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Multi-scale modeling and machine learning

Opportunity: to use machine learning to bridge different scales.
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Requirement for a reliable physics-based ML model

Accuracy
e.g. uniformly accurate in relevant physical space

Efficiency
e.g. linear scaling

Locality
model learned from small-size data can be used for large-size systems

Physical constraints
e.g. extensive property, symmetry, asymptotic behavior

No human intervention/ end-to-end.
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Problem 1: from QM to MD
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Problem 1: from QM to MD

Microscopic model: QM, e.g., the Car-Parrinello (CP) scheme
within the Kohn-Sham (KS) density functional theory:

µψ̈i(x, t) = −δEKS/δψ
∗
i (x, t) +

∑
k

Λikψk(x, t);

MIR̈I = −∇IEKS.

Accurate but expensive, ∼ 100-1000 atoms, ∼ 10-100 ps.
Macroscopic model: MD, e.g., Newton’s equation of motion driven
by the Lennard-Jones (LJ) potential

ELJ =
1
2
∑
i̸=j

Vij, Vij = 4ϵ[( σrij
)12 − (

σ

rij
)6];

MIR̈I = −∇IELJ.

Fast but limited, ∼ 100-1000 K atoms, ∼ 10-100 µs.
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Important quantities at the scales between QM/MD
Potential energy surface (PES) E(R):

▶ Locality: E(R) =
∑

I EI(RI,RJ, J ∈ NI(rc));

▶ Symmetry: translation (T), rotation (R), permutation (P) invariant.

Electric polarization M(R):

▶ Locality: M(R) =
∑

I MI(RI,RJ, J ∈ NI(rc));

▶ Symmetry: TP-invariant, R-covariant (M(UR) = UM(R))

Electric polarizability α(R) = δM(R)
δE :

▶ Locality: α(R) =
∑

I αI(RI,RJ, J ∈ NI(rc));

▶ Symmetry: TP-invariant, R-covariant (α(UR) = Uα(R)UT)
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A general demand: approximation of high
dimensional tensorial functions

TI of degree (p, q), taking as input the relative coordinates between atoms
I and J ∈ N rc

I :

TI ≡ (TI)
t1,...,tq
s1,...,sp({rk

JI}), {rk
JI} ≡ {r1

JI, r2
JI, r3

JI} = rJI = rJ − rI

Rotational covariance and contravariance :

(TI)
t1,...,tq
s1,...,sp(Uk

k′rk′
JI) = Ut1

t′1
· · ·Utq

t′q · (TI)
t′1,...,t′q
s′1,...,s′p

(rk
JI) · (U−1)

s′1s1 · · · (U−1)
s′p
sp ,

Permutational invariance:

TI(..., rJI, ..., rKI, ...) = TI(..., rJI, ..., rKI, ...), if α(J) = α(K).

(α(J): chemical species of atom J.)
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Extended Deep Potential (DP) approach
Embedding network: (GI)

m
J =

(
δβαIδ

β1
αJGm

β,β1
(s(rJI))

)
,

Symmetrized coordinates: QI = G†
I · R̃I,

Feature matrix DI: DI = Q̃†
I · QI = G̃†

I · R̃I · R̃†
IGI,

Fitting network: N n1,...,nq
m1,...,mp(DI),

Symmetry adaptation:
(TI)

t1,...,tq
s1,...,sp = (QI)

t1
n1 · · · (QI)

tq
nq · (QT

I )
m1
s1 · · · (QT

I )
mp
sp · N n1,...,nq

m1,...,mp(Di).
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Water as an example: Structural properties
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g(r): radial distribution function;

P(ϕ): angular distribution function;

F(n)
int (Q): interference diff. cro. sec.

L. Zhang, J. Han, H. Wang, R. Car,

W. E, PRL, 120, 143001 (2018);

H.-Y. Ko, L. Zhang, B. Santra, H.

Wang, W. E, R. DiStasio, R. Car,

Mol. Phys. 117(22): 3269-81 (2019).
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Water as an example: phase diagram

Linfeng Zhang AI-Assisted Physical Modeling Nov 2021 12 / 36



Water as an example: Infrared spectra
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← IR spectra of light and heavy
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1.00 1.25 1.50 1.75 2.00
rOH (Angstrom)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

g O
H
(r)

20.0 GPa
40.0 GPa
50.0 GPa

70.0 GPa
90.0 GPa
110.0 GPa

↑ O-H RDF calculated at T=300 K. 0 1000 2000 3000 4000
Wavenumber (cm 1)

n(
ω
)α
(ω
)(1
05
cm

 1
)

20.0

40.0

50.0

70.0

90.0

110.0
GPa 5

scale
experimental

13.7

30.4

42.5

60.6

80.0

98.0 GPa

←

IR spectra calculated

at T=300 K.

