Bayesian inference in high-energy nuclear physics

The 9th HuaDa QCD School 2021

Weiyao Ke UCB & LBNL

- 1. Introduction
- Bayesian inference applied to understand hot QCD matter Bayesian inference (recap) Bayesian inference for complex models

Simultaneously extract QGP viscosity and determine initial condition

- 3. A careful revisit (JETSCAPE Collaboration): prior, model uncertainty, and closure test
- 4. Application to jet quenching and jet transport coefficients
- 5. Final remarks on functional prior & Summary

Introduction

High-energy nuclear collisions "the little bang"

[NASA \uparrow , P. Sorensen & C. Shen \downarrow]

Why do we collide nuclei at extreme energies

- Evolution of universe from the Big bang: initial state \rightarrow fast expansion $T \downarrow$
 - \rightarrow Decoupling / freeze-out $\rightarrow.$
- Colliding heavy nuclei:
 - Initial temperature $T \approx 500 \text{ MeV} \sim 10^{13} \text{ K}$. Approximately the temperature at $t = 10^{-}6\text{s}$ of the universe.
 - Strongly interacting & expanding matter \rightarrow freeze out.

Asymptotic freedom of quantum chromodynamics (QCD)

Coupling $\alpha_s = g^2/(4\pi)$ decreases in the perturbative regime. [Figure from PDG]

At sufficient high temperature / energy density $\alpha_s(3k_BT)$ becomes small

Quarks & gluons / color fields liberate from bound states [Figures from JS Moreland]

Create the little bang

The Relativistic Heavy-Ion Collider (RHIC) at the Brookhaven National Lab (BNL). The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN).

[From Google Map]

LARGE HADRON COLLIDER

Four detectors around the 27-km-long accelerator will hunt for new particles, including the Higgs boson or "God particle"

[From newscientist.com]

Basic pictures

• At high energy $\gamma = \sqrt{s_{NN}}/(2m_N) \gg 1$, strong Lorentz contraction in the beam direction.

Basic pictures

- At high energy $\gamma=\sqrt{s_{NN}}/(2m_N)\gg 1,$ strong Lorentz contraction in the beam direction.
- Almost instantaneous energy production in the interaction / overlapped region. $\Delta t_I \sim 2R/\gamma \ll r_N, \Lambda_{\rm QCD} \rightarrow$ nuclei collide with their internal d.o.f. freezes within δt_I . Nuclear configuration fluctuates event by event.

Basic pictures

- At high energy $\gamma=\sqrt{s_{NN}}/(2m_N)\gg 1,$ strong Lorentz contraction in the beam direction.
- Almost instantaneous energy production in the interaction / overlapped region. $\Delta t_I \sim 2R/\gamma \ll r_N, \Lambda_{\rm QCD} \rightarrow$ nuclei collide with their internal d.o.f. freezes within δt_I . Nuclear configuration fluctuates event by event.
- Complicated many-body dynamics

Final states:

- Up to 10^4 particles in central A-A collisions at top LHC energy.
- Most spatial information is lost. We only observe the momentum space & correlation.
- To learn that happens during the collision is a very hard inverse problem.

[Figure credit to the CMS collaboration]

- In A-A collisions, particle production is strongly correlated with the geometry overlap.
- Sort events according to particle production. The percentile range / centrality (0-5%, 40-50%) is a good indicator of the average geometry in these collisions.
- This relation is model dependent, we cannot directly measure the impact parameter *b*.
- May not work in small collision systems.

Momentum distribution of particle

ALICE Collaboration PLB 696 (2011) 30-39

- Most particles are produced with small transverse momenta ($p_T \lesssim 3$ GeV).
- Hard particles are rare ($p_T \gtrsim 10$ GeV).
- Usually use rapidity/pseudorapidity instead of p_z : $\eta = \frac{1}{2} \ln \frac{|p| + p_z}{|p| - p_z}$. Soft particles $dN/d\eta$ displays a central plateau.

[PHOBOS]

Our current understanding of the bulk of the particle (soft)

They dynamics is governed by several competing factors:

- Longitudinal expansion $1/\tau$.
- Collisions & many-body effect $1/\tau_{coll} \propto d_{eff}(T)T$.
- Pressure driven transverse expansion $1/R_{T}$.
- Freeze-out.

[HotQCD Collab. PRD90, 094503 (2014)]

Expansion drives the system out of equilibrium and cools down / hadronize

A mutli-stage approach: with so many competing effects, one build specific model for each stage, staring from the dominant effect.

- Initial condition: neglect dynamics within $0^+ < \tau < \delta t_I = 2R/\gamma$.
- At early times, $\delta t_I < \tau < \tau_0$ longitudinal expansion dominates. Free-streaming + corrections from few interactions.
- Intermediate stage, collisions become frequent. Near equilibrium model with viscous hydrodynamics (Equation of state, viscosity, ···)
- Late stage, density goes down $(d(T)T^3)$, system hadornize. Use Boltzmann equation for hadrons.

