Equilibrium ground-state deformation of medium and heavy nuclei calculated on the basis of deformed Woods-Saxon potential with variable surface diffuseness
G. I. Bykhalo, V. N. Orlin, K. A. Stopani

Nucleus-2021
25/IX/2021

Introduction

- Models used for large-scale prediction of nuclear deformations: macro-microscopic (e.g., Finite Range Droplet Model FRDM), Hartree-Fock-Bogolyubov calculations with different effective interaction potentials.
- Purpose of this work: construct simple phenomenological model capable of prediction of deformation of majority of medium and heavy nuclei through extension of a simple Nilsson model.

Nilsson deformed shell model

- Single-particle Hamiltonian of the spherical SM with the harmonic oscillator potential (Göppert-Mayer \& Jensen, 1949):

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \Delta+V_{l s} \frac{\partial V(r)}{\partial r}(\hat{\mathbf{l}} \cdot \hat{\mathbf{s}})+D \hat{\mathbf{l}}^{2}+\frac{m}{2} \omega^{2} r^{2} .
$$

- Axially-deformed potential of the Nilsson model (1955):

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \Delta+C(\hat{\mathbf{I}} \cdot \hat{\mathbf{s}})+D \hat{\mathbf{I}}^{2}+\frac{m}{2}\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)
$$

where $\omega_{x}=\omega_{y}=\omega_{\perp}=\omega_{0}\left(1+\frac{\beta_{2}}{3}\right)$, and $\omega_{z}=\omega_{\|}=\omega_{0}\left(1-\frac{2 \beta_{2}}{3}\right)$.

- conservation of volume after deformation: $\omega_{x} \omega_{y} \omega_{z}=$ const. Then $\omega_{0}=\dot{\omega}_{0}\left(1-\frac{\beta_{2}^{2}}{3}-\frac{2 \beta_{2}^{3}}{27}\right)^{-\frac{1}{6}}$, where $\dot{\omega}_{0} \approx 41 A^{-\frac{1}{3}}$ to reproduce rms radius of magic nuclei.

Nilsson deformed shell model

Solution of the Schrödinger equation via diagonalization of the Hamiltonian in the axially-deformed oscillator basis $\langle\mathbf{r} \mid N I \Lambda \Sigma\rangle$ with different β_{2} leads to the Nilsson diagrams $\epsilon_{i}\left(\beta_{2}\right)$:

[C. Gustafson et al., Ark. Fys. 36, 613 (1967)]

Nilsson deformed shell model

Location of the equilibrium deformation point

Total nuclear energy in the ground state is defined as $E\left(\beta_{2}\right)=\sum \epsilon_{i}\left(\beta_{2}\right)$. Minimum of the function corresponds to the equilibrium deformation point.

Fig. 3. The electric quadrupole moments for the shifts I+IV. The experimental values are taken from ref. ${ }^{25}$). The Coulomb effects are included in the dotted curve, but not in the dashed curve.
[D. R. Bès, Z. Szymański, Nucl. Phys. 28, 42 (1961)]

Fig. 4. Equilibrium deformations versus A. The solid line refers to the values of the density deformation parameter $\bar{\varepsilon}$ computed from the experimental quadrupole moments ${ }^{1}$) by means of eq. (11). They are to be compared with the calculated potential deformation ε (dashed line). The level scheme corresponds to the variant 2 of table 1.
[Z. Szymański, Nucl. Phys. 28, 63 (1961)]
Good agreement with data in the region of strongly deformed rare-earth and actinide nuclei. (BCS treatment of pairing correction is included.)

Nilsson deformed shell model

Location of the equilibrium deformation point Less satisfactory agreement in other regions of the NZ chart. The minimum of the potential energy curve can be too shallow. Example: ${ }^{77} \mathrm{Kr}$.

 (Here axially deformed Woods-Saxon potential is used instead of the Nilsson potential.)

Nilsson deformed shell model

Reasons of the failure

- Inaccurate approximation of the average nuclear field, lacking description of two-body interactions, etc.
- One of the main reasons: total single-particle energy does not form a correct expression of the nuclear energy due to double summation of the interaction energy. In reality $E=\sum_{i} \epsilon_{i}-\frac{1}{2} \sum_{i \neq j}\langle i, j| \hat{V}|i, j\rangle$.
- The approach practically not used after introduction of the Strutinsky shell correction method.

