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Introduction



High-energy nuclear collisions “the little bang”

[NASA ↑, P. Sorensen & C. Shen ↓]

Why do we collide nuclei at extreme energies

• Evolution of universe from the Big bang:

initial state → fast expansion T ↓
→ Decoupling / freeze-out →.

• Colliding heavy nuclei:

• Initial temperature T ≈ 500 MeV ∼ 1013 K.

Approximately the temperature at t = 10−6s of the

universe.

• Strongly interacting & expanding matter → freeze out.
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From hadrons to quark-gluon plasma

Asymptotic freedom of quantum chro-

modynamics (QCD)

Coupling αs = g2/(4π) decreases in the

perturbative regime. [Figure from PDG]

Hadrons Quark-gluon plasma (QGP)

At sufficient high temperature / energy density

αs(3kBT ) becomes small

Quarks & gluons / color fields liberate from

bound states [Figures from JS Moreland]
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Create the little bang

The Relativistic Heavy-Ion Collider (RHIC) at the Brookhaven National Lab (BNL).

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN).

[From Google Map]

[From newscientist.com]
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Basic pictures

• At high energy γ =
√
sNN/(2mN)� 1, strong Lorentz contraction in the beam direction.

• Almost instantaneous energy production in the interaction / overlapped region.

∆tI ∼ 2R/γ � rN ,ΛQCD → nuclei collide with their internal d.o.f. freezes within δtI .

Nuclear configuration fluctuates event by event.

• Complicated many-body dynamics

Accelerate to high energy

√
sNN � mN
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Final states:

• Up to 104 particles in central A-A collisions at top LHC energy.

• Most spatial information is lost. We only observe the momentum space & correlation.

• To learn that happens during the collision is a very hard inverse problem.

[Figure credit to the CMS collaboration]
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Centraltiy classification

• In A-A collisions, particle production is

strongly correlated with the geometry

overlap.

• Sort events according to particle

production. The percentile range /

centrality (0-5%, 40-50%) is a good

indicator of the average geometry in these

collisions.

• This relation is model dependent, we

cannot directly measure the impact

parameter b.

• May not work in small collision systems.
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Momentum distribution of particle

Soft

Hard

ALICE Collaboration PLB 696 (2011) 30-39

• Most particles are produced with small transverse

momenta (pT . 3 GeV).

• Hard particles are rare (pT & 10 GeV).

• Usually use rapidity/pseudorapidity instead of pz :

η = 1
2 ln |p|+pz

|p|−pz . Soft particles dN/dη displays a

central plateau.

[PHOBOS]
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Our current understanding of the bulk of the particle (soft)

They dynamics is governed by several competing factors:

• Longitudinal expansion 1/τ .

• Collisions & many-body effect 1/τcoll ∝ deff(T )T .

• Pressure driven transverse expansion 1/RT .

• Freeze-out.

[HotQCD Collab. PRD90, 094503 (2014)]
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“Near” equilibrium dynamics

Expansion drives the system out of equilibrium and cools down / hadronize
9



A multi-scale problem with a mult-stage modeling

A mutli-stage approach: with so many competing effects, one build specific model for each

stage, staring from the dominant effect.

• Initial condition: neglect dynamics within 0+ < τ < δtI = 2R/γ.

• At early times, δtI < τ < τ0 longitudinal expansion dominates. Free-streaming +

corrections from few interactions.

• Intermediate stage, collisions become frequent. Near equilibrium model with viscous

hydrodynamics (Equation of state, viscosity, · · · )
• Late stage, density goes down (d(T )T 3), system hadornize. Use Boltzmann equation for

hadrons.
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Multi-stage model

Advantage: simplified treatment in each stage and can be systematically improved.

Challenges:

• Contains many parameters and moving parts!

• Uncertainties from matching.

• From early stage evolution to a classical hydrodynamics.

• From hydrodynamic fields to hadron ensembles.

Nowadays, > 10 parameter + unkown functions.
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Interested parameter and nuiance parameters

Parameters/functions of physical importance, also well-defined from first principle.

