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OUTLINE
Part I (yesterday) 

Motivation: How to represent HEP data for machine learning? 

Graph neural networks 

Example applications in HEP 

Part II (today) 

hands-on tutorial: jet tagging with GNNs 

practicalities
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JET TAGGING
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INTRODUCTION
Jet tagging: identifying the hard scattering particle 
that initiates the jet 

examples: 

heavy flavor tagging (bottom/charm) 

heavy resonance tagging (top/W/Z/Higgs) 

quark/gluon discrimination 

exotic jet tagging (displaced, 4-prong, …) 

powerful tools for many new physics searches and 
standard model measurements 

One of the frontiers of ML for HEP 

playground for novel ML approaches / algorithms 

rich structure / information in a jet 

How far are we from the performance limit?

significant performance improvement in real 
experiments 

but also new perspectives and deeper insights into 
QCD / jet physics

4

Anatomy of a b-jet 16
41

Typical Experimental Signature

b-quark fragments into a b-hadron which carries most of the jet energy

Most b-hadrons (⇡ 90%) decay into c-hadrons

b-hadron decay vertex often displaced from the primary pp vertex by a few
mm

Subsequent c-hadron decay vertex often displaced by a further few mm

Tracks from both of these vertices often have large impact parameters

Anatomy of a c-jet 15
41

Typical Experimental Signature

c-quark fragments into a c-hadron which carries around half of the jet energy

c-hadron decay vertex often displaced from the primary pp vertex by a few
mm

Tracks from this vertex can often have large impact parameters

Anatomy of a light flavour (u, d , s) jet 14
41

Typical Experimental Signature

Light-quarks hadronise into many light hadrons which share the jet energy

Tracks from this vertex often have impact parameters consistent with zero

Long-lived light hadrons (e.g. K
0
S , ⇤

0) can be produced, though they are
more likely to decay very far (many cm) from the primary pp vertex

Light flavor (u,d,s,g) jet

c-jetb-jet

Image credit

Image credit

http://www.hep.ph.ic.ac.uk/seminars/slides/2018/181115_Chisholm_ATLAS_Hcc.pdf
https://link.springer.com/article/10.1140/epjc/s10052-020-7608-4
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BOOSTED JET TAGGING
At high pT, the decay products from heavy particles (Higgs/W/Z/top) become collimated 
and can be contained in a single large-R jet 

Large-R jets from resonance (Higgs/W/Z/top) decays exhibit different characteristics 
that can be used to separate them from jets initiated by QCD radiations 

different radiation patterns (“substructure”) 

3-prong (top), 2-prong (W/Z/H) vs 1-prong (gluon/light quark jet) 

different flavor content: existence of one or more b-/c-quarks 

simultaneously exploiting both substructure and flavor to maximize the performance

5

jet

jet

heavy-flavour
jet

PV

SV

displaced
tracks

IP

charged
lepton

tb q

q

W t b

q

q
W

large boost

3-prong 2-prong 1-prong

b

q
q

q

q
q/gtop W/Z/H q/g

ΔR ∼
2m
pT



G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s 

- O
ct

ob
er

 1
4,

 2
02

1 
- H

ui
lin

 Q
u 

(C
ER

N
)

JET AS A POINT CLOUD

6
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ARCHITECTURE: PARTICLENET
ParticleNet 

customized graph neural network architecture for jet tagging with the point cloud approach, based on 
Dynamic Graph CNN [Y. Wang et al., arXiv:1801.07829] 

explicitly respects the permutation symmetry of the point cloud 

Key building block: EdgeConv 

treating a point cloud as a graph: each point is a vertex 

for each point, a local patch is defined by finding its k-nearest neighbors 

designing a permutation-invariant “convolution” function 

define “edge feature” for each center-neighbor pair: eij = hΘ(xi, xj) 

same hΘ for all neighbor points, and all center points, for symmetry 

aggregate the edge features in a symmetric way: xi’ =  eij 

EdgeConv can be stacked to form a deep network 

learning both local and global structures, in a hierarchical way

meanj

7

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

Ed
ge

Co
nv

 b
lo

ck

HQ and L. Gouskos 
[Phys.Rev.D 101 (2020) 5, 056019]

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019


G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s 

- O
ct

ob
er

 1
4,

 2
02

1 
- H

ui
lin

 Q
u 

(C
ER

N
)

PERFORMANCE OF PARTICLENET
Performance on the public top tagging benchmark dataset 

ParticleNet achieves the highest performance among all algorithms

8

SciPost Physics Submission

AUC Acc 1/✏B (✏S = 0.3) #Param
single mean median

CNN [16] 0.981 0.930 914±14 995±15 975±18 610k
ResNeXt [30] 0.984 0.936 1122±47 1270±28 1286±31 1.46M

TopoDNN [18] 0.972 0.916 295±5 382± 5 378 ± 8 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 792±18 798±12 808±13 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 867±15 918±20 926±18 58k
TreeNiN [43] 0.982 0.933 1025±11 1202±23 1188±24 34k
P-CNN 0.980 0.930 732±24 845±13 834±14 348k
ParticleNet [47] 0.985 0.938 1298±46 1412±45 1393±41 498k

LBN [19] 0.981 0.931 836±17 859±67 966±20 705k
LoLa [22] 0.980 0.929 722±17 768±11 765±11 127k
Energy Flow Polynomials [21] 0.980 0.932 384 1k
Energy Flow Network [23] 0.979 0.927 633±31 729±13 726±11 82k
Particle Flow Network [23] 0.982 0.932 891±18 1063±21 1052±29 82k

