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A dumb approximation of 1r

Pla.y) 1 0<zxz<1l and O<y<l1
T,Y) =
i 0 otherwise

T :4]/]1((:E2+y2) <1)P(z,y) dz dy

import numpy as np
N = 12; samples = np.random.rand(N, 2); print(4 * np.mean(np.sum(samples ** 2, 1) < 1));
N = int(1le7); samples = np.random.rand(N, 2); print(4 * np.mean(np.sum(samples ** 2, 1) < 1));

1.3333333333333333
3.1415188



Why sampling?

“Monte Carlo is an extremely bad method; it should be used only
when all alternative methods are worse.”

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast.

from scipy import integrate
y, abserr = integrate.quad(lambda x: np.sqrt(l - x * x), 0, 1)
print(4 * y, 4 * abserr)

3.1415926535897922 3.533564552071766e-10

Numerical analysis lecturers are covering alternatives for higher dimensions.

But, no approx. integration method always works. Sometimes Monte Carlo is the best.



Probabilistic approximation taxonomy

Many problems of interest in probabilistic approximation can be written as an integral
of type:

/ f(z,y)dz
Examples:
 Free energy: —log/e—U<W)dx
« Thermodynamics/posterior expectations: / f(z)P(x|y)dx
« Evidence and model selection: /P(W)P(m)dx
» Prediction: / P (Ytuture|T) P(x|ypast ) d

In practice, these integrals can rarely be evaluated exactly.



Probabilistic approximation taxonomy

/ fle,pde = 3 wif ()

* Replace hard integrals with summations.
« Sampling methods

« Central problem: how to sample x*

« Monte Carlo, MCMC, Gibbs, etc.



Probabilistic approximation taxonomy

/f(:f:,y)dw A /g(a?,y)dﬂf

* Replace hard integrals with easier integrals.
« Message passing on factor graph

« Central problem: how to find g € G

VB, EP, etc.



Probabilistic approximation taxonomy

[ fapde ~ [ haysat)de

* Replace hard integrals with estimators.
* "Non-Bayesian" methods

« Central problem: how to find x*

« MAP, ML, Laplace, etc.



Eye-balling samples

Sometimes samples are pleasing to look at:

(if you're into geometrical combinatorics)
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A brief history

Buffon (1707 - 1788): Needle problem.

Enrico Fermi (1901 - 1954): Monte Carlo method for
neutron diffusion

Stanistaw Ulam (1909 - 1984), John von Neumann
(1903 - 1957), Nicholas Metropolis (1915 - 1999):
Markov Chain Monte Carlo (MCMC)
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Sampling from distributions

Use library routines for univariate
distributions
(and some other special cases)

This book (free online) explains how
some of them work
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Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

Draw mass to left of point:
u ~ Uniform|[0,1]

Sample, y(u) = h~(u)

0

Figure from PRML, Bishop (2006)

Y

Although we can't always compute and invert h(y)
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Sampling from distributions

Draw points uniformly under the curve:

P(z)

() OO

Probability mass to left of point ~ Uniform[0,1]

g



Rejection sampling

Sampling underneath a P(x) o P(x) curve is also valid

Draw un~derneath a simple
curve kQ(x) > P(x):
— Draw z ~ Q(x)
— height u ~ Uniform|[0, kQ(x)]

Discard the point if above P,
le. if u > P(x)
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Importance sampling

Computing P(z) and Q(z), then throwing x away seems wasteful
Instead rewrite the integral as an expectation under ():

/ F@)P(x) dz = / f(g;)ggcg(x) de.  (O()> 0if P(z) > 0)
1 o P(x(s)
~ g;f(x(S))QEx(s)i’ wt) ~ Q(x)

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation.
Divide and multiply any integrand by a convenient distribution.
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Importance sampling

Previous slide assumed we could evaluate P(z) = P(z)/Zp

L 2e 1 o PE®)
[ 1@P@ s~ 225315 T o~ Q)
7(s)
~ Jizf(g;(s)) f(si - Zs:f(x(S))w(S)
8 s=1 %ZS’ T(S ) s=1

This estimator is consistent but biased

Exercise: Prove that Zp/Z, ~ %ZS #(s) (which leads to the Free Energy
Perturbation).
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Summary so far