• Equation of state: equilibrium property of hot QCD.

• Transport coefficients, such as specific shear and bulk viscosity: dynamical properties.

Both are direct input to hydrodynamics, and has been constrained / extracted from data using

Bayesian techniques:

Bayesian constrained EoS of QGP

from data v.s. lattice QCD. [S. Pratt et

al, PRL 114, 202301 (2015)]

Bayesian extraction of η/s of QGP

compared to other substances [Nature

Physics 15, 1113–1117 (2019)]
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Very interested parameters: specific shear and bulk viscosities

Viscous force ∼ η∂vx/∂y

Velocity grident: shear stress

Viscous force ∼ ζ∇ ⋅ v

Velocity grident: bulk stress

• Shear viscosity: the resistance that a fluid exert to shear strain. Direct probe of interaction

strength at thermal scale η/s ∼ 1/[g4 ln(g · · · )] (LO result)

• Bulk viscosity: the resistance to volume change ↔ scale invariance (L→ λL) breaking.

• How do they change with temperature?
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Example of nuisance parameters:

Parameters that are not of immediate interest, lack of physical importance, model specific

chocies, etc.

• Matching timescale between pre-equilibrium dynamics and hydrodynamics.

• Some initial condition related parameters.

• Cut-off, regulators, etc.

But they do contribute to the estimation of model uncertainty!

Similar situation for the study using hard particles / hard probes.
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Tomography of medium using hard particles / jets

X-ray tomography. External probe of

the internal structure of an object.
High-pT hadron / jet (collimated spray of particles from

parton dynamics) tomography of the nuclear medium.

• Self generated probes.

• Both probe and medium undergo complex dynamics.
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Tomography of medium using hard particles / jets

Medium properties imprint in the mod-

ification of the probes.

Most directly: less jet production at a

fixed momentum pT

RAA =
dσAA→J/h

〈Ncoll〉dσpp→J/h
< 1

High-pT hadron / jet (collimated spray of particles from

parton dynamics) tomography of the nuclear medium.

• Self generated probes.

• Both probe and medium undergo complex dynamics.

P1

P2

Hard parton

Hadronization

4 9

Jet-medium interaction is often quantified by the jet trans-

port parameter q̂ = d〈k2
T 〉/dL → strength of gluon field

in the medium.
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The inverse problem for jet tomography is as challenging

The model part is even more complicated than the current bulk simulations.

Parameters

• q̂(xB ,Q
2;A), q̂(p,Q2;T ) or

jet-medium coupling gs .

• All the medium parameters!

• Cut-offs, regulators, etc.

Observables

• Yield RAA = YAA/Ypp/〈Ncoll〉.
• Correlations di-jet, hadron-jet, h-h.

• Internal & sub-structure of jets.

Many models chocies· · · ⊗ · · ·
• Perturbative orders of initial production.

• Different assumptions on jet-medium

interaction: few hard v.s. multiple soft;

weakly v.s. strongly coupled.

• Different approximations to the

medium-modified splitting functions.

• Different jet evolution equations.

• Different models for medium evolution.
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Jet/hadron tomography

Powerful tool to understand QCD medium in both nuclear collisions and deep inelastic

scatterings (DIS) on nucleus. Moving from χ2 fit to Bayesian analysis (JETSCAPE).

[JET Collaboration, χ2-fit

back in 2013 →]

[HERMES Collaboration] [Peng Ru et al, PRD 103, 031901 (2021). ξ2 fit.]
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Bayesian inference applied to

understand hot QCD matter



Some key observables: how do we detect the viscous effect?

• Non-central collision creates elliptic shaped blob of quark-gluon plasma.

• Hydrodynamic pressure gradient drives particles to accelerate in the radial direction.

• Initial eccentricity translates to momentum anisotropy dN/dφ ∼ 1 + 2v2 cos(2(φ−Ψ2))

• Approximately linear response v2 ≈ k22ε2, k22 depends on viscosities of QGP.
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Sensitity of vn to shear viscosity

10 fm

Idea
l

η/s=0.2

100 200 300 350
Temperature [MeV]

τ= 1 fm/c

2 fm/c 3 fm/c 5 fm/c
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Sensitity of 〈pT 〉 to bulk viscosity

Main effect of bulk viscosity:

• Slow down the system that radially expands.