Advantage: simplified treatment in each stage and can be systematically improved. Challenges:

- Contains many parameters and moving parts!
- Uncertainties from matching.
 - From early stage evolution to a classical hydrodynamics.
 - From hydrodynamic fields to hadron ensembles.

Nowadays, > 10 parameter + unkown functions.

Interested parameter and nuiance parameters

Parameters/functions of physical importance, also well-defined from first principle.

- Equation of state: equilibrium property of hot QCD.
- Transport coefficients, such as specific shear and bulk viscosity: dynamical properties.

Both are direct input to hydrodynamics, and has been constrained / extracted from data using Bayesian techniques:

Bayesian constrained EoS of QGP from data v.s. lattice QCD. [S. Pratt et al, PRL 114, 202301 (2015)]

Bayesian extraction of η/s of QGP compared to other substances [Nature Physics 15, 1113–1117 (2019)]

Very interested parameters: specific shear and bulk viscosities

- Shear viscosity: the resistance that a fluid exert to shear strain. Direct probe of interaction strength at thermal scale $\eta/s \sim 1/[g^4 \ln(g \cdots)]$ (LO result)
- Bulk viscosity: the resistance to volume change \leftrightarrow scale invariance $(L \rightarrow \lambda L)$ breaking.
- How do they change with temperature?

Parameters that are not of immediate interest, lack of physical importance, model specific chocies, etc.

- Matching timescale between pre-equilibrium dynamics and hydrodynamics.
- Some initial condition related parameters.
- Cut-off, regulators, etc.

But they do contribute to the estimation of model uncertainty!

Similar situation for the study using hard particles / hard probes.

X-ray tomography. External probe of the internal structure of an object.

High- p_T hadron / jet (collimated spray of particles from parton dynamics) tomography of the nuclear medium.

- Self generated probes.
- Both probe and medium undergo complex dynamics.

Medium properties imprint in the modification of the probes. Most directly: less jet production at a fixed momentum p_T

$$R_{AA} = rac{d\sigma_{AA
ightarrow J/h}}{\langle N_{
m coll}
angle d\sigma_{pp
ightarrow J/h}} < 1$$

High- p_T hadron / jet (collimated spray of particles from parton dynamics) tomography of the nuclear medium.

- Self generated probes.
- Both probe and medium undergo complex dynamics.

Jet-medium interaction is often quantified by the jet transport parameter $\hat{q} = d \langle k_T^2 \rangle / dL \rightarrow$ strength of gluon field in the medium.

The model part is even more complicated than the current bulk simulations.

Parameters

- q̂(x_B, Q²; A), q̂(p, Q²; T) or jet-medium coupling g_s.
- All the medium parameters!
- Cut-offs, regulators, etc.

Observables

- Yield $R_{AA} = Y_{AA}/Y_{pp}/\langle N_{coll} \rangle.$
- Correlations di-jet, hadron-jet, h-h.
- Internal & sub-structure of jets.

Many models chocies $\cdots \otimes \cdots$

- Perturbative orders of initial production.
- Different assumptions on jet-medium interaction: few hard v.s. multiple soft; weakly v.s. strongly coupled.
- Different approximations to the medium-modified splitting functions.
- Different jet evolution equations.
- Different models for medium evolution.

Jet/hadron tomography

Powerful tool to understand QCD medium in both nuclear collisions and deep inelastic scatterings (DIS) on nucleus. Moving from χ^2 fit to Bayesian analysis (JETSCAPE).

Bayesian inference applied to understand hot QCD matter

- Non-central collision creates elliptic shaped blob of quark-gluon plasma.
- Hydrodynamic pressure gradient drives particles to accelerate in the radial direction.
- Initial eccentricity translates to momentum anisotropy $dN/d\phi \sim 1 + 2v_2 \cos(2(\phi \Psi_2))$
- Approximately linear response $v_2 \approx k_{22}\epsilon_2$, k_{22} depends on viscosities of QGP.

Sensitity of v_n to shear viscosity

Main effect of bulk viscosity:

- Slow down the system that radially expands.
- Reduces the average velocity of particles \rightarrow reduced mean transverse momentum $\langle p_T \rangle$.
- The effect is mass dependent.

It looks like we have two observables that can help to pin down η/s , η/s . However, the problem is much more complicated ...

Currently, we don't know from first principle what the initial condition is. A alternative way is to parameterize a class of possible energy deposition relation:

$$e(x,y) \propto \left[rac{T_A(x,y)^p + T_B^p(x,y)}{2}
ight]^{1/p}$$

This is just a parametric function, but is shown to reproduce several widely used IC models.