L. Zhang, M. Chen,

X. Wu. H. Wang,

W. E, R. Car, PRB,

102(2020) No. 4,

041121.
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More applications
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Problem 2: from atoms to coarse-grained particles
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Problem 2: from atoms to coarse-grained particles
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Problem 3: from QM to DFT
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Problem 3: from QM to DFT

1 Energy Model (Deep post-HF, DeePHF):
Etot = EHF

[{
ψ0

i
}]

+ Ec
[{
ψ0

i
}
|ω
]

input: HF orbitals {ψ0
i };

output: ”correlation” energy Ec.

2 Self Consistent Model (Deep Kohn Sham, DeePKS):
Etot = min⟨ψi|ψj⟩=δij EHF/KS [{ψi}] + Ec [{ψi} |ω];
input: atomic coordinates and nuclear charges;
output: ground-state energy and electron density.

DeePHF: Y. Chen, et al, J. Phys. Chem. A, 2020, 124(2020) No. 35, 7155-7165
DeePKS: Y. Chen, et al, J. Chem. Theory Comput. 2021, 17, 1, 170-181
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Problem 4: Many-electron Schrödinger equation
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NN-based algorithms for Schrödinger equation
Carleo and Troyer (2016): RBM for spin problem
Han, Zhang and E (2018): NN-based models for electron problem
improving the Jastrow factor, simple ansatz for the anti-symmetric
part
dealing with the backflow:

▶ Luo and Clark (2018): Additive

ϕ̂σµ,i(R) = ϕσµ(ri) + fσθ,µ,i(R)

▶ PauliNet (Hermann et al 2019): multiplicative

ϕ̂σµ,i(R) = ϕσµ(ri)fσθ,µ,i(R)

▶ FermiNet (Pfau et al. 2020): compositional

ϕ̂σµ,i(R) = ϕσµ(fσθ,µ,i(R))

still lack systematic approaches!
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The optimization problem

Data generation (Labeling) is important.
It is expensive to calculate the labels f(xi).

min
w

1
∥D∥

∑
i∈D

l(fw(xi), f(xi))

What are the best data sets, which result in a uniformly accurate model
upon training?
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The EELT procedure for concurrent learning

Start with only a micro-scale model and repeat the following steps:
Exploration: explore the configuration space
Examination: decide which configurations need to be labeled;
Labeling: compute the micro-scale solutions for the configurations
that need to be labeled. This is our data set;
Training: train the macro-scale model, and use it to help the
exploration.

How to explore?
Judiciously employ the currently learned ML model.

How to decide?
Need good error indicators.
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Deep Potential Generator (DP-GEN)

Exploration

Tr
ai
ni
ng

Labeling

Data

Model

（a）

（b）

（c）

Labeling when model deviation is large: ϵ = maxi
√

⟨∥fi − ⟨fi⟩∥2⟩.
See, e.g. principle of maximal disagreement in “Query by Committee” by Seung, Opper, Sompolinsky (1992).

Deep Potential Generator (DP-GEN), L. Zhang, D. Lin, H. Wang, R. Car, W. E, Phys. Rev. Mat. 3, 023804 (2019)
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Reinforced dynamics (RiD) for protein structure
refinement

L. Zhang, H. Wang, W. E, J. Chem. Phys. 148, 124113 (2018).
D. Wang, et al., arXiv: 2104.01620, accepted by Nat. Comp. Sci.Linfeng Zhang AI-Assisted Physical Modeling Nov 2021 24 / 36
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Open-source softwares: DeePMD-kit, DeePKS-kit,
DP-GEN, etc.

Exploration

Tr
ai
ni
ng

Labeling

Data

Model

（a）

（b）

（c）

Free download from https://github.com/deepmodeling/
H. Wang, et al, Comp. Phys. Comm., 0010-4655 (2018); Y. Zhang, et al, Comp. Phys. Comm. (2020): 107206.
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Pushing MD with ab initio accuracy to 108 atoms

Weile Jia, et al, SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis
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The next-generation infrastructures

New paradigm:
a seamless integration: MM+ML+HPC.

New challenges:
hardware: heterogeneous performance and scale;
software: different code styles/conventions;
expertise: need people from very different backgrounds.

Joint effort needed!
general-purpose platform: DP series for learning-assisted molecular
simulation;
problem-oriented platform: Hermite for drug design.
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DP model compression

Denghui Lu, et al, DP Train, then DP Compress: Model Compression in DeePMD, arXiv:2107.02103
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DeepModeling open-source community

See our DeepModeling Manifesto here:
https://github.com/deepmodeling/community
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The engineerization process of “AI+Science”
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Hermite: a cloud-native and “AI+Science” solution
for drug design
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Conclusion and outlook

Learning assisted physical models:
▶ from CCSD(T) to DFT;
▶ from DFT to MD;
▶ from MD to CGMD.

Softwares and engineering efforts:
▶ DeePMD-kit, DP-GEN;
▶ DP@HPC&Cloud, Hermite;

More challenges:
▶ QM: more efficient algorithm for strongly correlated systems;
▶ MD: long-range electrostatics;
▶ Dynamics at all scales.
▶ etc.
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Welcome to DeepModeling!

Contact me: linfeng.zhang.zlf@gmail.com
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