• Reduces the average velocity of particles → reduced mean

transverse momentum 〈pT 〉.
• The effect is mass dependent.

It looks like we have two observables that can help to pin down η/s, η/s. However, the

problem is much more complicated ...
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Major uncertainty from initial condition model

Currently, we don’t know from first principle what the initial condition is. A alternative way is

to parameterize a class of possible energy deposition relation:

e(x , y) ∝
[
TA(x , y)p + T p

B(x , y)

2

]1/p

This is just a parametric function, but is shown to reproduce several widely used IC models.
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Major uncertainty from initial condition model

[Slide credit to J. Scott Moreland] 22



Major uncertainty from initial condition model

The eccentricity varies a lot in different models. We need a simultaneous calibration of many

features of the model to many observables:

• Maybe some observable help to constrain the initial condition.

• If not, propagate IC uncertainty to the interested quantity η/s, ζ/s. 23



Marginalization and uncertainty propagation

v2 = k22(η/s)ε2

If we can somehow define an inverse problem:

η/s “ = ” F(v2, ε2)

Marginalization: integrate out all possible variation of ε2. The uncertainty of η/s comes from

not only experimental uncertainty but also other under-constrained part of the model.

P(η/s) ∼
∫

P(v2 + δv2, ε2 + δε)dδv2dδε
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The real situation: a lot more parameters to be marginalized

Model parameters:

Initial condition N, p,w, k, d

Early time dynamics τfs,0, e0

Transport coefficients η/s, ζ/s

Particlization prescriptions

Switching temperature Tsw

Observables v.s. centrality

Transverse energy

Charged particle multiplicity

π/K/p yield

π/K/p 〈pT 〉
Flow harmonics v2, v3, v4

Charged particle 〈pT 〉 EbE fluctuation

Model

1
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Rigorous statistical procedure is essentail for progress

• 2000s: order of magnitude.

• 2004: strongly coupled theory η/s = 1/(4π) + · · · .
• 2006-2013: eyeball fit with viscous hydro (η/s)eff = 1− 2

• 2013–: Bayesian analysis. Simultaneous calibration of IC, η/s(T ), etc.

• 2016–: Temperature dependent shear and bulk viscosity. Refined model. Model

uncertainty. Model averaging· · · .
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Statistical inference problem

1. A model M: predict observables y at given input parameters x.

2. A prior belief of the distribution of true values of x: P0(xtrue)

3. Make the measurement yexp, and update the knowledge: P0 → P(xtrue).

4. Marginalize over nuisance parameters P(x∗) =
∫
P(x∗, x̄)dx̄

• x∗ interested parameters

• x̄ nuisance parameters: not interest at this time, but is an essential part of model and

contribute to uncertainty.
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Bayesian Theorem (a recap)

Bayes’ theorem (from conditional prob: P(A
⋂
B) = P(A|B)P(B) = P(B|A)P(A))

P(xtrue|M, yexp)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
L(yexp|M, xtrue)

Prior︷ ︸︸ ︷
P0(xtrue)∫

L(x)P0(x)dx︸ ︷︷ ︸
Normalization (evidence)

L is often unknown. Commonly assumed to take the form of a multivariate Gaussian:

ln L =
N

2
ln(2π)− 1

2
ln |Σ| − 1

2
∆yΣ−1∆yT , ∆y = yexp − y(x;M)
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Prior brief and posterior probability distribution
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What are the sources of uncertainty

Uncertainty covariance matrix Σ in the likelihood function:

ln L =
N

2
ln(2π)− 1

2
ln |Σ| − 1

2
∆yΣ−1∆yT , ∆y = yexp − y(x;M)

Σij = δij [(δystat)2
i + (δysys,0)2

i ] + δ(ysys,∞)iδ(ysys,∞)j + δ(ysys,l)iδ(ysys,l)jc(i , j ; l)︸ ︷︷ ︸
Experimental

+ σemulator
ij ←− Interpolation uncertainty, explained later

+ σtheory
ij ←− Model/theory imperfection, very hard

Experimental uncertainty

• Statistical & uncorrelated systematic uncertainty: δystat, δysys,0 (zero correlation length).