GoaT 0.985 0.939 1368±140 1549±208 35k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. For the background rejection we also show the mean and median
from an ensemble tagger setup. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

competitive with the technically much more advanced ResNeXt50 and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
competitive and e�cient physics-specific tools. While their performance does not quite match
the state of the art standard networks, it is close enough to test both approaches on key
requirements in particle physics, like treatment of uncertainties, stability with respect to
detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on the
event-level kinematics of the fat jets in the event sample has no visible impact on our quoted
performance metrics. We can then test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. Even the two strongest individual classifier outputs with relatively little physics input
— ResNeXt50 and ParticleNet — are not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we
can investigate whether their combination into a meta-tagger might improve performance.
Note that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed as a poten-
tial analysis tool, but rather as a benchmark of how much unused information is available
in correlations that could be captured by a future approach. It is implemented as a fully
connected network with 5 layers containing 100-100-100-20-2 nodes. All activation functions
are ReLu, apart from the final layer where we use SoftMax. Training is performed with the

15

ParticleNet-Lite 0.984 0.937 1262±49 26k

ParticleNet 0.986 0.940 1615±93 366k

Ensemble of 
all taggers

Architecture  
used by DeepAK8 

G. Kasieczka et al.  
[SciPost Phys. 7 (2019) 014]

(Preliminary ver.)

https://scipost.org/10.21468/SciPostPhys.7.1.014


HANDS-ON TUTORIAL
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WEAVER
https://github.com/hqucms/weaver 

a streamlined yet flexible machine learning R&D framework for HEP 

data loading: both in-memory and out-of-memory (scalable to O(100M) entries/TB level) 

supports common HEP data formats: ROOT, HDF5, awkward array 

input preprocessing: transformation/standardization, reweighting/sampling, padding, 
shuffling, etc. 

training: built-in training/validation loop for classification and regression  

monitoring/visualization via TensorBoard 

deployment: exporting PyTorch model to ONNX 

optimized inference w/ ONNXRuntime on CPUs/GPUs in Python/C/C++/etc. 

To train a neural network with Weaver: 

a YAML data configuration file describing how to process the input data. 

a python model configuration file providing the neural network module and the loss 
function

10

https://github.com/hqucms/weaver
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TOP TAGGING DATASET
https://zenodo.org/record/2603256 

hadronic tops for signal, qcd dijets background, both generated with Pythia8 

no MPI/pile-up included 

Delphes ATLAS detector card 

clustering of  particle-flow entries (produced by Delphes E-flow) into anti-kT 0.8 jets in the 
pT range [550,650] GeV 

all top jets are matched to a parton-level top within ΔR = 0.8, and to all top decay partons within 
0.8 

the leading 200 jet constituent four-momenta are stored, with zero-padding for jets with 
fewer than 200 

constituents are sorted by pT, with the highest pT one first 

1.2M / 400k / 400k for train / val / testing

11

https://zenodo.org/record/2603256
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HANDS-ON TIME!
To make it easier to copy the commands: 

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889 

Setup Weaver and weaver-benchmark

12

# prerequisite: install the dependent packages 
# https://github.com/hqucms/weaver#set-up-your-environmen 

git clone https://github.com/hqucms/weaver.git 
cd weaver 
git pull # update to the latest status 
git clone https://github.com/hqucms/weaver-benchmark.git

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
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HANDS-ON TIME!
To make it easier to copy the commands: 

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889 

Download and convert the dataset

13

# in the weaver/ directory 
mkdir top-dataset 
cd top-dataset 
# download the top-tagging dataset 
curl -O 'https://zenodo.org/record/2603256/files/train.h5' 
curl -O 'https://zenodo.org/record/2603256/files/val.h5' 
curl -O 'https://zenodo.org/record/2603256/files/test.h5' 
cd .. 
# back in the weaver/ directory 
# convert the h5 files to awkward arrays 
python weaver-benchmark/utils/convert_top_datasets.py -i top-dataset/ -o 
top-dataset/converted

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
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HANDS-ON TIME!
To make it easier to copy the commands: 

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889 

Training the ParticleNet model

14

# in the weaver/ directory 
python train.py \ 
 --data-train top-dataset/converted/train_file_0.awkd \ 
 --data-val top-dataset/converted/val_file_0.awkd \ 
 --data-test top-dataset/converted/test_file_0.awkd \ 
 --data-config weaver-benchmark/data/top/pf_points_features.yaml \ 
 --network-config weaver-benchmark/networks/top/particlenet_pf.py \ 
 --model-prefix outputs/{auto}/net \ 
 --predict-output pred.root \ 
 --num-workers 1 --fetch-step 1 --data-fraction 1 \ 
 --gpus 0 --batch-size 128 --num-epochs 20 \ 
 --start-lr 5e-3 --optimizer ranger \ 
 --log logs/{auto}.log --tensorboard _particle_net

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
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HANDS-ON TIME!
To make it easier to copy the commands: 

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889 

Training the Deep Set / Particle Flow Network

15

# in the weaver/ directory 
python train.py \ 
 --data-train top-dataset/converted/train_file_0.awkd \ 
 --data-val top-dataset/converted/val_file_0.awkd \ 
 --data-test top-dataset/converted/test_file_0.awkd \ 
 --data-config weaver-benchmark/data/top/pf_features_mask.yaml \ 
 --network-config weaver-benchmark/networks/top/pfn_pf.py \ 
 --model-prefix outputs/{auto}/net \ 
 --predict-output pred.root \ 
 --num-workers 1 --fetch-step 1 --data-fraction 1 \ 
 --gpus 1 --batch-size 128 --num-epochs 20 \ 
 --start-lr 5e-3 --optimizer ranger \ 
 --log logs/{auto}.log --tensorboard _pfn

 --gpus '' # to run on CPU

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
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HANDS-ON TIME!
To make it easier to copy the commands: 

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889 

Monitor training progress with TensorBoard

16

# in the weaver/ directory 
tensorboard --logdir=runs 
# open tensorboard in the web browser 
# http://localhost:6006

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
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HANDS-ON TIME!
To make it easier to copy the commands: 