Sums and integrals, often expectations, occur frequently in statistics

Monte Carlo approximates expectations with a sample average

Rejection sampling draws samples from complex distributions

Importance sampling applies Monte Carlo to ‘any’ sum/integral
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Application to large problems

Rejection & importance sampling scale badly with dimensionality:

Example:

Rejection sampling:

Requires o > 1. Fraction of proposals accepted = o~

Importance sampling:

_ _ s \D/2
Variance of importance weights = (#Mg) — 1

Infinite / undefined variance if 0 < 1/y/2
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Markov chain Monte Carlo

Construct a biased random walk that explores target dist P*(x)

Markov steps, x; ~ T'(x—x¢_1)

MCMC gives approximate, correlated samples from P*(z)
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Transfer operators

Discrete example

-

3/5 2/3 1/6 1/6
pr=\1/5 1], T=|(12 0 1/2 |, Ty=T(v+«x)
1/5 1/2 1/2 0

P* is an invariant distribution of T because P*T = P*, i.e.
Y T(a) + x)P*(x) = P*(a)
T
Also P* is the equilibrium distribution of T

(1,0,0) 7' = (3/5,1/5,1/5) = P*(to machine precision)

Ergodicity requires: Elements of P*, TX are positive for some K.
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Detailed balance

Detailed balance means —» x — x' and - x' - x are equally probable:

T(x' — x)P*(x) =T (x «— z’')P*(2')

Exercise: Prove detailed balance wrt P* = P* is the equilibrium distribution of T

Enforcing detailed balance is easy: it only involves isolated pairs
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Metropolis—Hastings

Transfer operator:

e Propose a move from the current state Q(z'; x), e.g. N(x, 0?)

P(w')Q(a?;fE'))
'’ P(z)Q(z';7)

e Otherwise next state in chain is a copy of current state

e Accept with probability min(l

Notes:

e Can use P o P(x); normalizer cancels in acceptance ratio
e Satisfies detailed balance (Exercise: Prove this.)

e () must be chosen to fulfill the other technical requirements

27



Solution

P(z')Q(z; )
P(z)Q(a’; )

P(zx) - T(:n’<—:1:) = P(x) - Q(m’;m) min (1, ) = min(P(:n)Q(ac,; x), P(LL")Q(:L‘; m,))

P(z)Q(z'; z)
P(z")Q(w; z')

= P(«)-Q(:2") min (1, ) = P(a/)T(x—a')
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Step-size demo

Explore standard normal distribution with different step sizes o

sigma(0.1)

99.8% accepts

sigma(1)
68.4% accepts

sigma(100)

0.5% accepts

300
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200

300

400

500

600

700

800

900
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Metropolis limitations

Generic proposals use

Q(z';z) = N(z,07)

o large — many rejections

o small — slow diffusion:
~(L/0)? iterations required
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Random walk Metropolis

E.g..
Or

Q(z';x) = N(x,02%I)

!/
Q(z';w) o L —a)_<a

P* /
Acceptance prob = min { P*((Z)) , 1}

How large a step?

Tiny step == large P*(z")/P*(x) = high acceptance
Large step = small P*(z’) /P*(x) = low acceptance

We might have wanted high acceptance and large moves.
But there’s a tradeoff.

Sill



0.234 rule

Default advice:
try step sizes until about 23.4% of proposals are accepted. (Wide range ok)

Why?
Gelman, Roberts, Gilks (1996)

Consider exploring a high dimensional unimodal density,

such as P* = N(0, I;) with Q(a';z) = N(x,021,)
or P* = N(u,X) with Q(a';x) = N(z,03%)

They find the asymptotically optimal o is 2.38/\/3.

It is hard to scale the problem to make >. = I. Easy to monitor acceptance rate.

However the optimal o4 yields 23.4% acceptance as d — o0
And close to that for d > 5.