• Fully correlated systematic uncertainty: δysys,∞ (infinite correlation length).

• Partially correlated systematic uncertainty: δysys,l (finite correlation length).
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For simple models that y(x) is easy to compute:

Parameter space (x)

(with prior knowledge)

Model

Prediction y(x)

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior
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Complex model: a high-dimenon problem

Take the medium evolution model in HIC as an example:

• Nowadays, > 10 parameters + unknown functions η/s(T ), ζ/s(T ).

• These parameters are simultaneously constrained by hundreds of measurements.
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Complex model: a time-consuming problem

To compute observable at one parameter point:

• 104 events with randomized initial condition (multi-particle correlations require even more).

• 2+1D simulation: 0.5h/event. 3+1D simulation: 1day/event.

• If we evaluate the model on a 10d grid in the parameter space → 10d CPU year.

• To explore the posterior distribution, we should be able to evaluate the model at arbitrary

many input points
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Complex model: non-linearity

• Usually, observable changes monotonically and smoothly with input parameters.

• However, complicated parametrization can result in a large degree of non-linearity.
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For computationally intensive model

Parameter space (x)

(with prior knowledge)
Emulator: fast prediction of y

given “arbitrary” x by training

on finite dataset {xi, y(xi)}
A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior
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A class of non-parametic estimator: Gaussian emulators

A 2D Gaussian with zero mean and

σ =

[
1 0.5

0.5 1

]

off-diagonal controls how correlated (how close)

the two output are.
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A class of non-parametic estimator: Gaussian emulators

A 3D Gaussian with zero mean and

σ =

 1 0.5 0

0.5 1 0.5

0 0.5 1
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A class of non-parametic estimator: Gaussian emulators

A 5D Gaussian with zero mean and

σ =


1 0.7 0.5 0.3 0

0.7 1 0.7 0.5 0.3

0.5 0.7 1 0.7 0.5

0.3 0.5 0.7 1 0.7

0 0.3 0.5 0.7 1
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A class of non-parametic estimator: Gaussian emulators

A 20D Gaussian with zero mean and

σ(xi , xj) = σ2
0 exp

{
− (xi − xj)

2

2L2

}
N → inf: Random functions with given variance

and correlation length. (Or, 1D field with given

1-point and 2-point function)

36



A class of non-parametic estimator: Gaussian emulators

Suppose we want to “interpolate” three points

with some tolerance (black bars). Then, just

select the subset of random functions that come

close to these points.

→ an ensemble of random function forms a prob-

abilistic inference of the underlying relation y(x).
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A class of non-parametic estimator: Gaussian emulators

Test on 1D scalar function y(x). Easy general-

ization to scalar function with N-dim input y(~x).

All these can be formulated with tools of multi-

variate normal:[
y(x ′)

y(x)

]
= N

(
µ = 0,

[
K (x ′, x ′) K (x ′, x)

K (x , x ′) K (x , x)

])

Condition y(x) on the training data y(xi ) = yi

P(y(x ′)|y(xi ) = yi ) = N (µ, σ)

µ = K (x ′, xi )K
−1(xi , xj)y(xj),

σ = K (x ′, x ′)− K (x ′, xi )K
−1(xi , xj)K (xj , x

′))

Interpolate points from unknown functions with

uncertainty quantification y(x ′) = µ(x ′)±σ(x ′)
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Interpolation uncertainty

y(x) = µ(x)± σ(x)

Σij = δij [(δystat)2
i + (δysys,0)2

i ] + δ(ysys,∞)iδ(ysys,∞)j + δ(ysys,l)iδ(ysys,l)jc(i , j ; l)︸ ︷︷ ︸
Experimental

+ σemulator
ij ←− Interpolation uncertainty

+ σtheory
ij ←− Model/theory imperfection, still very hard

In high-dimensional model, the interpolation uncertainty can actually be the dominant one!
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For computational intensive models + high-dimensional output

Parameter space (x)

(with prior knowledge)
Emulator: fast prediction of y

given “arbitrary” x by training

on finite dataset {xi, z(xi)}

Dimension reduction:

z(x) ↔ y(x), z is a new represen-

tation of y, but dimz � dim y.

