

The effect of different centrality determination on the elliptic flow measurements

Dim Idrisov, Petr Parfenov, Vinh Luong, Arkadiy Taranenko, Alexander Demanov NRNU MEPhI

The LXXI International conference "NUCLEUS – 2021.

Nuclear physics and elementary particle physics. Nuclear physics technologies" 20 – 25 September 2021

SPbU, St. Petersburg, Russia

This work is supported by:

Initial geometry of HIC

$$\frac{dN}{d\phi} \propto \left(1 + 2\sum_{n=1} v_n \cos\left[n\left(\phi - \Psi_n\right)\right]\right), \ v_2 = \left\langle\cos 2(\varphi - \Psi_n)\right\rangle$$

% Most Central

L. Adamczyk, et al., Phys. Rev. C 86, 054908 (2012)

Dependence of elliptic flow on centrality

- Evolution of matter produced in heavy-ion collisions depend on its initial geometry
- Centrality procedure maps initial geometry parameters with measurable quantities (multiplicity or transverse energy of the produced particles)
- This allows comparison of the future MPD results with the data from other experiments (STAR BES, NA49/NA61 scans) and theoretical models

MC-Glauber based centrality framework

This centrality procedure was used in CBM, NA49, and NA61/SHINE:

I. Segal, et al., J.Phys.Conf.Ser. 1690 (2020) 1, 012107

Implementation for MPD: https://github.com/FlowNICA/CentralityFramework

P. Parfenov, et al., Particles. 2021; 4(2):275-287

The Bayesian inversion method (Γ-fit): main assumptions

•Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta}$$

$$c_b = \int_0^b P(b')db' \simeq \frac{\pi b^2}{\sigma_{inel}}$$
 - centrality based on impact parameter

$$\frac{\sigma^2}{\left\langle N_{ch} \right\rangle} = \theta \simeq const$$

$$\langle N_{ch} \rangle = N_{knee} \exp \left(\sum_{j=1}^{3} a_j c_b^j \right) , k = \frac{\langle N_{ch} \rangle}{\theta}$$

$$,k=\frac{\left\langle N_{ch}\right\rangle }{\theta }$$

R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902

Five fit parameters

 N_{knee}, θ, a_i

Reconstruction of b

• Find probability of b for fixed N_{ch} using Bayes' theorem:

$$P(b|N_{ch}) = \frac{P(N_{ch}|b)P(b)}{P(n)}$$

$$P(b|n_1 < N_{ch} < n_2) = P(b)\frac{\int_{n_1}^{n_2} P(b|n)dn}{\int_{n_1}^{n_2} P(n)dn}$$

- The Bayesian inversion method consists of 2 steps:
- –Fit normalized multiplicity distribution with $P(N_{ch})$
- –Construct $P(b|N_{ch})$ using Bayes' theorem with parameters from the fit

Results of fit for UrQMD model

Simulated data sets:

• Au+Au, N_{ev} =500k, $\sqrt{s_{NN}}$ =7.7 GeV

Hadron selection:

- Charged particles only
- $|\eta| < 0.5$
- p_T>0.15 GeV/c

The model version:

• UrQMD ver. 3.4 in cascade mode

Good fit quality for both methods

Results of fit for AMPT SM model

Simulated data sets:

• Au+Au, N_{ev}=500k, √s_{NN}=7.7 GeV

Hadron selection:

- Charged particles only
- $|\eta| < 0.5$
- $p_T > 0.15 \text{ GeV/c}$

The model version:

• AMPT ver. 1.26 with string melting mode ver. 2.26, σ_{part} =1.5 mb

Good fit quality for both methods

Results of reconstruction of the impact parameter for the model UrQMD

The reconstructed values of the impact parameter are in good agreement with the results from the model

Results of reconstruction of the impact parameter for the model AMPT SM

The results of the reconstruction of the impact parameter obtained using the MC-Glauber method in agreement with the model results within 5%

The methods for flow measurements

Event Plane:

$$\mathbf{v}_{2}^{\mathrm{EP}}\left\{\mathrm{TPC}\right\} = \frac{\left\langle \cos\left[2\left(\varphi - \Psi_{2,\eta^{\pm}}\right)\right]\right\rangle}{R_{2}^{EP}\left\{\Psi_{2,\mathrm{TPC}}\right\}} \tag{1}$$

Q-cumulants:

2 and 4 particle azimuthal correlations

$$\left\langle \mathbf{v}_{n}^{2}\right\rangle \simeq \left\langle e^{in(\varphi_{1}-\varphi_{2})}\right\rangle$$
 (2)

$$\left\langle \mathbf{v}_{n}^{4}\right\rangle \simeq \left\langle e^{in(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4})}\right\rangle - 2\cdot \left\langle e^{in(\varphi_{1}-\varphi_{3})}\right\rangle \left\langle e^{in(\varphi_{2}-\varphi_{4})}\right\rangle \tag{3}$$

Elliptic flow measurements with direct cumulant method

$$\left\langle \mathbf{v}_{n}^{2}\right\rangle =\frac{\left|Q_{n}\right|^{2}-M}{M\left(M-1\right)}$$
 (4) where $Q_{n}=\sum_{i=1}^{M}e^{in\varphi_{i}}$ (5)

The effect of the bias in centrality determination in flow measurements for UrQMD model (Γ-fit)

The effect of the bias caused by different centrality determination methods is within 1-2%.