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889 

Evaluate the performance

17

# in the weaver/ directory 
jupyter notebook 
# open jupyter in the web browser 
# http://localhost:8888

https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
http://localhost:8888


LUNDNET:  
JET TAGGING IN THE LUND PLANE 
WITH GRAPH NETWORKS
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JETS IN THE LUND PLANE
Jets in the Lund plane 

each emission (splitting) is mapped to a point in the 2D (angle, transverse momentum) plane 

further emissions (of the secondary particles) are represented in additional leaf planes

19

Primary Lund-plane regions
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The Lund plane provides an efficient description of the radiation 
patterns within a jet 

different kinematic regimes are clearly separated in the Lund plane 

often used in the discussion of resummations of large logarithms in 
perturbation theory / Monte Carlo parton shower generators 

can also be measured experimentally [ATLAS, PRL 124, 222002 (2020)]

https://link.aps.org/doi/10.1103/PhysRevLett.124.222002


G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s 

- O
ct

ob
er

 1
4,

 2
02

1 
- H

ui
lin

 Q
u 

(C
ER

N
)

CONSTRUCTING THE LUND PLANE
The Lund plane of a jet can be constructed in the following way: 

(1) recluster a jet j with the Cambridge/Aachen algorithm. 

(2) undo the last clustering step, defining two subjets ja, jb ordered in pT. 

(3) a set of kinematic variables (denoted as ) can be defined for the current splitting: 

(4) repeat (2) and (3) on ja, jb until ja, jb become single particles. 

Equivalently, the full Lund plane can also be represented as a binary Lund tree, with a tuple of 
variables  for each node 

𝒯(i)

𝒯(i) i

20
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2.1 Construction of the primary Lund plane

Our starting point for constructing the primary Lund plane is to (re-)cluster a jet’s con-

stituents with the Cambridge-Aachen (C/A) algorithm [49, 50], which has significant ad-

vantages over other members of the generalised-kt [51] family (see section 2.4).2 The C/A

algorithm identifies the pair of particles i and j closest in rapidity (y = ln E+pz
E−pz

, with

E and pz the particle’s energy and longitudinal momentum with respect to the colliding

beams) and azimuth φ, i.e. with the minimal value of ∆2
ij = (yi − yj)2 + (φi − φj)2. It

then recombines them into a “pseudojet” with momentum p = pi + pj . This procedure

is repeated until all particles (and pseudojets) have been recombined, or are separated by

∆ij larger than some parameter R.

To create a primary Lund plane representation of a jet we then work backwards through

the C/A clustering. One starts with the full jet and then proceeds as follows:

1. Decluster the current object to produce two pseudojets, pa and pb, labelled such that

pta > ptb, where pti is the transverse momentum of i with respect to the colliding

beams. We will consider pb to be the emission and pa + pb to be the emitter. In the

limit where pb carries little momentum relative to pa, pa + pb and pa can be thought

of being the same particle, simply differing through the loss of a small amount of

momentum by the radiation of a gluon pb.

2. Determine a number of variables associated with the declustering, e.g.

∆ ≡ ∆ab, kt ≡ ptb∆ab, m2 ≡ (pa + pb)
2, (2.1a)

z ≡ ptb
pta+ptb

, κ ≡ z∆ , ψ ≡ tan−1 yb−ya
φb−φa

, (2.1b)

In the limit ptb # pta and ∆ # 1, kt is the transverse momentum of particle b (the

emission) relative to its emitter, ψ is an azimuthal angle around the (sub)jet axis,

and z is the momentum fraction of the branching. In our default definition of the

Lund plane, the coordinates associated with this declustering will be ln∆ and ln kt.

One may also, however, make other choices of coordinates, such as for example ln∆

and lnκ, or ln∆ and ln kt/pt,jet (with pt,jet the jet transverse momentum). We will

denote the variables as a tuple T (i) = {k(i)t ,∆(i), . . .} for the ith iteration of this step.

3. Repeat the procedure by going to step 1 for the harder branch, pa.

This procedure gives an ordered list of tuples of variables

Lprimary =
[
T (i), . . . , T (n)

]
(2.2)

containing the kinematic variables for each of the primary branchings off the main emitter.

The kt and ∆ elements of the tuples (specifically their logarithms) can be interpreted as

set of coordinates of points in the Lund plane, corresponding to the full set of primary

2Throughout this paper, we also use the C/A algorithm for the initial jet finding. The case where jets are

clustered with the anti-kt algorithm (and re-clustered with the C/A algorithm) is discussed in appendix A.
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E and pz the particle’s energy and longitudinal momentum with respect to the colliding

beams) and azimuth φ, i.e. with the minimal value of ∆2
ij = (yi − yj)2 + (φi − φj)2. It

then recombines them into a “pseudojet” with momentum p = pi + pj . This procedure

is repeated until all particles (and pseudojets) have been recombined, or are separated by

∆ij larger than some parameter R.

To create a primary Lund plane representation of a jet we then work backwards through

the C/A clustering. One starts with the full jet and then proceeds as follows:

1. Decluster the current object to produce two pseudojets, pa and pb, labelled such that

pta > ptb, where pti is the transverse momentum of i with respect to the colliding

beams. We will consider pb to be the emission and pa + pb to be the emitter. In the

limit where pb carries little momentum relative to pa, pa + pb and pa can be thought

of being the same particle, simply differing through the loss of a small amount of

momentum by the radiation of a gluon pb.

2. Determine a number of variables associated with the declustering, e.g.

∆ ≡ ∆ab, kt ≡ ptb∆ab, m2 ≡ (pa + pb)
2, (2.1a)

z ≡ ptb
pta+ptb

, κ ≡ z∆ , ψ ≡ tan−1 yb−ya
φb−φa

, (2.1b)

In the limit ptb # pta and ∆ # 1, kt is the transverse momentum of particle b (the

emission) relative to its emitter, ψ is an azimuthal angle around the (sub)jet axis,

and z is the momentum fraction of the branching. In our default definition of the

Lund plane, the coordinates associated with this declustering will be ln∆ and ln kt.