Vector output

{Nπ,NK ,Np,ET , 〈pT 〉,Nchg, v2, v3, v4, · · · }.
Do we need an independent emuala-

tor to learn each “obs(params)”?

A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior
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Dimensional reduction via Principal Component Analysis (PCA)

There are useful empirical correlations in the data. For example:

• Tune parameter to increase the initial-state energy density, then Nπ,K ,p ↑, ET ↑, Nch ↑.
• Increase viscosity: v2 ↓, v3 ↓, v4 ↓.
• Given the same amount of initial energy: Nch should anti-correlate with 〈pT 〉.

Clearly, we don’t need less effective d.o.f. to describe these observable’s dependence on input

parameters.
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PCA: use a few components from an emperical basis to represent data

If the set of functions that you care about can be approximated by keeping only a few terms,

then this is a useful basis for expansion.

PCA: now we have a few hundreds’ computation of
~Y = {Nπ,NK ,Np, v2, v3, v4, · · · }(~pi ), i = 1, 2, 3, · · · . Define the basis where new components

are linearly independent of each other when averaged over all possible parameters:

OT cov( ~Y , ~Y )O → diag{λ1, λ2, · · · }, λ1 > λ2 > λ3 > · · · .

• The new basis Z = OTY are linearly combinations of the original observables that are

linearly uncorrelated from each other 〈ZiZj〉p = λiδij .

• Important: this does not remove non-linear correlation. One needs to check ensure the

best performance.
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Dimensional reduction: simple demo

Consider a “model” with four parameters 0 < a, b, c , d < 1, which generates 11 highly

correlated outout labeled by x = 0, 1, 2 · · · 10,

M(i) = axb sin(cx + d)

Left: sample 100 sets of parameter (a, b, c , d) and plot the model outputs.

Right: the basis function corresponding to the first five principal components.
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Dimensional reduction: simple demo

Consider a “model” with four parameters 0 < a, b, c , d < 1, which generates 11 highly

correlated outout labeled by x = 0, 1, 2 · · · 10,

M(i) = axb sin(cx + d)

Importance & cumulative importance of the PCs. Linear combination of the first five basis can

describe the M(i) =
∑5

i=1 piFi (x) + δ within the design range with good precision
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The workflow of the emulator-assisted Bayesian analysis

Parameter space (x)

(with prior knowledge)
Emulator: fast prediction of y

given “arbitrary” x by training

on finite dataset {xi, z(xi)}

Inverse transforma-

tion from z(x) to y(x)

A finite set of model

prediction {xi, y(xi)}

Prediction

Bayes theorem

Posterior ∝ Likilihood × Prior

Experiments

Posterior

Now we have reduce the problem from

1010 CPU year to 105 CPU days (2+1D

simulation). Manageable on supercomputers!
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Parameters and observabels

[Jonah E. Bernhard Ph.D. dissertation]
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Parameters and observabels

[Jonah E. Bernhard Ph.D. dissertation]
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Shear and bulk viscosity

[Jonah E. Bernhard, J. Scott Moreland &

Steffen A. Bass, Nature Physics volume 15,

pages 1113–1117 (2019)]

η/s = (η/s)min + (η/s)slope(T − Tc)

(
T

Tc

)(η/s)curv

ζ/s =
(ζ/s)max

1 + (T − (ζ/s)T0 )2/(ζ/s)2
width

We are not really interested what the individual

parameters in the parametrization are.

→ Marginalize over all of them and look at the 90%

credible interval of η/s(T ) and η/s(T ).

