

Deep Learning for Heavy Quark Potential

Kai Zhou (FIAS)

华大QCD讲习班: AI4Physics

From LQCD to in-medium HQ interactions via Deep Learning

- Introduction (potential model, IQCD measurements)
- Methodology (DNN+Shroedinger, uncertainty)
- Proof of concept
- Consistency check
- Results-Conclusions

With Shuzhe Shi, Jiaxing Zhao, Swagato Mukherjee, Pengfei Zhuang

arXiv: 2105.07862

Large mass scale : $m_Q >> \Lambda_{QCD}$, T, p

- Produced via <u>Hard Processes</u> from early stage
- 'Calibrated' <u>QCD Force</u> HQ interaction

In Vacuum : NR potential (NRQCD) , Cornell-like V(

$$\sigma(r) = -\frac{\alpha}{r} + \sigma r + B$$

In Medium : Color Screening , Thermal Width

Laine, et.al, JHEP(2007)

LQCD measured in medium Mass and Width for Bottomonium

R. Larsen, et.al, PRD(2019), PLB(2020), PRD(2020)

Potential model : Shroedinger equation

V(r)

$$\hat{H}\psi_n = -\frac{\nabla^2}{2m_\mu}\psi_n + V(r)\psi_n = E_n\psi_n$$

M. Strickland, et.at., PRC(2015) PRD(2018), PLB(2020)

Inverse Power method H.W.Crater, JCP(1994)

Potential model : Shroedinger equation

$$\hat{H}\psi_{n} = -\frac{\nabla^{2}}{2m_{\mu}}\psi_{n} + V(r)\psi_{n} = E_{n}\psi_{n}$$

$$\bigvee^{V(r)} \qquad V(T,r) = V_{R}(T,r) + i \cdot V_{I}(T,r)$$

$$\bigoplus^{\{E_{n}\}} \qquad \left\{ \begin{array}{c} \operatorname{Re}[E_{n}] = m - 2m_{b} \\ \operatorname{Im}[E_{n}] = -\Gamma \end{array} \right\}$$

Inverse Problem !

LQCD data (color box) vs. best fit of HTL (open symbol) and of DNNs (solid

avera hall

nS

$$V_{R}(T,r) = \frac{\sigma}{\mu_{D}} \left(2 - (2 + \mu_{D}r)e^{-\mu_{D}r} \right) - \alpha \left(\mu_{D} + \frac{e^{-\mu_{D}r}}{r} \right) + B,$$

$$V_{I}(T,r) = -\frac{\sqrt{\pi}}{4} \mu_{D} T \sigma r^{3} G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right| \frac{\mu_{D}^{2}r^{2}}{4} \right) - \alpha T \phi(\mu_{D}r),$$

nP

300

83

HTL from "A. Rothkopf, et.al, PRD(2020)"

7

LQCD data (color box) vs. best fit of HTL (open symbol) and of DNNs (solid

avera hall

HTL from "A. Rothkopf, et.al, PRD(2020)"

Flow chart of HQ potential reconstruction with DNN

DNN basic : Universal Function Approximator

$$(f:\mathbb{R}^n\to\mathbb{R}^m)\quad \vec{x}\to\vec{y}$$

$$z_i^{(l)} = b_i^{(1)} + \sum_j W_{ij}^{(l)} a_j^{(l-1)}, \qquad a_i^{(l)} = \sigma^{(l)} \left(z_i^{(l)} \right)$$
ELU

$$\longrightarrow a^{(N)} = \tilde{y}(x;\theta) \qquad \theta \equiv \left\{ W_{ij}^{(l)}, b_i^{(l)} \right\}$$

Gradient Descent for parameter tuning :

$$\Delta \theta \equiv \theta^{[k+1]} - \theta^{[k]} \sim - \nabla_{\theta} J(\theta)$$

Cost, e.g.:
$$J(\theta) = \frac{1}{2} \sum_{\mathbf{x} \in \text{data set}} \left| \widetilde{\mathbf{y}}(\theta, \mathbf{x}) - \mathbf{y}(\mathbf{x}) \right|^2 + \frac{\lambda}{2} \theta \cdot \theta$$

DNN basic : Universal Function Approximator

$$\frac{\partial J}{\partial \theta_i} = \sum_{\mathbf{x} \in \text{data set}} \left(\widetilde{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{x}) - \mathbf{y}(\mathbf{x}) \right) \cdot \frac{\partial \widetilde{\mathbf{y}}(\boldsymbol{\theta}, \mathbf{x})}{\partial \theta_i} + \lambda \theta_i$$

$$z_{i}^{(l)} = b_{i}^{(1)} + \sum_{j} W_{ij}^{(l)} a_{j}^{(l-1)}, \quad a_{i}^{(l)} = \sigma^{(l)} \left(z_{i}^{(l)} \right)$$

Cost function for "DNN + Schroedinger Eq."