One may also, however, make other choices of coordinates, such as for example ln∆

and lnκ, or ln∆ and ln kt/pt,jet (with pt,jet the jet transverse momentum). We will

denote the variables as a tuple T (i) = {k(i)t ,∆(i), . . .} for the ith iteration of this step.

3. Repeat the procedure by going to step 1 for the harder branch, pa.

This procedure gives an ordered list of tuples of variables

Lprimary =
[
T (i), . . . , T (n)

]
(2.2)

containing the kinematic variables for each of the primary branchings off the main emitter.

The kt and ∆ elements of the tuples (specifically their logarithms) can be interpreted as

set of coordinates of points in the Lund plane, corresponding to the full set of primary

2Throughout this paper, we also use the C/A algorithm for the initial jet finding. The case where jets are

clustered with the anti-kt algorithm (and re-clustered with the C/A algorithm) is discussed in appendix A.
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Figure 1. The Lund plane representation of a jet (left) where each emission is positioned according
to its ∆ and kt coordinates, and the corresponding mapping to a binary Lund tree of tuples (right).
The thick blue line represents the primary sequence of tuples Lprimary.

senting the angle and transverse momentum of a given emission with respect to its emitter,
and which is often used in discussions of resummations of large logarithms in perturbation
theory or of Monte Carlo parton showers. Each emission then creates an additional trian-
gular leaf corresponding to the phase space for further emissions. It was shown in recent
work that the Lund plane provides a useful basis to achieve an efficient description of the
clustering sequence of a jet, containing a rich set of information about its substructure,
with notable potential for jet tagging [33]. The Lund jet plane allows for a visual repre-
sentation of the clustering history of a jet. This systematic encoding of a jet’s radiation
patterns can be measured experimentally [34], allowing for comparisons between theoretical
predictions and experimental data [35] and with potential for constraining general purpose
Monte Carlo event generators [36].

The Lund plane is obtained by first reclustering a jet’s constituents with the Cam-
bridge/Aachen (CA) algorithm [37, 38], which sequentially identifies and combines the
pair of particles a and b closest in rapidity y, a measure of relativistic velocity along the
beam axis, and azimuthal angle φ around the same axis, i.e. minimising ∆2 = (ya − yb)2 +
(φa − φb)2. We then iterate over this clustering sequence, starting from the full jet and
proceeding by:

1. Declustering the current (pseudo)jet into two transverse momentum ordered pseudo-
jets a and b such that pt,a > pt,b, and where we consider b to be the emission of the
(a+ b) emitter.
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LUNDNET
The Lund plane/Lund tree essentially encodes the full radiation patterns of a jet  

a natural input for ML algorithms on jets [c.f. F. Dreyer, G. Salam and G. Soyez, JHEP 12 (2018) 064] 

LundNet: a graph neural network on the Lund tree 

overall architecture similar to ParticleNet 

each node exchanges information with one parent  
and two child nodes, using EdgeConv 

global pooling of all nodes at the end to get  
feature maps for final classification 

but unlike ParticleNet: 

no expensive k-nearest neighbor finding needed 

graph structure determined by the Lund tree 

only 3 (instead of 16) neighbors in EdgeConv 

significantly lower computational cost 

Two variants of LundNet studied 

LundNet-5: using all five Lund variables, 

LundNet-3: using only three Lund variables,
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Lund coordinates

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Lund tree

EdgeConv Block
C = (32, 32)

EdgeConv Block
C = (64, 64)

EdgeConv Block
C = (128, 128)

Concatenate

Linear (384) + BN + ReLU

ReLU

features

Lund tree feature pairs

Linear (C1) + BN + ReLU

Aggregation

Linear (C2) + BN + ReLU

(a)

(b) (c)

edge features

Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture
of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut
in 2TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is
indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut
values the number of nodes per jet is significantly reduced, and therefore correspondingly
so the computational cost of training a machine learning model on these inputs. The right-
hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,
which decreases quadratically as the cut is increased.

3 LundNet models

The Lund plane encodes a rich set of information of the substructure and radiation patterns
of a jet, therefore serving as a natural input to machine learning models for jet physics. The
use of Lund planes for jet tagging was first proposed in ref. [33] where log-likelihood and
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deep learning models are applied, and good performance was observed for tagging boosted
electroweak bosons. However, the main focus of ref. [33] was the primary Lund plane,
which inevitably leads to some loss of information due to the omission of the secondary
and tertiary splittings. In this article, we propose LundNet, a new deep learning model
capable of digesting the full Lund plane. Graph neural networks are used in this model to
better exploit the structural information associated with the Lund plane representation of
a jet, leading to significantly improved performance on a range of jet tagging benchmarks.

The LundNet model starts with transforming the Lund tree into a graph, where each
node corresponds to a Lund declustering and carries the tuple of kinematic variables T (i) as
its input features, and bidirectional edges are formed following the structure of the Lund
declustering tree. The graph network architecture is adapted from the ParticleNet [18]
model, with the EdgeConv operation proposed in ref. [41] as a core step. Figure 3(a)
illustrates how EdgeConv operates for one node (the highlighted one) in the Lund tree. It
consists of two steps: first, a shared multi-layer perceptron (MLP) is applied to each of
its incoming edges, using features of the node pair connected by the edge as inputs, and
produces a learned “edge feature”. As the Lund tree is a binary tree, there are only up to
three edges for each node, which do not require a nearest-neighbour search, therefore the
computational cost is much lower than for the ParticleNet model. As shown in figure 3(b),
we use two layers for this shared MLP, each consisting of a linear layer followed by a
batch normalization (BN) [42] and a ReLU activation [43]. Then, an aggregation step is
performed for the node by taking an element-wise average of the learned edge features of
all the incoming edges. A shortcut connection [44] is also added to take the original node
features into account directly, and the node feature is then updated to the new value. This
operation is performed for all the nodes using the same shared MLPs, therefore updating
all the node features but keeping the graph structure unchanged.