Multimodal problems

Requires larger steps and lower acceptance.
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Metropolis-adjusted Langevin algorithm (MALA)

Overdamped Langevin equation:

dz = Vlog P*(z)dt + v2dW,

— Euler discretization:

Tp1 = Tk + 7V 1og P (xk) + V27

= Metropolis acceptance with proposale density:

Q(z';x) = N(x + 7Viog P*(x),271)

The optimal acceptance rate for this algorithm is 0.574 according to G. O. Roberts
and J. S. Rosenthal (1998).
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Stochastic gradient Langevin dynamics

Settings: Inference for big data (notations are different here)

Given some parameter vector 6, its prior distribution p(8), and a set of data points
X = {x;}IL,, Stochastic Gradient Langevin dynamics samples from the posterior
distribution

p(01X) o p(0) | | p(x:16)

-

1=1

But it is difficult to directly draw samples for an extremely large N.
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Stochastic gradient Langevin dynamics

Stochastic optimization: If we are only interested in the MAP estimation

N T
Af; = 6—; (V log p(0;) + . > Vlogp(ﬂfnlﬁ't))

1=1

where

@) o0
Eetzoo Eef<oo

t=1 t=1
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Stochastic gradient Langevin dynamics

Stochastic gradient Langevin dynamics:

€ N <
A0, = 5 (V1owp(0) + 3 S ViogpCeala) ) +n
e~ N(07 6t)
where

@) o0
Eetzoo Eef<oo

t=1 t=1

It can be proved that 8, —» p(8|X) as t — oo. (Welling and Teh, ICML 2011)
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Random batch method for interacting particle
systems

Settings: Simulation for a large number of particles

Given a system consisting of N particles {x‘}i\'= ,» the external force —V'V and the

interacting force K, we hope to draw samples from the equilibrium distribution of

1
N —1

Z K(z' — 27)dt + odW*
JF

dr' = —VV(2")dt +

But it is difficult to perform direct simulations for an extremely large N.

37



Random batch method for interacting particle
systems

Solution: Perform simulation within a random batch for each step.

Select a random batch € c {1,..., N} and perform a simulation step within the batch:

1
€l =1

Z K(z' — 27)dt + odW", fori € C
jeC\{i}

do' = —VV (2")dt +

It can be proved that the simulation equilibrium distribution tends to the true one as
T—>0and N — oo. (Jin, JCP 2020)
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Combining operators

A sequence of operators, each with P* invariant:

xg ~ P*(x)

z1 ~ To(x1—x0) P(x1) = >, Ta(z1—20)P*(x0) = P*(21)
xo ~ Tp(xo—x1) P(z9) = le Ty(zo—x1)P*(x1) = P*(x2)
x3 ~ To(x3—x2) P(zs) = >, Te(zz—x2)P*(22) = P*(x3)

— Combination T.1T},T, leaves P* invariant
— If they can reach any x, T. 1T, is a valid MCMC operator
— Individually T}, T3 and 1}, need not be ergodic

SY



Gibbs sampling

228

A
v

A method with no rejections: ~ feoeeeememeeeees

— Initialize x to some value
— Pick each variable in turn or randomly
and resample P(x;|x ;)

[

A

Figure from PRML, Bishop (2006)

nyY

1

Proof of validity: a) check detailed balance for component update.
b) Metropolis—Hastings ‘proposals’ P(xz;|x;+;) = accept with prob. 1
Apply a series of these operators. Don't need to check acceptance.
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Gibbs sampling

Alternative explanation:

Chain is currently at x

At equilibrium can assume x ~ P(x)

Consistent with X,; ~ P(X;2:), *i~ P(z;|x;2i)

Pretend x; was never sampled and do it again.

41



“Routine” Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

e Conditionals with a few discrete settings can be explicitly normalized:

P(ai|xjzi) o< P, Xji)

_ Pl x5
> P(x},%x;2;) < this sum is small and easy

e Continuous conditionals only univariate
= amenable to standard sampling methods.

42



“Routine” Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

e Conditionals with a few discrete settings can be explicitly normalized:

P(ai|xjzi) o< P, Xji)

_ Pl x5
> P(x},%x;2;) < this sum is small and easy

e Continuous conditionals only univariate
= amenable to standard sampling methods.