$$\left(\frac{\hat{p}^2}{2m} + V(r)\right) |\psi_i\rangle = E_i |\psi_i\rangle, \left(\frac{\hat{p}^2}{2m} + V(r) + \delta V(r)\right) |\psi_i'\rangle = (E_i + \delta E_i) |\psi_i'\rangle.$$

$$\left(\frac{\hat{p}^2}{2m} + V(r)\right) |\psi_i\rangle = E_i |\psi_i\rangle, \left(\frac{\hat{p}^2}{2m} + V(r) + \delta V(r)\right) |\psi_i'\rangle = (E_i + \delta E_i) |\psi_i'\rangle.$$

$$\delta E_i = \langle \psi_i | \delta V(r) | \psi_i \rangle,$$

$$|\psi_i'\rangle = |\psi_i\rangle + \sum_{j\neq i} \frac{\langle \psi_j | \delta V(r) | \psi_i \rangle}{E_i - E_j} |\psi_j\rangle.$$

Hellmann-Feynman theorem Phys. Rev. (1939)

$$\begin{split} & \left(\frac{\widehat{p}^2}{2m} + V(r)\right) |\psi_i\rangle = E_i |\psi_i\rangle, \\ & \left(\frac{\widehat{p}^2}{2m} + V(r) + \delta V(r)\right) |\psi_i'\rangle = (E_i + \delta E_i) |\psi_i'\rangle. \end{split}$$

 $\delta m_i = \langle \psi_i | \delta V_R(r) | \psi_i \rangle, \\ \delta \Gamma_i = - \langle \psi_i | \delta V_I(r) | \psi_i \rangle.$

$$|\psi_i'\rangle = |\psi_i\rangle + \sum_{j\neq i} \frac{\langle \psi_j | \delta V(r) | \psi_i \rangle}{E_i - E_j} |\psi_j\rangle.$$

$$\begin{pmatrix} \frac{\hat{p}^2}{2m} + V(r) \end{pmatrix} |\psi_i\rangle = E_i |\psi_i\rangle, \\ \left(\frac{\hat{p}^2}{2m} + V(r) + \delta V(r) \right) |\psi_i'\rangle = (E_i + \delta E_i) |\psi_i'\rangle.$$

 $\delta m_i = \langle \psi_i | \delta V_R(r) | \psi_i \rangle, \\ \delta \Gamma_i = - \langle \psi_i | \delta V_I(r) | \psi_i \rangle.$

$$|\psi_i'\rangle = |\psi_i\rangle + \sum_{j \neq i} \frac{\langle \psi_j | \delta V(r) | \psi_i \rangle}{E_i - E_j} |\psi_j\rangle.$$

Gradients for the Cost

$$\chi^{2} = \sum_{T,i,j} \left(R_{ij}^{(T)} \Delta m_{T,i} \Delta m_{T,j} + I_{ij}^{(T)} \Delta \Gamma_{T,i} \Delta \Gamma_{T,j} + 2M_{ij}^{(T)} \Delta m_{T,i} \Delta \Gamma_{T,j} \right),$$

$$\frac{\partial \chi^2}{\partial \theta_{R,n}} = \sum_{T,i,k} \frac{\partial \chi^2}{\partial m_{T,i}} \frac{\partial V_R(T,r_k)}{\partial \theta_{R,n}} |\psi_i(T,r_k)|^2 \mathrm{d}r ,$$
$$\frac{\partial \chi^2}{\partial \theta_{I,n}} = -\sum_{T,i,k} \frac{\partial \chi^2}{\partial \Gamma_{T,i}} \frac{\partial V_I(T,r_k)}{\partial \theta_{I,n}} |\psi_i(T,r_k)|^2 \mathrm{d}r ,$$

$$\begin{aligned} \frac{\partial J}{\partial \theta_{R,n}} &= \sum_{T,i} \left\{ \left[\sum_{k} \frac{\partial V_{R}(T,r_{k})}{\partial \theta_{R,n}} |\psi_{i}(T,r_{k})|^{2} \mathrm{d}r \right] \times \right. \\ &\left. \sum_{j} \left[R_{i,j}^{(T)} \Delta m_{T,j} + M_{ij}^{(T)} \Delta \Gamma_{T,j} \right] \right\} + \lambda \theta_{R,n} \,, \\ \frac{\partial J}{\partial \theta_{I,n}} &= -\sum_{T,i} \left\{ \left[\sum_{k} \frac{\partial V_{I}(T,r_{k})}{\partial \theta_{I,n}} |\psi_{i}(T,r_{k})|^{2} \mathrm{d}r \right] \times \right. \\ &\left. \sum_{j} \left[I_{i,j}^{(T)} \Delta \Gamma_{T,j} + M_{ij}^{(T)} \Delta m_{T,j} \right] \right\} + \lambda \theta_{I,n} \,, \end{aligned}$$

Uncertainty Estimation – Bayesian Inference

Posterior($\boldsymbol{\theta}$ |data) $\propto L(\boldsymbol{\theta}$ |data) · Prior($\boldsymbol{\theta}$).