The architecture of the LundNet model is shown in figure 3(c). We stack six such
EdgeConv blocks to form a deep graph network. The number of channels of the MLPs
are (32, 32), (32, 32), (64, 64), (64, 64), (128, 128) and (128, 128) for the six EdgeConv
blocks, respectively. Outputs from these EdgeConv blocks are concatenated per node and
further processed by another MLP with 384 channels to better aggregate features learned
at different stages. A global average pooling is applied afterwards to read out information
from all nodes in the graph. This is followed by a fully connected layer with 256 units and
a dropout layer with a drop probability of 0.1, before the final classification output.

The LundNet model uses the Lund kinematic variables defined in equation (2.1) as the
input node features. Two variants of the LundNet models are investigated in this article.
The first one uses all five Lund variables,

(ln kt, ln∆, ln z, lnm,ψ) (3.1)

as input features to extract as much information as possible from the Lund plane to max-
imize the jet tagging performance and is referred to as LundNet-5. The second one uses
only three Lund variables,

(ln kt, ln∆, ln z) (3.2)
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PERFORMANCE OF LUNDNET
Significantly improved performance for top tagging compared to ParticleNet 

similar performance for W tagging and q/g discrimination 

Almost an order of magnitude speed-up in training/inference time compared to 
ParticleNet
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Figure 4. Background rejection 1/εQCD versus signal efficiency εW for W jet tagging with trans-
verse momentum pt > 500GeV.

given signal efficiency, i.e. which are closer to the top right corner of the figure. We com-
pare the LundNet-3 and LundNet-5 models with three recent benchmarks: the ParticleNet
model introduced in [18], the RecNN model from [9] and the Lund+LSTM model from
the original Lund plane paper [33], which uses an LSTM network on the primary Lund
sequence. Both the RecNN and the Lund+LSTM models, while superior to heuristic sub-
structure algorithms, are vastly outperformed by all of the graph based methods considered.
The LundNet-3 model is able to achieve about the same signal purity as ParticleNet, but
can be trained in substantially less time, as will be discussed in more detail in section 5.3,
and takes only a small 3-dimensional input for each declustering node in the Lund plane.
By including more kinematic information, the LundNet-5 model is able to provide a slightly
higher performance, but as we will see in section 5, this comes at the price of being less
robust to non-perturbative effects than its lower-dimensional counterpart.

In figure 5, we show the same process but with a transverse momentum selection cut
of pt > 2TeV for the jets. Here we can observe roughly the same qualitative behaviour as
at lower transverse momentum, but with the LundNet-5 model now clearly outperforming
the remaining taggers even at high signal efficiencies. At higher transverse momentum, the
peak in the Lund plane associated with the W splitting, and the corresponding depletion
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Figure 6. Background rejection 1/εQCD versus signal efficiency εTop for top jet tagging with
transverse momentum pt > 500GeV.

about the structure of only one of the initial decay products of the original top quark,
limiting the performance that can be achieved without input from secondary planes. It is
however interesting to see that in this process with more complex topology, the LundNet-5
model provides a substantial performance gain over existing state-of-the-art methods such
as ParticleNet. This is due to the nature of its input, which contains already high-level
kinematic information about the radiation patterns of the jet, making it much simpler for
the neural network to learn how to distinguish signals with more involved signatures. Thus
the LundNet-3 model achieves almost the same signal purity as the ParticleNet algorithm,
despite having as input only a reduced 3-tuple of kinematic variables per node and taking
about an order of magnitude less time to train. Interestingly, the performance gap between
the two LundNet taggers is entirely due to the addition of the subjet mass and azimuthal
angle ψ to the input features of each declustering for the LundNet-5 model.

4.3 Quark/gluon discrimination

Our final benchmark considers the discrimination between quark and gluon initiated jets,
a core challenge in collider physics which has seen much research in recent years [8, 52–58].
For this study, we consider a signal sample of 500k quark-initiated jets obtained through
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Figure 7. Background rejection 1/εGluon versus signal efficiency εQuark for quark/gluon discrimi-
nation between R = 0.4 anti-kt jets with transverse momentum pt > 500GeV.

the qq̄ → qq̄ process in Pythia 8.223, while the background is obtained from gg → gg

events. The jets are clustered with an anti-kt algorithm with radius R = 0.4 and are again
required to pass a transverse momentum pt > 500GeV and rapidity |y| < 2.5 selection cut.

The gluon-jet rejection as a function of the quark-jet efficiency is shown in figure 7.
In this case there is not as large a hierarchy between models, with the Lund+LSTM
model performing somewhat below the competing approaches. ParticleNet has a slight
edge over the other algorithms at small quark efficiencies, but is indistinguishable from
the LundNet-5 tagger at high efficiency. The LundNet-3 and RecNN models show similar
performance at high efficiency, with RecNN providing slightly higher gluon rejection at
lower quark efficiencies.

5 Robustness study

We will now investigate the robustness of the different models we considered in our bench-
marks. To this end we will consider three axes: their resilience to non-perturbative effects,
their resilience to detector effects, and the complexity and computational cost of each
tagger.

– 11 –

W tagging

Top tagging

Quark vs gluon

J
H
E
P
0
3
(
2
0
2
1
)
0
5
2

Number of Training time Inference time
parameters [ms/sample/epoch] [ms/sample]

LundNet 395k 0.472 0.117

ParticleNet 369k 3.488 1.036

Lund+LSTM 67k 0.424 0.131

Table 2. Summary for each model of the number of parameters, training time per sample and
epoch, and inference time per sample. The time is measured in milliseconds as obtained when
running the models on an Nvidia GTX 1080 Ti card.