The effect of bias in centrality determination in flow measurements for UrQMD model(MC-Glauber)

The effect of the bias caused by different centrality determination methods is within 4%.

The effect of bias in centrality determination in flow measurements for AMPT model(Γ-fit)

The effect of the bias caused by different centrality determination methods is within 1-2%.

The effect of bias in centrality determination in flow measurements for AMPT model(MC-Glauber)

The effect of the bias caused by different centrality determination methods is within 5%.

Results of fit for UrQMD model at $\sqrt{s_{NN}}$ =4.5 GeV

At lower energies, the quality of the fit for MC-Glauber decreases

The energy dependence on the impact parameter

There is a correlation between the impact parameter and the total energy in the forward rapidity region

Results of fitting the energy distribution in the UrQMD model

Results of fitting the energy distribution in the AMPT model

Results of reconstruction of the impact parameter from the energy distribution

The reconstructed impact parameter is in good agreement with model data

Summary and outlook

- Fitted functions from both methods reproduce charged particle multiplicity.
 - The reconstructed impact parameter are in good agreement with model data.
- The effect of the elliptic flow measurement bias caused by the difference in centrality determination is within 1-2% for Γ-fit and 1-5% for MC-Glauber methods.
- The Γ-fit method can be used for centrality determination based on the distribution of the total energy in the forward rapidity region.
- To perform detailed study on the centrality determination based on the deposited energy in the forward calorimeters in MPD, models with fragment simulation are required (DCM-QGSM-SMM, PHQMD).

Thank you for your attention!

Models and statistics

Au+Au, min. bias

- UrQMD ver. 3.4 in cascade mode:
- $Vs_{NN} = 11.5 \text{ GeV: } 50M$
- $Vs_{NN} = 7.7 \text{ GeV: } 88M$
- $Vs_{NN} = 4.5 \text{ GeV: } 115\text{M}$

- AMPT SM, ver. 1.26 with string melting mode ver. 2.26, σ_{part} =1.5 mb:
- $Vs_{NN} = 7.7 \text{ GeV: } 42M$
- $Vs_{NN} = 4.5 \text{ GeV: } 80M$

- DCM-QGSM-SMM:
- $Vs_{NN} = 11.5 \text{ GeV: } 10M$
- $Vs_{NN} = 7.7 \text{ GeV: } 10M$
- $Vs_{NN} = 4.5 \text{ GeV: } 10M$

Comparison of fit results

Models

- UrQMD ver. 3.4 in cascade mode
- AMPT SM, ver. 1.26 with string melting mode ver. 2.26, σpart=1.5 mb:
- DCM-QGSM-SMM

Simulated data sets:

- Au+Au, N_{ev}=500k,

 $\sqrt{s_{NN}}$ =4.5, 7.7, 11.5 GeV

Hadron selection:

- |η|<0.5
- Charged particles only
- $p_T > 0.15 \text{ GeV/c}$

Fitted functions from both methods reproduce charged particle multiplicity

MPD Experiment at NICA

UrQMD GEANT4 Reconstruction Flow analysis

Multi-Purpose Detector (MPD) Stage 1

- Centrality determination: Multiplicity of produced charged particles in TPC
- Event plane determination: TPC
- Track selection:
 - Primary tracks
 - $N_{TPC hits} \ge 16$
 - $0.2 < p_T < 3.0 \text{ GeV/c}$
 - $|\eta| < 1.5$
 - PID based on PDG code

The effect of bias in centrality determination in MPD

Agreement within statistical errors for all methods

The effect of bias in centrality determination in flow measurements for DCM-QGSM-SMM model

The v_2 are in good agreement for all methods

Performance of v₂ of charged hadrons in MPD

Vinh Ba Luong, Dim Idrisov et al 2103.05064 [nucl-ex]

Reconstructed and generated v₂ of charged hadrons have a good agreement for all methods

Fit of N_{ch}: UrQMD

Good fit quality for both methods

Fit of N_{ch}: AMPT SM, σ_p =1.5 mb

Good fit quality for both methods

Fit of N_{ch}: DCM-QGSM-SMM

Good fit quality for both methods

The effect of bias in centrality determination in flow measurements for UrQMD model at NICA energies

The Bayesian inversion method (Γ-fit): main assumptions

•Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta}$$

c_b – impact parameter based centrality

$$c_b = \frac{1}{\sigma_{inel}} \int_{0}^{b} P_{inel}(b') 2\pi b' db' \simeq \frac{\pi b^2}{\sigma_{inel}}$$

$$\frac{\sigma^2}{\left\langle N_{ch} \right\rangle} = \theta \simeq const$$

$$\frac{\sigma^{2}}{\langle N_{ch} \rangle} = \theta \approx const \qquad \langle N_{ch} \rangle = N_{knee} \exp \left(\sum_{j=1}^{3} a_{j} c_{b}^{j} \right) \quad , k = \frac{\langle N_{ch} \rangle}{\theta}$$

$$,k=\frac{\left\langle N_{ch}\right\rangle }{\theta }$$

The effect of bias in centrality determination in flow measurements for UrQMD model at NICA energies

The effect of bias in centrality determination in flow measurements for UrQMD model

The effect of bias in centrality determination in flow measurements for AMPT model

The effect of bias in centrality determination in flow measurements for UrQMD reconstructed data