 $L(\boldsymbol{\theta}|\text{data}) = P(\text{data}|\boldsymbol{\theta}) \propto \exp[-\chi^2(\boldsymbol{\theta})/2].$

Posterior(
$$\boldsymbol{\theta}$$
|data) = $N_0 \exp\left[-\frac{\chi^2(\boldsymbol{\theta})}{2} - \frac{\lambda}{2}\boldsymbol{\theta}\cdot\boldsymbol{\theta}\right]$

 $\operatorname{Prior}(\boldsymbol{\theta}) \propto \exp[-\frac{\lambda}{2}\boldsymbol{\theta} \cdot \boldsymbol{\theta}].$

Sample potentials ~ $P(V_{\theta}(T, r)) = \text{Posterior}(\theta | \text{data})$.

Reference Sampler ~
$$\widetilde{P}(\theta) = (2\pi)^{-N_{\theta}/2} \sqrt{\det[\Sigma^{-1}]} \times \exp\left[-\frac{\Sigma_{ab}^{-1}}{2}(\theta_a - \theta_a^{\text{opt}})(\theta_b - \theta_b^{\text{opt}})\right]$$
 $\left(\Sigma_{ab}^{-1} \equiv \frac{\partial^2 J(\theta)}{\partial \theta_a \partial \theta_b}\right)$

re-weighting with : $\omega(\theta) = p (V_{\theta}(T,r)) / \tilde{p}(\theta)$ to grantee posterior sampling

Vacuum potential & b-quark mass Calibration

Cornell-Potential

$$V(r) = -\frac{\alpha}{r} + \sigma r + B$$

- -

$$m_b = 6.00 \,\text{GeV}$$
 $\alpha = 0.406$
 $\sigma = 0.221 \,\,\text{GeV}^2$ $B = -2.53 \,\,\text{GeV}^3$

	1S	2S	3S	1P	$2\mathbf{P}$
experiment (MeV)	9445	10017	10352	9891	10254
model (MeV)	9449	10003	10356	9893	10258
difference (MeV)	+4	-14	+4	+2	+4

) 19

r (GeV

Closure Test – suppose HTL is true

$$V_{R}(T,r) = \frac{\sigma}{\mu_{D}} \left(2 - (2 + \mu_{D}r)e^{-\mu_{D}r} \right) \\ - \alpha \left(\mu_{D} + \frac{e^{-\mu_{D}r}}{r_{.}} \right) + B,$$

$$V_{I}(T,r) = -\frac{\sqrt{\pi}}{4} \mu_{D} T \sigma r^{3} G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right| \frac{\mu_{D}^{2}r^{2}}{4} \right) \\ - \alpha T \phi(\mu_{D}r),$$

$$m_{b} = 4.676 \text{ GeV}, \ \alpha = 0.39,$$

$$\sigma = 0.223 \text{ GeV}^{2}, \ B = 0 \text{ GeV},$$
assume that $\mu_{D}(T) = T/2.$

Provide mass and width of
1S, 2S, 3S, 1P, and 2P states.
@(0, 151, 173, 199, 251, 334) MeV

Best Fit of IQCD mass and width from HTL (open symbols) and DNNs (solid symbols)

Chi2-per-data=16.5/30

Consistency Check : with different parameterization

- 1, **DNN(2D)**: T & r dependency
- 2, **DNN(1D)**: only r dependency
- 3, Polynomial :

$$V_R(r) = \sum_{i=-1}^{3} c_{R,i} r^i,$$
$$V_I(r) = -\sum_{i=1}^{3} c_{I,i} r^i.$$

The (B) interaction potentials

A.Rothkopf, PRD(2017)

The (B) interaction potentials

• Traditional picture, V & F show **platform** at large r, and decrease in height with increase T, So : <u>binding energy decrease</u>, average size increase, until a **melting Temperature**

New picture,
 Im[V] induced thermal width are so significant (continuous dynamic diss ociation), its enhancement compensates the vanishing of the melting effect (mild T-dependence of Re[V])

Summary

- <u>Bias-free HQ complex interaction</u> is reconstructed from our novel methodology 'NN+perterb.+Bayesian'
- Both T and r dependence of the interaction potential are captured via **network representation**
- We found <u>mild T-dependent screening</u> effect for Re[V], while <u>the</u> <u>strength of the Im[V] increases significantly with T</u>
- Color Screening melting to Continuous dynamic dissociation

Opportunities as phycists:

"Computers will not completely replace human, at least for one kind, which is those who can set the objective function. If you are able to take a real-world problem and formulate it into a mathematical form for the objective function, you are going to be a master of the future AI system"

- Yang Qiang, HKUST

(1) physics and related (e.g. chemistry, engineering) problems are much <u>better</u>
 <u>defined</u> than conventional deep learning ones (e.g. image/natural language processing)
 – much more economic and efficient in tackling

(2) deep learning is a <u>black box</u> – simple physical systems as <u>benchmark</u>

*Renormalization Group *Statistical Physics *collective modes