Figure 12. Inference time per jet of the LundNet model as a function of the mean number of Lund
declusterings per 2TeV QCD jet. Each circle corresponds to a separate LundNet model trained for
a different kt cut, as indicated in the figure text.

needed for the Lund+LSTM model to converge. Due to its increased number of Edge-
Conv blocks, the LundNet model has 26k more parameters than ParticleNet. However, the
direct use of the Lund tree as the graph structure removes the need for a costly nearest-
neighbour search and also significantly reduces the number of edges for each node, therefore
increasing both the training and inference speed by almost an order of magnitude. This
is compounded by the fact that due to their higher-level kinematic inputs, the LundNet
models take significantly less epochs to converge to a good solution.3

3We note that in this benchmark the time needed to pre-process jets from list of particles to input data
to each model is not included. Due to its reliance on recursion, our python implementation takes about 4.3
ms per jet to recluster a jet and transform the clustering tree into a graph of Lund nodes. This is however
completely dependent on the data format used when saving Pythia events and can be therefore significantly
reduced through a more efficient processing pipeline implementation.
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ROBUSTNESS OF LUNDNET
Moreover, LundNet provides a systematic way to control the robustness 
of the tagger 

robustness assessed by applying the model trained on hadron-level 
samples to parton-level samples and compare the difference 

the non-perturbative region can be effectively rejected by applying a kt 
cut on the Lund plane, therefore improving the robustness of the tagger 
against non-perturbative effects 

LundNet-3 shows much higher resilience than LundNet-5
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Figure 8. Performance εW√
εQCD

versus resilience to non-perturbative effects.

5.1 Non-perturbative effects

Beyond its raw performance, it is important for practical applications that a tagger be
relatively robust to model-dependent non-perturbative effects. To carry out studies of
sensitivity to non-perturbative effects, we compare performance between a data sample of
both 50k signal and background jets produced at parton level, and a sample obtained with
hadronisation and underlying event models turned on in the event generator. The same
model, trained on hadron-level data, is evaluated on both samples for the comparison. For
this study, we use the same 2TeV W jet sample as was used in section 4.1 as well as the
corresponding models shown in figure 5, which are now used to label jets from both parton
and hadron-level data.

Figure 8 shows the robustness of the tagger in conjunction with its performance. This
robustness is measured through the resilience ζNP [59], calculated using both the efficiency
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5.1 Non-perturbative effects

Beyond its raw performance, it is important for practical applications that a tagger be
relatively robust to model-dependent non-perturbative effects. To carry out studies of
sensitivity to non-perturbative effects, we compare performance between a data sample of
both 50k signal and background jets produced at parton level, and a sample obtained with
hadronisation and underlying event models turned on in the event generator. The same
model, trained on hadron-level data, is evaluated on both samples for the comparison. For
this study, we use the same 2TeV W jet sample as was used in section 4.1 as well as the
corresponding models shown in figure 5, which are now used to label jets from both parton
and hadron-level data.

Figure 8 shows the robustness of the tagger in conjunction with its performance. This
robustness is measured through the resilience ζNP [59], calculated using both the efficiency
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Figure 9. Background rejection as a function of W tagging efficiency. Dotted lines indicate a W
tagger applied on parton-level data.

on the hadron-level sample, ε, and that on the parton-level sample, ε′

ζNP =
(

∆ε2W
〈ε〉2W

+
∆ε2QCD
〈ε〉2QCD

)−1/2

, (5.1)

where ∆ε = ε − ε′ and 〈ε〉 = 1/2 (ε+ ε′). The efficiencies are obtained with a fixed cut
corresponding to a signal efficiency εW = 70% on the hadron-level sample. The curves in
figure 8 are obtained by increasing a transverse momentum cut on the kt variable of the
Lund plane, progressively removing declustering nodes that fall below the cut. Each curve
starts on the upper left of figure 8, with a model trained without any cuts on the Lund
plane, and ends in the lower right part of the figure with a model trained with a transverse
momentum cut ln kt/GeV > 2 that has higher resilience but lower performance due to the
removal of parts of the Lund tree. We can observe that despite their good performance,
the ParticleNet and RecNN models have very little resilience to non-perturbative effects,
and have no handles through which such robustness can be consistently imposed. Some-
what surprisingly, the LundNet-5 also offers relatively poor robustness to non-perturbative
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PARTICLENEXT:  
PUSHING THE LIMIT OF JET TAGGING
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PARTICLENEXT: PAIRWISE FEATURES
ParticleNeXt: next-generation of ParticleNet, for better performance 

The first enhancement is the addition of (explicit) pairwise features on the edges

25
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, d
, s
):

xij

ParticleNet ParticleNeXt

Examples of pairwise features: 

,    ,   

,    

(use the logarithm to improve stability of the training)

Δ2
ij ≡ (yi − yj)2 + (ϕi − ϕj)2 m2 ≡ (pi + pj)2

kT ≡ min(pT,i, pT, j) Δij z ≡
min(pT,i, pT, j)

pT,i + pT, j

… …
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PARTICLENEXT: ATTENTIVE POOLING
Use attention-based pooling to increase the expressive power 

for both the local neighborhood pooling, and the final global pooling

26

zi = meanj(eij)

ParticleNet ParticleNeXt

xi

xjeij

xi

xjeij

 
 

attnij = MLP(eij)
wij = softmaxj(attnij)

zi = Σj(wij eij)

… …
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PARTICLENEXT: MULTI-SCALE AGGREGATION
Introduce multi-scale aggregation to better capture both short- and long-range correlations 

perform local aggregation for the 4, 8, 16 and 32 nearest neighbors (with different attentive 
pooling) and combine the 4 aggregated representations with a MLP 

on the other hand: remove dynamic kNN (based on learned features), i.e., use only kNN in η—φ 
space, to reduce computational cost  

in this case the kNN needs to be performed only once, and then the graph connectivity is fixed