Parameterization of the nuclear shape Non-axial ellipsoid

$$
\beta=0 ; \gamma=0
$$

$\beta=0,4 ; \gamma=60$

$\beta=0,4 ; \gamma=0$

$\beta=0,4 ; \gamma=30$

Axial deformation $\beta \geq 0$
Non-axiality $0 \leq \gamma \leq \frac{\pi}{3}$
Ellipsoid semi-axes

$$
\begin{gathered}
a_{0}=\beta \cos \gamma \\
a_{2}=\frac{1}{\sqrt{2}} \beta \sin \gamma \\
a^{2}=1-\sqrt{\frac{5}{4 \pi}} a_{0}+\sqrt{\frac{15}{2 \pi}} a_{2} \\
b^{2}=1-\sqrt{\frac{5}{4 \pi}} a_{0}-\sqrt{\frac{15}{2 \pi}} a_{2} \\
c^{2}=1+\sqrt{\frac{5}{\pi}} a_{0}
\end{gathered}
$$

Deformed Woods-Saxon form-factor

Single-particle potentials defined in terms of the form-factor

$$
f(\theta, \phi)=\frac{1}{1+e^{\frac{r-R(\theta, \phi)}{\partial(\theta, \phi)}}},
$$

where $R(\theta, \phi)$ is the radius (with restriction of volume conservation $a b c=$ const $)$

$$
R=R_{0}\left(\frac{\sin ^{2} \theta \cos ^{2} \phi}{a^{2}}+\frac{\sin ^{2} \theta \sin ^{2} \phi}{b^{2}}+\frac{\cos ^{2} \theta}{c^{2}}\right)^{-\frac{1}{2}}
$$

$a(\theta, \phi)$ is the diffuseness parameter ("thickness of the surface layer").

Choice of the angular dependence of the diffuseness

 different points of the surface:

$$
\left(\left.\operatorname{grad} f(r, \theta, \phi)\right|_{r=R(\theta, \phi)}\right)^{2}=\frac{1}{16 a^{2}(\theta=0, \phi=0)}=\text { const. }
$$

Single-particle shell-model potential

Parameters of the potential

- Use the real part of the spherical global optical potential from [A. Koning, J. Delaroche, Nucl. Phys. A 713, 231 (2003)]

$$
\begin{aligned}
U(r, E)=-V_{V}(r, E)- & i W_{V}(r, E)-i W_{D}(r, E)+ \\
& +V_{S O}(r, E)(I \cdot \mathbf{s})+i W_{S O}(r, E)(\mathbf{I} \cdot \mathbf{s})+V_{C}(r),
\end{aligned}
$$

where each term $V(r, E) \equiv V(E) f(a, R, r)$.

- Parameterized $V(E)=V(E, A, Z), R=R(A, Z), a=a(A, Z)$ for p and n from experimental cross sections of nucleon scattering on spherical nuclei $24 \leq A \leq 209$.
- Parameter values at $E=\epsilon_{F}$ approximately correspond to the average nuclear potential in the near-surface area which affects deformation the most.

Single-particle shell-model potential

Terms of the potential

$$
V(r, \theta, \phi)=V_{\mathrm{nucl}}(r, \theta, \phi)+V_{\mathrm{ls}}(r, \theta, \phi)+V_{\mathrm{Coul}}(r, \theta, \phi)
$$

- Nuclear interaction

$$
V_{\text {nucl }}(r, \theta, \phi)=-U_{\text {nucl }} f_{\text {nucl }}(r, \theta, \phi) .
$$

- Spin-orbit interaction

$$
V_{\mathrm{ls}}(r, \theta, \phi)=\lambda_{\pi}^{2} U_{\mathrm{ls}}\left(\hat{F}+\hat{F}^{+}\right)
$$

$\operatorname{PyP}_{\ngtr} \mathrm{Px}_{\mathrm{x}} \hat{F}=\left(\left[\nabla f_{\mathrm{fs}}(r, \theta, \phi) \times \hat{\mathbf{p}}\right] \cdot \hat{\mathbf{s}}\right)$.

- Coulomb potential

$$
\begin{aligned}
V_{\text {Coul }}(r, \theta, \phi)= & \frac{3}{4 \pi} \frac{q Z e^{2}}{R_{\text {Coul }}^{3}} \times \\
& \int_{0}^{2 \pi} d \phi^{\prime} \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime} \int_{0}^{R\left(\theta^{\prime} \phi^{\prime}\right)} \frac{\left(r^{\prime}\right)^{2} d r^{\prime}}{\sqrt{r^{2}+\left(r^{\prime}\right)^{2}-2 r r^{\prime} \cos \beta}} .
\end{aligned}
$$

Calculation of single-particle states

- Schrödinger equation solved by diagonalization of the Hamiltonian $\hat{H}=\hat{T}+\hat{V}$.
- Matrix elements $\left.\left\langle N^{\prime} I^{\prime} m^{\prime} s^{\prime}\right| \hat{H}|N| m s\right\rangle$ calculated in the isotropic harmonic oscillator basis.

$$
\langle\mathbf{r} \sigma \mid N / m s\rangle=U_{N /}(r) Y_{l m}(\theta, \phi)\langle\sigma \mid s\rangle
$$

- Cut-off $N_{\max }=11$.
- Volume integration reduced to calculation of spherical harmonic expansion coefficients $\alpha(r)$ of functions of $f, \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}, K_{\lambda}$ and subsequent 1D integration wrt. r.
- Full time of eigenvalue computation for p and n at a fixed deformation 5-10 s.