Major uncertainty from initial condition model

Wounded nucleon model

$$\frac{dS}{dy\,d^2r_{\perp}}\propto\tilde{T}_A+\tilde{T}_B$$

EKRT model PRC 93, 024907 (2016) after brief free streaming phase

$$\frac{dE_T}{dy \, d^2 r_{\perp}} \sim \frac{K_{\rm sat}}{\pi} p_{\rm sat}^3(K_{\rm sat},\beta;T_A,T_B)$$

KLN model PRC 75, 034905 (2007)

$$\frac{dN_g}{dy\,d^2r_{\perp}}\sim Q_{s,\rm min}^2\!\left[2\!+\!\log\left(\frac{Q_{s,\rm max}^2}{Q_{s,\rm min}^2}\right)\right]$$

[Slide credit to J. Scott Moreland]

Major uncertainty from initial condition model

The eccentricity varies a lot in different models. We need a simultaneous calibration of many features of the model to many observables:

- Maybe some observable help to constrain the initial condition.
- If not, propagate IC uncertainty to the interested quantity $\eta/s, \zeta/s$.

 $v_2 = k_{22}(\eta/s)\epsilon_2$

If we can somehow define an inverse problem:

$$\eta/s$$
 "=" $\mathcal{F}(v_2,\epsilon_2)$

Marginalization: integrate out all possible variation of ϵ_2 . The uncertainty of η/s comes from not only experimental uncertainty but also other under-constrained part of the model.

$$P(\eta/s) \sim \int P(v_2 + \delta v_2, \epsilon_2 + \delta_\epsilon) d\delta v_2 d\delta \epsilon$$

Rigorous statistical procedure is essentail for progress

- 2000s: order of magnitude.
- 2004: strongly coupled theory $\eta/s = 1/(4\pi) + \cdots$.
- 2006-2013: eyeball fit with viscous hydro $(\eta/s)_{
 m eff}=1-2$
- 2013–: Bayesian analysis. Simultaneous calibration of IC, $\eta/s(T)$, etc.
- 2016-: Temperature dependent shear and bulk viscosity. Refined model. Model uncertainty. Model averaging....

- 1. A model \mathcal{M} : predict observables y at given input parameters x.
- 2. A prior belief of the distribution of true values of x: $P_0(x_{\rm true})$
- 3. Make the measurement $y_{exp},$ and update the knowledge: $P_0 \rightarrow P(x_{\rm true}).$
- 4. Marginalize over nuisance parameters $P(x^*) = \int P(x^*, \bar{x}) d\bar{x}$
 - x^{*} interested parameters
 - \bar{x} nuisance parameters: not interest at this time, but is an essential part of model and contribute to uncertainty.

Bayes' theorem (from conditional prob: $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A))$

L is often unknown. Commonly assumed to take the form of a multivariate Gaussian:

$$\ln L = \frac{N}{2} \ln(2\pi) - \frac{1}{2} \ln |\Sigma| - \frac{1}{2} \Delta y \Sigma^{-1} \Delta y^{T}, \quad \Delta y = y_{exp} - y(x; \mathcal{M})$$

Prior brief and posterior probability distribution

What are the sources of uncertainty

Uncertainty covariance matrix $\boldsymbol{\Sigma}$ in the likelihood function:

$$\ln L = \frac{N}{2} \ln(2\pi) - \frac{1}{2} \ln |\Sigma| - \frac{1}{2} \Delta y \Sigma^{-1} \Delta y^{T}, \quad \Delta y = y_{exp} - y(x; \mathcal{M})$$

$$\Sigma_{ij} = \underbrace{\delta_{ij}[(\delta y_{\text{stat}})_i^2 + (\delta y_{\text{sys},0})_i^2] + \delta(y_{\text{sys},\infty})_i \delta(y_{\text{sys},\infty})_j + \delta(y_{\text{sys},1})_i \delta(y_{\text{sys},1})_j c(i,j;l)}_{\text{Experimental}}$$

$$+ \sigma_{ij}^{\text{emulator}} \leftarrow \text{Interpolation uncertainty, explained later}$$

$$+ \sigma_{ij}^{\text{theory}} \leftarrow \text{Model/theory imperfection, very hard}$$

Experimental uncertainty

- Statistical & uncorrelated systematic uncertainty: $\delta y_{stat}, \delta y_{sys,0}$ (zero correlation length).
- Fully correlated systematic uncertainty: $\delta y_{\text{sys},\infty}$ (infinite correlation length).
- Partially correlated systematic uncertainty: $\delta y_{\rm sys,l}$ (finite correlation length).
For simple models that $\overline{y(x)}$ is easy to compute:

Take the medium evolution model in HIC as an example:

- Nowadays, > 10 parameters + unknown functions $\eta/s(T), \zeta/s(T)$.
- These parameters are simultaneously constrained by hundreds of measurements.