With high degree of confidence:

• QGP is strongly coupled η/s = (1 · · · 2)/(4π).

• QGP has a nonzero bulk viscosity!
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Constrained initial condition

• The posterior suggests the data highly favors a

specific type of energy deposition,

e(x , y) ∝
√

TA(x , y)TB(x , y) ∝ local

center-of-mass energy.

• This is numerically similar to certain models based

on saturation physics, such as the EKRT model

[PRC 93, 024907 (2016)].

• Wounded nucleon model, and KLN model (also

saturation based) is disfavored.
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Is this the end of story?

What is still missing?

• Is the prior large enough?

• Is the paramerization general enough?

• How sensitive are the results to other model choices.

• How much confidence do we really have (need more validation and testing).
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A careful revisit (JETSCAPE

Collaboration): prior, model

uncertainty, and closure test



Enlarge the prior distribution + more flexible paramerization

• Four-parameter each for η/s(T ) and ζ/s(T ).

• The bulk viscosity does not have to be symmetric with respect to Tζ .

• Shear does not necessarily approach minimum at Tc , and is allowed to decrease above Tc .
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Model selection

One big problem of high-energy nuclear physics models are theoretical uncertainty.

Discrete model choices: (different basic assumptions, different approximations & truncation,

different limit of the same theory, etc).

Bulk physics

• Use of different initial condition model.

• Hydro. v.s. full transport approach.

• Different schemes to particlize

hydrodynamic fields into hadrons.

Jet physics

• Formula of in-medium jet evolution.

• Use of different bulk medium models.
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Recent progress using Bayes factors: a concrete example

Partialize hydrodynamic fields into hadrons:

• Hydrodynamics fields e(t, ~x), uµ, πµν ,Π→ 10 independent quantities (µb = 0).

• Hadron momentum distribution feq(t, ~x , ~p) + δfviscous for each specie of hadrons.

The equilibrium part is known feq = 1/(ep·u/T ± 1)

To go from 10 numbers to feq + δf (p) largely depends on additional assumptions.
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Different matching schemes from hydrodynamics to particle ensembles

• Grad 14-moment expansion:

δf (p) ∝ Aππ
µνp〈µpν〉 + Π(ATm

2
i + AE (p · u)2)

• 1st-order Chapman-Enskog solution to the relaxation time approximation (RTA)

Boltzmann equation.

δf ∝ πµνp
〈µpν〉

2βπ(p · u)T
+

Π

βΠ

(F(p · u)

T 2
− ∆µνp

µpν

3(p · u)T

)
• Modified feq approach Pratt-Torrieri-Bernhard/McNelis: rotate, stretch/squeeze, and scale

the equilibrium distribution to match the viscous correction,

feq + δf = Zfeq
(
pi → [(1 +

Π

3βΠ
)δij + πij ]pj ,T → T + β−1

Π ΠF
)

Details are complicated, but very different momentum and mass dependence of δf .
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Use Bayes factor for model selection and averaging

• None of the above models is a first-principle QCD result. We can ask which one is

prefered by data.

Bayes factor for comparing model “a” and “b”: ratio of evidence

BMa/Mb
=

P(yexp|Ma)

P(yexp|Mb)

P(yexp|M) =

∫
Likilihood(yexp|M, xM)Prior(xM)dxM , for M = Ma,Mb.

Human interpretation:

[Robert E. Kass & Adrian E. Raftery (1995)]
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Bayes factor for different particlization schemes

Result from the state-of-the-art model

comparisons [JETSCAPE Collaboration, Phys.Rev.C

103 (2021) 5, 054904]

Remember this table

• The Grad method (momentum expansion)

is substantially favored over the PTB

(modified equilibrium distribution).

• Both are decisive favored over the

Chapman-Enskog solution of RTA

Boltzmann equation1.

1This is mainly caused by their different ability to describe identified particle yield between π,K , p.
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What are the impact on the QGP viscosities

Now that we have uncertainty in modeling choice / assumptions, we should update the

uncertainty band of η/s(T ) and ζ/s(T ) via marginalization.