Metropolis sampling can also be used for each Gibbs sampling step.
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Reducible Gibbs

o _
« « Uniform in two circles
S _ « Update horizontal then vertical
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Ising model

Image & € {—1,1}*%% with m(x) = exp(—H (x)/T) temperature 7' > 0

H(x)=— Z T;Th
jk
Ising model

Used in physics (eg magnetism). Besag introduced it to image processing.
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Ising model

There are very clever ways to sample the Ising model.
Or we can just flip bits conditionally on their 4 neighbours.

, o1 R C
Let's trace mean spin = D i1 D i1 Tij

Trace of mean spin for critical Ising model

0.5

0.0

| | | | I |
0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

We see it makes a smallish number of round trips.
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Summary so far

e \We need approximate methods to solve sums/integrals

e Monte Carlo does not explicitly depend on dimension,
although simple methods work only in low dimensions

e Markov chain Monte Carlo (MCMC) can make local moves.
By assuming less, it's more applicable to higher dimensions

e simple computations = “easy’ to implement
(harder to diagnose).

How do we use these MCMC samples?

47



Burn-in

The law of (Markov chain) large numbers supports:
1 S
= g Z f(iﬁ(l))
i=1

Burn-in = warmup

1 & .
h=o—% > f@®)

1=B+1

Skip a few observations. Maybe they’re not so close to P*.

Should we? Yes and no.
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Burn-in

Charlie Geyer

Won't throw out any data.

Chapman & Hall/CRC
Handbooks of Modern
Statistical Methods

Handbook of
Markov Chain
Monte Carlo

Edited by

Steve Brooks
Andrew Gelman
Galin L. Jones
Xiao-Li Meng

(-g) CRC Press
&) racimiscns

< In this book. —

Andrew Gelman

/ / RS
\[//

LikestouseB=S/2
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Thinning

Approximately independent samples can be obtained by thinning.
However, all the samples can be used.

Use the simple Monte Carlo estimator on MCMC samples. It is:
— consistent

— unbiased if the chain has “burned in”

The correct motivation to thin: if computing f(x(*)) is expensive

50



Variance

Assume x(W~P* (e.g., burn-in) then for y® = f(x®) € R,

Var(j1)

%2 Z’L— Zg 1COV( ), (j))
ar(y) Zz— z] 1p|@—3|

Va“”(uzzk o)

assuming that the limit of X5, p, exists. Typically they do, like p, = 0(p*) for some
p < 1.

Practical Markov chain Monte Carlo
Charles J. Geyer, Statistical Science. 7(4):473-483, 1992.
http://www.jstor.org/stable/2246094
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Autocorrelations

Autocorrelations for the Ising model
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Did the chain mix well?

Bad ACF — No
Good ACF —>  Maybe

Recent promising work by Gorham & Mackey using Stein discrepancy can
provide a “Yes” (but it's expensive).

https://arxiv.org/abs/1909.11827
https://arxiv.org/abs/1703.01717
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Summary so far

e MCMC algorithms are general and often easy to implement

e Running them is a bit messy. . .
... but there are some established procedures.

e Given the samples there might be a choice of estimators

Next question:
Is MCMC research all about finding a good Q(x)?
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Hamiltonian dynamics

Construct a landscape with gravitational potential energy, E(x):

P(z) o e F®), E(z) = —log P*(x)

Introduce velocity v carrying kinetic energy K (v) = v 'v/2

Some physics:

e Total energy or Hamiltonian, H = E(z) + K(v)
e Frictionless ball rolling (x,v)— (2, v") satisfies H(z',v") = H(z,v)

e |deal Hamiltonian dynamics are time reversible:

— reverse v and the ball will return to its start point

55



Hamiltonian Monte Carlo

Define a joint distribution:
e P(x,v) x e E@)o—K() — o—E(z)-K(v) — ,—H(z,v)

e Velocity is independent of position and Gaussian distributed

Hamilton’s equations:
Markov chain operators 3 — ‘9H
'U —
e Gibbs sample velocity — %

e Simulate Hamiltonian dynamics then flip sign of velocity

— Hamiltonian ‘proposal’ is deterministic and reversible
q(x’, vz, v) = q(z,v; 2", v") =1

— Conservation of energy means P(z,v) = P(z’,v')