27

ParticleNet ParticleNeXt

xi

xjeij

…

k = 16

Zi

ZjGij

…

Zi

ZjGij

…

Zi

ZjGij

…

Zi

ZjGij

M����� M�����

M����M����
 �EQPECV

x′ i = zi x′ i = MLP(zconcat
i )
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DATASET
A new jet tagging dataset was generated for the development of ParticleNeXt 

all events are generated with MadGraph5_aMC@NLO v3.1.1 at LO and interfaced with Pythia 
v8.245 for parton shower (w/ the default tune and MPI enabled) 

fast detector simulation w/ Delphes v3.5.0, using the CMS card 

tracking resolution parametrization based on the CMS Run1 performance [1405.6569] 

jets clustered from the Delphes e-flow objects using the anti-kt algorithm w/ R=0.8 

only consider jets w/ 500 < pT 1000 GeV, and |η| < 2 

input features for each jet constituent particle: 4-momenta, PID, impact parameters and errors 

top-tagging benchmark: 

Top quark jets:   

truth matching criteria: ΔR(jet, q) < 0.8 for all three quarks from hadronic top decay 

QCD jets:  

Higgs-tagging benchmark: 

Higgs boson jets:   

truth matching criteria: ΔR(jet, b) < 0.8 for both quarks from the Higgs decay 

QCD jets: 

pp → tt̄ (t → bW, W → qq′ )

pp → Z(→νν̄) + j ( j = u, d, s, c, b, g)

pp → hh (h → bb̄)

pp → Z(→νν̄) + j ( j = u, d, s, c, b, g)
28
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PERFORMANCE: TOP TAGGING

29
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Training/validation/test splitting: 

1.6M / 0.4M / 2M 

Training repeated for 3 times starting 
from randomly initialized weights 

the median-accuracy training is 
reported, and the standard deviation of 
the 3 trainings is quoted as the 
uncertainty 

Significant improvement in background 
rejection w/ ParticleNeXt 

~50% higher BKG rejection (@  = 70%) 

computational cost still under control

ϵS
9

TABLE V: Number of parameters, inference time per object, and background rejection of di↵erent models. The
CPU inference time is measured on an Intel Core i7-6850K CPU with a single thread using a batch size of 1. The

GPU inference time is measured on a Nvidia GTX 1080 Ti GPU using a batch size of 100.

Accuracy AUC 1/"b at Parameters Inference time Training time
"s = 70% "s = 50% (CPU) (GPU) (GPU)

ParticleNet 0.980 0.9979 1342± 4 6173± 425 366k 23 ms 0.30 ms 1.0 ms
ParticleNeXt 0.981 0.9982 2008± 75 8621± 309 560k 30 ms 0.54 ms 1.7 ms
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Investigated the effects of the new 
features of ParticleNeXt by removing 
each of them and repeat the training 

all the new features contribute 

~20% loss in BKG rejection if any of 
the three is removed

6

TABLE II: Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for 9 times using di↵erent randomly initialized weights. The table shows

the result from the median-accuracy training, and the standard deviation of the 9 trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the

uncertainty corresponds to the spread in 10 trainings.

Accuracy AUC 1/"b at "s = 70% 1/"b at "s = 50%
ParticleNet 0.980 0.9979 1342± 4 6173± 425
ParticleNeXt 0.981 0.9982 2008± 75 8621± 309

TABLE III: Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for 9 times using di↵erent randomly initialized weights. The table shows

the result from the median-accuracy training, and the standard deviation of the 9 trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the

uncertainty corresponds to the spread in 10 trainings.

Accuracy AUC 1/"b at "s = 70% 1/"b at "s = 50%
ParticleNet 0.980 0.9979 1342± 4 6173± 425
ParticleNeXt 0.981 0.9982 2008± 75 8621± 309

ParticleNeXt (w/o pairwise features) 0.980 0.9980 1695± 70 7353± 193
ParticleNeXt (w/o attentive pooling) 0.980 0.9981 1689± 72 7463± 696

ParticleNeXt (w/o multi-scale aggregation) 0.981 0.9980 1664± 57 7407± 193

ParticleNet model achieves state-of-the-art performance
on the top tagging benchmark dataset and improves over
previous methods significantly. Its background rejection
power at 30% signal e�ciency is roughly 1.8 (2.1) times
as good as PFN (P-CNN), and about 40% better than
ResNeXt-50. Even the ParticleNet-Lite model, with sig-
nificantly reduced complexity, outperforms all the pre-
vious models, achieving about 10% improvement with
respect to ResNeXt-50. The large performance improve-
ment of the ParticleNet architecture over the PFN archi-
tecture is likely due to a better exploitation of the local
neighborhood information with the EdgeConv operation.

B. Quark-gluon tagging

Another important jet tagging task is quark-gluon tag-
ging, i.e., discriminating jets initiated by quarks and by
gluons. The quark-gluon tagging dataset from Ref. [52]
is used to evaluate the performance of the ParticleNet
architecture on this task. The signal (quark) and back-
ground (gluon) jets are generated with Pythia8 using
the Z(! ⌫⌫) + (u, d, s) and Z(! ⌫⌫) + g processes, re-
spectively. No detector simulation is performed. The
final state non-neutrino particles are clustered into jets
using the anti-kT algorithm [75] with R = 0.4. Only jets
with transverse momentum pT 2 [500, 550] and rapidity
|y| < 2 are considered. This dataset consists of 2 mil-

lion jets in total, half signal and half background. We
follow the recommended splitting of 1.6M/200k/200k for
training, validation and testing in the development of the
ParticleNet model on this dataset.

One important di↵erence of the quark-gluon tagging
dataset is that it includes not only the four momentum,
but also the type of each particle (i.e., electron, photon,
pion, etc.). Such particle identification (PID) informa-
tion can be quite helpful for jet tagging. Therefore, we
include this information in the ParticleNet model and
compare it with the baseline version using only the kine-
matic information. The PID information is included in
an experimentally realistic way by using only five particle
types (electron, muon, charged hadron, neutral hadron,
and photon), as well as the electric charge, as inputs.
These six additional variables, together with the seven
kinematic variables, form the input feature vector of each
particle for models with PID information, as shown in
Table I.