Single-particle levels of ${ }^{150} \mathrm{Sm}$

(Negative β values taken along the $\gamma=60^{\circ}$ line.)

Pairing correction

Levels of the single-particle spectrum are double degenerate (Cramers). Nucleon pairing taken into account using the BCS method:

$$
\Delta E=\sum_{k=N_{1}}^{N_{2}}\left(2 v_{k}^{2}-n_{k}\right) e_{k}-\frac{\Delta^{2}}{G}-G \sum_{k=N_{1}}^{N_{2}} v_{k}^{4}+\frac{1}{2} G \sum_{k=N_{1}}^{N_{2}} n_{k},
$$

where the pairing gap width Δ is estimated from difference of masses of 4 neighbour nuclei, and the interaction constant G, particle numbers v_{k}, and energies of quasiparticle levels e_{k} are determined by solution of the BCS equations.
$N_{1} \mathrm{P}_{4} N_{2}$ determine the range of interacting states.

$$
\begin{gathered}
N_{1}=1 \\
N_{2}=2 N_{F}
\end{gathered}
$$

Surface diffuseness as a function of deformation Spherical ${ }_{24}^{52} C_{r 28}$

Surface diffuseness as a function of deformation

Deformed ${ }_{38}^{76} S_{38}$

Surface diffuseness as a function of deformation

- Which parameter of the WS potential to adjust $-R, V$, or a ?
- Deformation \Longleftrightarrow increased density of single-particle states near the Fermi surface.
- Diffuseness \Longleftrightarrow surface energy (i. e., total energy of nucleons in the surface layer).
- Connection between the deformation and the diffuseness parameter a which was measured only for spherical nuclei. Its value should have a minimum near the equilibrium deformation point.

Surface diffuseness as a function of deformation

We choose $a(\beta, \gamma)=a_{0}\left(1+k \beta \psi\left(\frac{3 \gamma}{\pi}\right)\right)$, where $\psi(x)=1+p_{1} x+p_{2} x^{2}+p_{3} x^{3}$. Derivative ψ^{\prime} should be negative at $\gamma=0^{\circ}$ and positive at $\gamma=60^{\circ}$ with the same absolute value.
Finally, $p_{2}=-3(1-q)-p_{1}, p_{3}=2(1-q)$.

Surface diffuseness as a function of deformation

Based on key nuclei ${ }^{52} \mathrm{Cr}$ (spherical), ${ }^{77} \mathrm{Rb}$ (prolate), ${ }^{189} \mathrm{Pt}$ (oblate) P_{4} ${ }^{181} \mathrm{Ta}$ (prolate) two strategies of variation of diffuseness are proposed.
(a) Magic nuclei: $k=+0.006$.
(b) All others: $k=-0.018, q=0.8, p_{1}=-0.4$.

Surface diffuseness as a function of deformation

Results

${ }^{68} \mathrm{Ga}$

This work				FRDM			BRUSLIB		AMEDEE
β	γ	β_{2}	β_{4}	β_{2}	γ	β_{4}	β_{2}	β_{4}	β_{2}
γ	γ	CDFE							
0.17	34	0.165	0.027	-0.207	45	-0.006	-0.23	0.04	-0.20
β_{2}									

Results

${ }^{75} \mathrm{Kr}$

This work				FRDM			BRUSLIB	
β	γ	β_{2}	β_{4}	β_{2}	γ	β_{4}	β_{2}	β_{4}

Results

${ }^{181} \mathrm{Ta}$

This work				FRDM			BRUSLIB		AMEDEE	CDFE
β	γ	β_{2}	β_{4}	β_{2}	γ	β_{4}	β_{2}	β_{4}	β_{2}	γ

Overall evaluation

${ }^{50} \mathrm{Cr}$ - ${ }^{241} \mathrm{Am}$

Overall evaluation

${ }^{74} \mathrm{Sr}-{ }^{106} \mathrm{Sr}$

Overall evaluation

${ }^{95} \mathrm{Cd}-{ }^{132} \mathrm{Cd}$

Conclusions

- A simple model of deformation of medium and heavy nuclei based on the Nilsson model is formulated.
- Connection between deformation energy and surface diffuseness is shown.
- Only 3 additional parameters are introduced.
- Calculations of potential energy surfaces are performed on 107 nuclei from ${ }^{50} \mathrm{Cr}$ to ${ }^{241} \mathrm{Am}$.
- Very small variation ($<1 \%$) of the diffuseness parameter was enough for satisfactory description of wide range of data, comparable with much more complex models.

Thank you!