To compute observable at one parameter point:

- 10⁴ events with randomized initial condition (multi-particle correlations require even more).
- 2+1D simulation: 0.5h/event. 3+1D simulation: 1day/event.
- If we evaluate the model on a 10^d grid in the parameter space $\rightarrow 10^d$ CPU year.
- To explore the posterior distribution, we should be able to evaluate the model at arbitrary many input points

- Usually, observable changes monotonically and smoothly with input parameters.
- However, complicated parametrization can result in a large degree of non-linearity.

For computationally intensive model

A 2D Gaussian with zero mean and

$$\sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

off-diagonal controls how correlated (how close) the two output are.

A 3D Gaussian with zero mean and

$$\sigma = egin{bmatrix} 1 & 0.5 & 0 \ 0.5 & 1 & 0.5 \ 0 & 0.5 & 1 \end{bmatrix}$$

A 5D Gaussian with zero mean and

$$\sigma = \begin{bmatrix} 1 & 0.7 & 0.5 & 0.3 & 0 \\ 0.7 & 1 & 0.7 & 0.5 & 0.3 \\ 0.5 & 0.7 & 1 & 0.7 & 0.5 \\ 0.3 & 0.5 & 0.7 & 1 & 0.7 \\ 0 & 0.3 & 0.5 & 0.7 & 1 \end{bmatrix}$$

A 20D Gaussian with zero mean and

$$\sigma(x_i, x_j) = \sigma_0^2 \exp\left\{-\frac{(x_i - x_j)^2}{2L^2}\right\}$$

 $N \rightarrow$ inf: Random functions with given variance and correlation length. (Or, 1D field with given 1-point and 2-point function)

Suppose we want to "interpolate" three points with some tolerance (black bars). Then, just select the subset of random functions that come close to these points.

 \rightarrow an ensemble of random function forms a probabilistic inference of the underlying relation y(x).

Test on 1D scalar function y(x). Easy generalization to scalar function with *N*-dim input $y(\vec{x})$.

All these can be formulated with tools of multi-variate normal:

$$\begin{bmatrix} y(x') \\ y(x) \end{bmatrix} = \mathcal{N} \left(\mu = 0, \begin{bmatrix} \mathcal{K}(x', x') & \mathcal{K}(x', x) \\ \mathcal{K}(x, x') & \mathcal{K}(x, x) \end{bmatrix} \right)$$

Condition y(x) on the training data $y(x_i) = y_i$

$$P(y(x')|y(x_i) = y_i) = \mathcal{N}(\mu, \sigma)$$

$$\mu = K(x', x_i)K^{-1}(x_i, x_j)y(x_j),$$

$$\sigma = K(x', x') - K(x', x_i)K^{-1}(x_i, x_j)K(x_j, x'))$$

Interpolate points from unknown functions with uncertainty quantification $y(x') = \mu(x') \pm \sigma(x')$

Interpolation uncertainty

$$y(x) = \mu(x) \pm \sigma(x)$$

$$\begin{split} \Sigma_{ij} &= \underbrace{\delta_{ij}[(\delta y_{\mathrm{stat}})_{i}^{2} + (\delta y_{\mathrm{sys},0})_{i}^{2}] + \delta(y_{\mathrm{sys},\infty})_{i}\delta(y_{\mathrm{sys},\infty})_{j} + \delta(y_{\mathrm{sys},1})_{i}\delta(y_{\mathrm{sys},1})_{j}c(i,j;l)}_{\mathrm{Experimental}} \\ &+ \sigma_{ij}^{\mathrm{emulator}} \longleftarrow \mathrm{Interpolation\ uncertainty}_{+ \sigma_{ij}^{\mathrm{theory}}} \longleftarrow \mathrm{Model/theory\ imperfection,\ still\ very\ hard} \end{split}$$

In high-dimensional model, the interpolation uncertainty can actually be the dominant one!

There are useful empirical correlations in the data. For example:

- Tune parameter to increase the initial-state energy density, then $N_{\pi,K,p}$ \uparrow , E_T \uparrow , N_{ch} \uparrow .
- Increase viscosity: $v_2 \downarrow, v_3 \downarrow, v_4 \downarrow$.
- Given the same amount of initial energy: $N_{\rm ch}$ should anti-correlate with $\langle p_T \rangle$.

Clearly, we don't need less effective d.o.f. to describe these observable's dependence on input parameters.

If the set of functions that you care about can be approximated by keeping only a few terms, then this is a useful basis for expansion.