Bayesian model averaging (MBA)

PBMA(x |yexp, {Mi}) =
∑
i

P(x |yexp,Mi )︸ ︷︷ ︸
Posterior for model “i”

× P(yexp|Mi )︸ ︷︷ ︸
Evidnece of model ‘i”

[JETSCAPE Collaboration, Phys.Rev.Lett. 126 (2021) 24, 242301]

After model averaging (orange

bands), the BMA posterior is

dominated by the one with the

highest evidence (Grad expansion).

53



Quantify the information gain

• Note that we don’t really learn anything new (compare to prior) at high temperature.

• To quantify this information gain, we use the “Kullback–Leibler divergence” (KL

divergence, DKL) to measure the functional distance between two distributions P1 and P2

DKL(P1‖P2) ≡
∫

dxP1(x) ln
P1(x)

P2(x)
, we take P1 =Posterior, P2 =Prior.

• If DKL = 0, then the posterior is the same as our prior belief, nothing new...

• DKL > 0 signatures information gain from experimental data.

• What observable may grant increased sensitivity at high temperature?
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Quantify the information gain

• DKL(T > 0.25GeV) ≈ 0, little

sensitivity to QGP transport

properties at high T .

• Most information gain in

0.145 < T < 0.225 GeV.

Reasons?

• Medium expand very fast and spend little time in the high-temperature region.

• With fast expansion, final observable is only sensitive to an “averaged η/s”:

(η/s)eff =

∫ Tmax

Tsw
η/s(T )/TαdT∫ Tmax

Tsw
1/TαdT

[Jean-Francois Paquet, Steffen A. Bass, Phys. Rev. C 102, 014903 (2020)]
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Closure test: how much can we trust the analysis in the best scenario?

A closure test

• Use the framework to calibrate on pseudodata, which is model calculation with known

parameters.

• Compare the posterior to the true values.

This is a very conclusive test if the model is perfect. In the presence of model uncertainty, this

is a weaker test.
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Closure test on the extaction of bulk viscosities

We generate nine different set of pseudodata:

• Dashed line: the true answer to η/s(T )(left) and ζ/s(T ) (right).

• Blue/red bands: 90% & 60% credible region.

• The statistical analysis (if the model is perfect) works as expected.
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How to publish the full results: publish the emulator online

Scientific papers are 2D objects. May not always be the best option to publish something that

lives in higher dimension.

Checkout this interactive page https://jetscape.org/sims/.

Use the slides to see how each observable response to the change of each parameter
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Application to jet quenching and

jet transport coefficients



Inference of jet transport parmater from a single model

The first Bayesian analysis applied to the heavy-quark sector [Yingru Xu et al PRC97, 014907

(2018)]. Heavy quark dynamics modeled by a Langevin (drag and diffusion) process with recoil

from radiated gluon.

Global analysis on D-meson RAA and momentum

anisotropy.
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Inference of jet transport parmater from a single model

Global analysis on heavy / light hadron and full jet quenching at both RHIC and LHC [W Ke &

X-N Wang JHEP 05 (2021) 041]. Consistency among jet and hadron observable.
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Recent Bayesian analysis using multi-stage model

• Different evolution equations / interaction mechanisms in different regions.

High/low-virtuality region, High/low-energy region.

• Enable testing multiple model choices/combinations in the same environment.

[Figure credit to Abhijit Majumder]

Posterior of q̂. Model-A(MATTER) or model-B (LBT) applied to the entire phase-space v.s.

Matching model A+B in the phase-space. [JETSCAPE Collaboration PRC 104, 024905 (2021)]
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Final remarks on functional prior

& Summary



What is a reasonable prior?

Up to this point, we have always assume the parameter distribution has a uniform prior

P(x) = 1(xmin<x<xmax)
xmax−xmin

. Is the prior trivial? Not really...

Consider we use a, b, c to parameterize a function, such as ζ/s(T ) = a
(T−b)2+c2 . An observable

with a rather simple response: obs ∝
∫ T2

T1
ζ/s(T )dT

• a, b, c has independent, uniform distribution as Prior.

