particle states near the

Fermi surface.
I Diffuseness ⇐⇒ surface energy (i. e., total energy of nucleons in

the surface layer).
I Connection between the deformation and the diffuseness parameter a

which was measured only for spherical nuclei. Its value should have a
minimum near the equilibrium deformation point.
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Surface diffuseness as a function of deformation

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0 2 4 6 8 10

r, fm

∂
ρ

/∂
r|

θ
 =

 0
, 

fm
-4 52

Cr β = 0.00

β = 0.15

β = 0.30

β = 0.45

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0 2 4 6 8 10

r, fm
∂
ρ

/∂
r|

θ
 =

 0
, 

fm
-4 76

Sr β = 0.00

β = 0.15

β = 0.30

β = 0.45

We choose a(β, γ) = a0
(
1 + kβψ

(
3γ
π

))
, where

ψ(x) = 1 + p1x + p2x
2 + p3x

3. Derivative ψ′ should be negative at
γ = 0◦ and positive at γ = 60◦ with the same absolute value.
Finally, p2 = −3(1− q)− p1, p3 = 2(1− q).
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Surface diffuseness as a function of deformation
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Based on key nuclei 52Cr (spherical), 77Rb (prolate), 189Pt (oblate) Рҷ
181Ta (prolate) two strategies of variation of diffuseness are proposed.
(a) Magic nuclei: k = +0.006.
(b) All others: k = −0.018, q = 0.8, p1 = −0.4.
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Surface diffuseness as a function of deformation
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Results
68Ga

This work FRDM BRUSLIB AMEDEE CDFE
β γ β2 β4 β2 γ β4 β2 β4 β2 γ β2

0.17 34 0.165 0.027 −0.207 45 −0.006 −0.23 0.04 −0.20 0.022± 0.002
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Results
75Kr

This work FRDM BRUSLIB AMEDEE CDFE
β γ β2 β4 β2 γ β4 β2 β4 β2 γ β2

0.38 0 0.406 0.168 0.402 0 −0.010 −0.20 0.01 −0.15 0.412± 0.065
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Results
181Ta

This work FRDM BRUSLIB AMEDEE CDFE
β γ β2 β4 β2 γ β4 β2 β4 β2 γ β2

0.23 0 0.245 0.043 0.255 0 −0.076 0.28 −0.04 0.30 0.253± 0.015
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Overall evaluation
50Cr — 241Am
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Overall evaluation
74Sr — 106Sr
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Overall evaluation
95Cd — 132Cd
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Conclusions

I A simple model of deformation of medium and heavy nuclei based on
the Nilsson model is formulated.

I Connection between deformation energy and surface diffuseness is
shown.

I Only 3 additional parameters are introduced.
I Calculations of potential energy surfaces are performed on 107 nuclei

from 50Cr to 241Am.
I Very small variation (< 1%) of the diffuseness parameter was enough

for satisfactory description of wide range of data, comparable with
much more complex models.
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Thank you!