PCA: now we have a few hundreds' computation of $\vec{Y} = \{N_{\pi}, N_{K}, N_{p}, v_{2}, v_{3}, v_{4}, \cdots\}(\vec{p_{i}}), i = 1, 2, 3, \cdots$. Define the basis where new components are linearly independent of each other when averaged over all possible parameters:

$$O^T \operatorname{cov}(\vec{Y}, \vec{Y}) O \to \operatorname{diag}\{\lambda_1, \lambda_2, \cdots\}, \lambda_1 > \lambda_2 > \lambda_3 > \cdots$$

- The new basis $Z = O^T Y$ are linearly combinations of the original observables that are linearly uncorrelated from each other $\langle Z_i Z_j \rangle_p = \lambda_i \delta_{ij}$.
- Important: this does not remove non-linear correlation. One needs to check ensure the best performance.

Dimensional reduction: simple demo

Consider a "model" with four parameters 0 < a, b, c, d < 1, which generates 11 highly correlated outout labeled by $x = 0, 1, 2 \cdots 10$,

$$M(i) = ax^b \sin(cx + d)$$

Left: sample 100 sets of parameter (a, b, c, d) and plot the model outputs. Right: the basis function corresponding to the first five principal components.

Dimensional reduction: simple demo

Consider a "model" with four parameters 0 < a, b, c, d < 1, which generates 11 highly correlated outout labeled by $x = 0, 1, 2 \cdots 10$,

$$M(i) = ax^b \sin(cx + d)$$

Importance & cumulative importance of the PCs. Linear combination of the first five basis can describe the $M(i) = \sum_{i=1}^{5} p_i F_i(x) + \delta$ within the design range with good precision

The workflow of the emulator-assisted Bayesian analysis

Parameters and observabels

Parameter	Description	Range
Norm	Normalization factor	8–20 (2.76 TeV) 10–25 (5.02 TeV)
p	Entropy deposition parameter	-1/2 to $+1/2$
$\sigma_{ m fluct}$	Multiplicity fluct. std. dev.	0-2
w	Gaussian nucleon width	0.4 - 1.0 fm
d_{\min}^3	Minimum nucleon volume	$0 - 1.7 { m fm^3}$
τ_{fs}	Free streaming time	0-1.5 fm/c
$\eta/s \mathrm{hrg}$	Const. shear viscosity, $T < T_c$	0.1 - 0.5
$\eta/s \min$	Shear viscosity at T_c	0-0.2
η/s slope	Slope above T_c	$0-8 { m GeV}^{-1}$
$\eta/s \operatorname{crv}$	Curvature above T_c	-1 to $+1$
$\zeta/s \max$	Maximum bulk viscosity	0 - 0.1
ζ/s width	Peak width	$0-0.1 {\rm GeV}$
$\zeta/s T_0$	Peak location	$150-200 { m MeV}$
$T_{\rm switch}$	Particlization temperature	135–165 MeV

[Jonah E. Bernhard Ph.D. dissertation]

Parameters and observabels

[Jonah E. Bernhard Ph.D. dissertation]

Shear and bulk viscosity

[Jonah E. Bernhard, J. Scott Moreland & Steffen A. Bass, Nature Physics volume 15, pages 1113–1117 (2019)]

$$\eta/s = (\eta/s)_{\min} + (\eta/s)_{\text{slope}} (T - T_c) \left(\frac{T}{T_c}\right)^{(\eta/s)_{\text{curv}}}$$

$$\tilde{\zeta}/s = \frac{(\zeta/s)_{\max}}{1 + (T - (\zeta/s)_{T_0})^2/(\zeta/s)_{\text{width}}^2}$$

We are not really interested what the individual parameters in the parametrization are. \rightarrow Marginalize over all of them and look at the 90% credible interval of $\eta/s(T)$ and $\eta/s(T)$.

With high degree of confidence:

- QGP is strongly coupled $\eta/s = (1 \cdots 2)/(4\pi)$.
- QGP has a nonzero bulk viscosity!

Constrained initial condition

- The posterior suggests the data highly favors a specific type of energy deposition, $e(x, y) \propto \sqrt{T_A(x, y)T_B(x, y)} \propto \text{local}$ center-of-mass energy.
- This is numerically similar to certain models based on saturation physics, such as the EKRT model [PRC 93, 024907 (2016)].
- Wounded nucleon model, and KLN model (also saturation based) is disfavored.

What is still missing?

- Is the prior large enough?
- Is the paramerization general enough?
- How sensitive are the results to other model choices.
- How much confidence do we really have (need more validation and testing).

A careful revisit (JETSCAPE Collaboration): prior, model uncertainty, and closure test

- Four-parameter each for $\eta/s(T)$ and $\zeta/s(T)$.
- The bulk viscosity does not have to be symmetric with respect to T_{ζ} .
- Shear does not necessarily approach minimum at T_c , and is allowed to decrease above T_c .