— Metropolis acceptance probability is 1

Except we can’t simulate Hamiltonian dynamics exactly
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Leap-frog dynamics

a discrete approximation to Hamiltonian dynamics:

vi(t+5) = will) —% 8E5§zft))
ri(t+e) = x4(t) +evi(t +35)

DE(x(t + ¢))
6237;

€
vi(t—l—é) — ’Uz(t—l—%) _E
e H is not conserved

e dynamics are still deterministic and reversible

e Acceptance probability becomes min|[1, exp(H (v,z) — H(v',z"))]
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Leap-frog dynamics
a discrete approximation to Hamiltonian dynamics:

vi(t+5) = fUZ.(t)_%aE( (1))

dx;
xi(t—l—E) = Zl?ri(t)‘l‘evz( ‘|‘%)
OF

(z(t +¢))
6’:17@-

€
vi(t—l—é) — ’Uz(t—l—g) —E
e H is not conserved

e dynamics are still deterministic and reversible Why?

e Acceptance probability becomes@p([i(w, r)— H(v', z')
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MH with deterministic transformation

W

Current sample x

Draw a random variable v~g(v)

Perform an invertible and deterministic transformation (x', v") = h(x, v)
Accept x’ as the new sample (i.e., x: = x") with probability

p(z')g'(v') }

p(z)g(v)
The invariant distribution of of the sampling step is p(x)

oz, v')
o(x,v)

a(z,z’) = min {1,

Green, P. J. (2003). Trans-dimensional Markov chain Monte Carlo, pp. 179-98. OUP, Oxford.
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MH with deterministic transformation

1. Current sample x

2. Draw a random variable v~g(v)

3. Perform an invertible and deterministic transformation (x’, v') = h(x, v)
4. Accept x’ as the new sample (i.e., x: = x") with probability

}

5. The invariant distribution of of the sampling step is p(x)

oz, v')
o(x,v)

p(z')g'(v')
p(z)g(v)

a(z,z’) = min {1,

For HMC, p(x) = exp(—E(x)),g(v) = g'(v) = exp(—K(v)) and h(x, v)
IS volume preserving.

Green, P. J. (2003). Trans-dimensional Markov chain Monte Carlo, pp. 179-98. OUP, Oxford.
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Hamiltonian Monte Carlo

The algorithm:
e Gibbs sample velocity ~ A(0, T)

e Simulate Leapfrog dynamics for L steps

e Accept new position with probability
min(1, exp(H (v, z) — H(v',2'))]

The original name is Hybrid Monte Carlo, with reference to the
“hybrid” dynamical simulation method on which it was based.
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Annealing / Tempering

e.g. P(x;0) x P*(X)ﬁﬂ(x)(l—ﬁ)

A_/-\__A_/L ,..,\

6=0 6 =10.01 G =0.1 8 =0.25 6 =0.5

1/3 = “temperature”
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Using other distributions

Chain between posterior and prior:

e.g. P(6;0) = ——P(D|0)°P(0)

Z(0)
8=0 £ =0.01 B =0.1 8 =0.25 B =0.5 6=1

Advantages:
e mixing easier at low (3, good initialization for higher 37

CZ()_Z(B) Z(B) Z(B) 2B Z()
Z(0) ~ 2(0) Z(B) Z(%) Z(Bs) Z(B)

Related to annealing or tempering, 1/ = “temperature”
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Parallel tempering

Normal MCMC transitions + swap proposals on P(X) = HP(X;,@)

G
I

Problems / trade-offs: If (X’;8) and (X'; 8) are chosen,

e obvious space cost they will be exchanged with probability
—_— (X" ) P(X:B")

e need to equilibriate larger system min {1 P(X,8)P(X".5")

e information from low (3 diffuses up by slow random walk
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Approx. Bayesian computation

(0| x) x w(0) x p(ax|d)

Sometimes we cannot compute the likelihood p(x | 0).
E.g., 0 describes how a colony of bacteria evolves over time, and
x is how it looks right now

A taste of ABC

Loop over 7

Sample 0; ~ m(0).

Sample x; | 0;

Keep; <— ||x; — x| < €
Use the retained 6;

Many variants. Now a whole handbook.
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THE END

Thank you'!

Questions?
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