• The quantity of physical importance ζ/s(T ) varies highly non-linearly within the design

space! So is the observable!

• No matter what the posterior is, such a parametrization always suggests ζ(T � b)/s → 0.

When we try to extract unknown functions, such as η/s(T ), q̂(x ,Q2),PDF(x ,Q0)

the parametrization itself is a very strong and informative prior!
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Form of parametrization is a strong assumption on prior

In the Bayes extraction of continuous functions q̂(T ), q̂(T ,E ), q̂(T ,E ,Q), and η/s(T ), · · · .

• A given parametrization imposes strong correlation among the value of the function at

different input.

• Parameters with clear physical meaning may not be “easy” for machine learning

(emulator). For example:

ζ/s(T ) =
(ζ/s)max

1 + (T/Tp − 1)2/σ2
, ∆q̂ =

AT 3

(1 + (E/aT )p)(1 + (T/bTc)q)
2

(ζ/s)max

Tp

σ

ζ/s at each T
Very non-linear

Observables
Fairly smooth

Interested quantity

2Something more complicated that I tried in my dissertation
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What can be a reasonable prior of unknown function

• We don’t want to exclude any possible case.

• Assume there is no abrupt change v.s. input (with proper redefinition of input/output).

• f (x) = 1/xλ = e−λu, u = ln(x).

• g(x) = ax3(1 + b ln(x))→ g̃(x) = g(x)/x3.

• Remember the Gaussian process that generates random functions?
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Use random function as prior

〈δy(T )δy(T ′)〉 = σ2
0 exp{− (lnT − lnT ′)2

2L2
}

• One can control the range of variation

with σ0 and control the flexibility with L

• We don’t really exclude any reasonable

function. Any function is possible, though

come with different probability.

• Data that determine the function in one

region ∼ T does not affect the prior in

other regions ∼ T ′, (| ln(T/T ′)| � 1).
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Test with a toy model ∆E/E ∝
∫ Tmax

Tmin
q̂(T )/T 3 dT

T

• The constraining power gradually increases

with pseudodata covering higher

temperature regions.

• This prevents tension from different

collision energy due to a specific form of

parametrization.

Not yet tested for more than 1D function, such as q̂(E ,T ), but should be straightforward.
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Random function as functional prior

What is the prior of random function?

e−
1
2

∫
dxdx′f (x)K−1(x,x′;L,σ)f (x′)

And the posterior:

e−
1
2

∫
dxdx′f (x)K−1(x,x′;L,σ)f (x′)−ln(Likelihood[f (x),Xi ,yexp;M])

Marginalization or prediction,

P(Xi ) =

∫
D[f (x)]O[f (x),Xi ;M]e−

1
2

∫
dxdx′f (x)K−1(x,x′;L,σ)f (x′)−ln(Likelihood[f (x),Xi ,yexp;M])

For certain problems, one may also borrow ideas from field theory to analyze the posterior

(information field theory IFT

https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/research_IFT.html)
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Physics summary

With advanced statistical tools and physical modeling, we learned a lot in the past decade,

• Phenomenological constrained QCD EoS at high T corroborate lattice calculation.

• Temperature dependent shear and bulk viscosity → strongly-coupled nature of QGP and

scale violation.

• Jet transport parameter in hot/cold QCD medium → drastic difference in color

confined/deconfined matter.

• Constrained initial geometry of nuclear collisions.

• · · ·
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Statistics summary

• Learning hot and cold nuclear matter from experimental data poses challenges

• Complex multi-stage model.

• Large parameter space & large and diverse dataset.

• The use of model emulator and dimension reduction techniques are essential to perform

statistical analysis on these complex models.

• Bayesian inference provide a systematic way to incorporate both experimental and model

uncertainty. Necessary for reliable extraction of interest QCD properties.

• Be careful with prior. Functional parametrization itself is a highly informative prior!

• Pay attention to model uncertainties. Use Bayes factors & model averaging to compare &

combine various models.
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Questions?
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