One big problem of high-energy nuclear physics models are theoretical uncertainty.

Discrete model choices: (different basic assumptions, different approximations & truncation, different limit of the same theory, etc).

Bulk physics

- Use of different initial condition model.
- Hydro. v.s. full transport approach.
- Different schemes to particlize hydrodynamic fields into hadrons.

Jet physics

- Formula of in-medium jet evolution.
- Use of different bulk medium models.

Partialize hydrodynamic fields into hadrons:

- Hydrodynamics fields $e(t, \vec{x}), u^{\mu}, \pi^{\mu\nu}, \Pi \rightarrow 10$ independent quantities $(\mu_b = 0)$.
- Hadron momentum distribution $f_{eq}(t, \vec{x}, \vec{p}) + \delta f_{viscous}$ for each specie of hadrons.

The equilibrium part is known $f_{eq} = 1/(e^{p \cdot u/T} \pm 1)$ To go from 10 numbers to $f_{eq} + \delta f(p)$ largely depends on additional assumptions. • Grad 14-moment expansion:

$$\delta f(p) \propto A_{\pi} \pi^{\mu\nu} p_{\langle \mu} p_{\nu \rangle} + \Pi (A_T m_i^2 + A_E (p \cdot u)^2)$$

• 1st-order Chapman-Enskog solution to the relaxation time approximation (RTA) Boltzmann equation.

$$\delta f \propto \frac{\pi_{\mu\nu} p^{\langle \mu} p^{\nu \rangle}}{2\beta_{\pi} (p \cdot u) T} + \frac{\Pi}{\beta_{\Pi}} \left(\frac{\mathcal{F}(p \cdot u)}{T^2} - \frac{\Delta_{\mu} \nu p^{\mu} p^{\nu}}{3(p \cdot u) T} \right)$$

 Modified f_{eq} approach Pratt-Torrieri-Bernhard/McNelis: rotate, stretch/squeeze, and scale the equilibrium distribution to match the viscous correction,

$$f_{\rm eq} + \delta f = \mathcal{Z} f_{eq} \left(p^i \to [(1 + \frac{\Pi}{3\beta_{\Pi}})\delta_{ij} + \pi^{ij}]p_j, T \to T + \beta_{\Pi}^{-1}\Pi \mathcal{F} \right)$$

Details are complicated, but very different momentum and mass dependence of δf .

Use Bayes factor for model selection and averaging

 None of the above models is a first-principle QCD result. We can ask which one is prefered by data.

Bayes factor for comparing model "a" and "b": ratio of evidence

$$B_{M_a/M_b} = \frac{P(y_{\exp}|M_a)}{P(y_{\exp}|M_b)}$$

$$P(y_{\exp}|M) = \int \text{Likilihood}(y_{\exp}|M, x_M) \text{Prior}(x_M) dx_M, \text{ for } M = M_a, M_b.$$

Human interpretation:

$\log_{10}(B_{10})$	B_{10}	Evidence against H_0
0 to 1/2	1 to 3.2	Not worth more than a bare
1/2 to 1	3.2 to 10	Substantial
1 to 2	10 to 100	Strong
>2	>100	Decisive

[Robert E. Kass & Adrian E. Raftery (1995)]

Result from the state-of-the-art model

comparisons [JETSCAPE Collaboration, Phys.Rev.C

103 (2021) 5, 054904]

Model A	Model B	$\ln B_{A/B}$
Grad	CE	8.2 ± 2.3
Grad	PTB	1.4 ± 2.5
PTB	CE	6.8 ± 2.4

TABLE IV. A table of the logarithm of the Bayes factor $\ln B_{A/B}$ for each pair of viscous correction models and its integration uncertainty for the Grad, Chapman-Enskog (CE) and Pratt-Torrieri-Bernhard (PTB) viscous correction models.

Remember this table

$\log_{10}(B_{10})$	B_{10}	Evidence against H_0
0 to 1/2	1 to 3.2	Not worth more than a bare
		mention
1/2 to 1	3.2 to 10	Substantial
1 to 2	10 to 100	Strong
>2	>100	Decisive

- The Grad method (momentum expansion) is substantially favored over the PTB (modified equilibrium distribution).
- Both are decisive favored over the Chapman-Enskog solution of RTA Boltzmann equation¹.

¹This is mainly caused by their different ability to describe identified particle yield between π, K, p .

What are the impact on the QGP viscosities

Now that we have uncertainty in modeling choice / assumptions, we should update the uncertainty band of $\eta/s(T)$ and $\zeta/s(T)$ via marginalization.

Bayesian model averaging (MBA)

$$P_{\text{BMA}}(x|y_{\text{exp}}, \{M_i\}) = \sum_{i} \underbrace{P(x|y_{\text{exp}}, M_i)}_{\text{Posterior for model "i"}} \times \underbrace{P(y_{\text{exp}}|M_i)}_{\text{Evidnece of model 'i"}}$$

After model averaging (orange bands), the BMA posterior is dominated by the one with the highest evidence (Grad expansion).

[JETSCAPE Collaboration, Phys.Rev.Lett. 126 (2021) 24, 242301]

- Note that we don't really learn anything new (compare to prior) at high temperature.
- To quantify this information gain, we use the "Kullback–Leibler divergence" (KL divergence, $D_{\rm KL}$) to measure the functional distance between two distributions P_1 and P_2

$$D_{\mathrm{KL}}(P_1 || P_2) \equiv \int dx P_1(x) \ln \frac{P_1(x)}{P_2(x)}$$
, we take P_1 =Posterior, P_2 =Prior.

- If $D_{\rm KL}=$ 0, then the posterior is the same as our prior belief, nothing new...
- $D_{\rm KL} > 0$ signatures information gain from experimental data.
- What observable may grant increased sensitivity at high temperature?

Quantify the information gain

- D_{KL}(T > 0.25GeV) ≈ 0, little sensitivity to QGP transport properties at high T.
- Most information gain in 0.145 < T < 0.225 GeV.

Reasons?

- Medium expand very fast and spend little time in the high-temperature region.
- With fast expansion, final observable is only sensitive to an "averaged η/s ":

$$(\eta/s)_{
m eff} = rac{\int_{T_{
m sw}}^{T_{
m max}} \eta/s(T)/T^{lpha}dT}{\int_{T_{
m sw}}^{T_{
m max}} 1/T^{lpha}dT}$$

[Jean-Francois Paquet, Steffen A. Bass, Phys. Rev. C 102, 014903 (2020)]

A closure test

- Use the framework to calibrate on pseudodata, which is model calculation with known parameters.
- Compare the posterior to the true values.

This is a very conclusive test if the model is perfect. In the presence of model uncertainty, this is a weaker test.

Closure test on the extaction of bulk viscosities

We generate nine different set of pseudodata:

- Dashed line: the true answer to $\eta/s(T)(\text{left})$ and $\zeta/s(T)$ (right).
- Blue/red bands: 90% & 60% credible region.
- The statistical analysis (if the model is perfect) works as expected.

How to publish the full results: publish the emulator online

Scientific papers are 2D objects. May not always be the best option to publish something that lives in higher dimension.

Checkout this interactive page https://jetscape.org/sims/.

Use the slides to see how each observable response to the change of each parameter

How to publish the full results: publish the emulator online

Scientific papers are 2D objects. May not always be the best option to publish something that lives in higher dimension.

Checkout this interactive page https://jetscape.org/sims/.

Use the slides to see how each observable response to the change of each parameter

How to publish the full results: publish the emulator online

Scientific papers are 2D objects. May not always be the best option to publish something that lives in higher dimension.

Checkout this interactive page https://jetscape.org/sims/.

Use the slides to see how each observable response to the change of each parameter

How to publish the full results: publish the emulator online

Scientific papers are 2D objects. May not always be the best option to publish something that lives in higher dimension.

Checkout this interactive page https://jetscape.org/sims/.

Use the slides to see how each observable response to the change of each parameter

Application to jet quenching and jet transport coefficients

Inference of jet transport parmater from a single model

The first Bayesian analysis applied to the heavy-quark sector [Yingru Xu et al PRC97, 014907 (2018)]. Heavy quark dynamics modeled by a Langevin (drag and diffusion) process with recoil from radiated gluon.

Global analysis on *D*-meson R_{AA} and momentum anisotropy.

Global analysis on heavy / light hadron and full jet quenching at both RHIC and LHC [W Ke & X-N Wang JHEP 05 (2021) 041]. Consistency among jet and hadron observable.

Recent Bayesian analysis using multi-stage model

- Different evolution equations / interaction mechanisms in different regions. High/low-virtuality region, High/low-energy region.
- Enable testing multiple model choices/combinations in the same environment.

Posterior of \hat{q} . Model-A(MATTER) or model-B (LBT) applied to the entire phase-space v.s. Matching model A+B in the phase-space. [JETSCAPE Collaboration PRC 104, 024905 (2021)] Final remarks on functional prior & Summary

Up to this point, we have always assume the parameter distribution has a uniform prior $P(x) = \frac{1(x_{\min} < x < x_{\max})}{x_{\max} - x_{\min}}$. Is the prior trivial? Not really...

Consider we use a, b, c to parameterize a function, such as $\zeta/s(T) = \frac{a}{(T-b)^2+c^2}$. An observable with a rather simple response: $obs \propto \int_{T_1}^{T_2} \zeta/s(T) dT$

- *a*, *b*, *c* has independent, uniform distribution as Prior.
- The quantity of physical importance ζ/s(T) varies highly non-linearly within the design space! So is the observable!
- No matter what the posterior is, such a parametrization always suggests $\zeta(T\gg b)/s
 ightarrow 0$.

When we try to extract unknown functions, such as $\eta/s(T)$, $\hat{q}(x, Q^2)$, PDF (x, Q_0) the parametrization itself is a very strong and informative prior!

In the Bayes extraction of continuous functions $\hat{q}(T)$, $\hat{q}(T, E)$, $\hat{q}(T, E, Q)$, and $\eta/s(T)$, \cdots .

- A given parametrization imposes strong correlation among the value of the function at different input.
- Parameters with clear physical meaning may not be "easy" for machine learning (emulator). For example:

$$\zeta/s(T) = \frac{(\zeta/s)_{\max}}{1 + (T/T_p - 1)^2/\sigma^2}, \quad \Delta \hat{q} = \frac{AT^3}{(1 + (E/aT)^p)(1 + (T/bT_c)^q)^2}$$

$$(\zeta/s)_{\max}$$

$$T_p \xrightarrow{\text{Very non-linear}} \zeta/s \text{ at each } T \xrightarrow{\text{Fairly smooth}} \text{Observables}$$

$$\sigma \xrightarrow{\text{Interested quantity}} \zeta/s \text{ at each } T$$

²Something more complicated that I tried in my dissertation

What can be a reasonable prior of unknown function

- We don't want to exclude any possible case.
- Assume there is no abrupt change v.s. input (with proper redefinition of input/output).

•
$$f(x) = 1/x^{\lambda} = e^{-\lambda u}, u = \ln(x)$$

- $g(x) = ax^3(1 + b\ln(x)) \to \tilde{g}(x) = g(x)/x^3$.
- Remember the Gaussian process that generates random functions?

Use random function as prior

$$\langle \delta y(T) \delta y(T') \rangle = \sigma_0^2 \exp\{-\frac{(\ln T - \ln T')^2}{2L^2}\}$$

- One can control the range of variation with σ₀ and control the flexibility with L
- We don't really exclude any reasonable function. Any function is possible, though come with different probability.
- Data that determine the function in one region $\sim T$ does not affect the prior in other regions $\sim T'$, $(|\ln(T/T')| \gg 1)$.

Test with a toy model $\Delta E/E \propto \int_{T_{min}}^{T_{max}} \hat{q}(T)/T^3 \frac{dT}{T}$

- The constraining power gradually increases with pseudodata covering higher temperature regions.
- This prevents tension from different collision energy due to a specific form of parametrization.

Not yet tested for more than 1D function, such as $\hat{q}(E, T)$, but should be straightforward.

What is the prior of random function?

$$e^{-\frac{1}{2}\int dx dx' f(x) \mathcal{K}^{-1}(x,x';L,\sigma) f(x')}$$

And the posterior:

$$e^{-\frac{1}{2}\int dx dx' f(x) \mathcal{K}^{-1}(x,x';L,\sigma) f(x') - \ln(\text{Likelihood}[f(x),X_i,y_{\exp};\mathcal{M}])}$$

Marginalization or prediction,

$$P(X_i) = \int D[f(x)]O[f(x), X_i; \mathcal{M}]e^{-\frac{1}{2}\int dx dx' f(x) \mathcal{K}^{-1}(x, x'; L, \sigma)f(x') - \ln(\operatorname{Likelihood}[f(x), X_i, y_{\exp}; \mathcal{M}])}$$

For certain problems, one may also borrow ideas from field theory to analyze the posterior (information field theory IFT

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html)

With advanced statistical tools and physical modeling, we learned a lot in the past decade,

- Phenomenological constrained QCD EoS at high T corroborate lattice calculation.
- $\bullet\,$ Temperature dependent shear and bulk viscosity $\rightarrow\,$ strongly-coupled nature of QGP and scale violation.
- Jet transport parameter in hot/cold QCD medium \rightarrow drastic difference in color confined/deconfined matter.
- Constrained initial geometry of nuclear collisions.
- • •

- Learning hot and cold nuclear matter from experimental data poses challenges
 - Complex multi-stage model.
 - Large parameter space & large and diverse dataset.
- The use of model emulator and dimension reduction techniques are essential to perform statistical analysis on these complex models.
- Bayesian inference provide a systematic way to incorporate both experimental and model uncertainty. Necessary for reliable extraction of interest QCD properties.
- Be careful with prior. Functional parametrization itself is a highly informative prior!
- Pay attention to model uncertainties. Use Bayes factors & model averaging to compare & combine various models.

Questions?