Table IV compares the performance of the ParticleNet
model with a number of alternative models introduced
in Sec. IVA. Model variants with and without PID in-
puts are also compared. Note that for the ResNeXt-50
model only the version without PID inputs is presented,
as it is based on jet images which cannot incorporate PID
information straightforwardly. The corresponding ROC
curves are shown in Fig. 4. Overall, the addition of PID
inputs has a large impact on the performance, increasing

better
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MODEL ENSEMBLING
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TABLE II: Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for 9 times using di↵erent randomly initialized weights. The table shows

the result from the median-accuracy training, and the standard deviation of the 9 trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the

uncertainty corresponds to the spread in 10 trainings.

Accuracy AUC 1/"b at "s = 70% 1/"b at "s = 50%
ParticleNet 0.980 0.9979 1342± 4 6173± 425
ParticleNeXt 0.981 0.9982 2008± 75 8621± 309

TABLE III: Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for 9 times using di↵erent randomly initialized weights. The table shows

the result from the median-accuracy training, and the standard deviation of the 9 trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the

uncertainty corresponds to the spread in 10 trainings.

Accuracy AUC 1/"b at "s = 70% 1/"b at "s = 50%
ParticleNet 0.980 0.9979 1342± 4 6173± 425
ParticleNeXt 0.981 0.9982 2008± 75 8621± 309

ParticleNet (average ensemble) 0.980 0.9980 1558 6897
ParticleNeXt (average ensemble) 0.982 0.9984 2558 11494

FIG. 3: Performance comparison in terms of ROC
curves on the top tagging benchmark dataset.

ParticleNet model achieves state-of-the-art performance
on the top tagging benchmark dataset and improves over
previous methods significantly. Its background rejection

power at 30% signal e�ciency is roughly 1.8 (2.1) times
as good as PFN (P-CNN), and about 40% better than
ResNeXt-50. Even the ParticleNet-Lite model, with sig-
nificantly reduced complexity, outperforms all the pre-
vious models, achieving about 10% improvement with
respect to ResNeXt-50. The large performance improve-
ment of the ParticleNet architecture over the PFN archi-
tecture is likely due to a better exploitation of the local
neighborhood information with the EdgeConv operation.

B. Quark-gluon tagging

Another important jet tagging task is quark-gluon tag-
ging, i.e., discriminating jets initiated by quarks and by
gluons. The quark-gluon tagging dataset from Ref. [52]
is used to evaluate the performance of the ParticleNet
architecture on this task. The signal (quark) and back-
ground (gluon) jets are generated with Pythia8 using
the Z(! ⌫⌫) + (u, d, s) and Z(! ⌫⌫) + g processes, re-
spectively. No detector simulation is performed. The
final state non-neutrino particles are clustered into jets
using the anti-kT algorithm [75] with R = 0.4. Only jets
with transverse momentum pT 2 [500, 550] and rapidity
|y| < 2 are considered. This dataset consists of 2 mil-
lion jets in total, half signal and half background. We
follow the recommended splitting of 1.6M/200k/200k for
training, validation and testing in the development of the
ParticleNet model on this dataset.

Model ensembling still helps, even for 
the new ParticleNeXt 

ensembling method: average the DNN 
outputs from the 3 independent 
trainings 

~30% improvement for ParticleNeXt 
with the 3-model ensemble 

~15% for ParticleNet

better
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EXTENDED TRAINING DATASET

Training on a larger dataset 

training/validation/test splitting: 

10M / 1M / 2M 

i.e., 5x more jets for training compared 
to the baseline dataset 

Substantial gain in performance 

~70% higher BKG rejection (@  = 70%) 

Question: Can we encode more physics 
into the network to make the training 
more data-efficient?

ϵS
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TABLE IV: Performance comparison on the top tagging benchmark dataset. The ParticleNet, ParticleNet-Lite,
P-CNN and ResNeXt-50 models are trained on the top tagging dataset starting from randomly initialized weights.
For each model, the training is repeated for 9 times using di↵erent randomly initialized weights. The table shows

the result from the median-accuracy training, and the standard deviation of the 9 trainings is quoted as the
uncertainty to assess the stability to random weight initialization. Uncertainty on the accuracy and AUC are
negligible and therefore omitted. The performance of PFN on this dataset is reported in Ref. [52], and the

uncertainty corresponds to the spread in 10 trainings.

Accuracy AUC 1/"b at "s = 70% 1/"b at "s = 50%
ParticleNet 0.980 0.9979 1342± 4 6173± 425
ParticleNeXt 0.981 0.9982 2008± 75 8621± 309

ParticleNeXt (extended dataset) 0.983 0.9986 3378 15873

using the anti-kT algorithm [75] with R = 0.4. Only jets
with transverse momentum pT 2 [500, 550] and rapidity
|y| < 2 are considered. This dataset consists of 2 mil-
lion jets in total, half signal and half background. We
follow the recommended splitting of 1.6M/200k/200k for
training, validation and testing in the development of the
ParticleNet model on this dataset.

One important di↵erence of the quark-gluon tagging
dataset is that it includes not only the four momentum,
but also the type of each particle (i.e., electron, photon,
pion, etc.). Such particle identification (PID) informa-
tion can be quite helpful for jet tagging. Therefore, we
include this information in the ParticleNet model and
compare it with the baseline version using only the kine-
matic information. The PID information is included in
an experimentally realistic way by using only five particle
types (electron, muon, charged hadron, neutral hadron,
and photon), as well as the electric charge, as inputs.
These six additional variables, together with the seven
kinematic variables, form the input feature vector of each
particle for models with PID information, as shown in
Table I.

Table V compares the performance of the ParticleNet
model with a number of alternative models introduced
in Sec. IVA. Model variants with and without PID in-
puts are also compared. Note that for the ResNeXt-50
model only the version without PID inputs is presented,
as it is based on jet images which cannot incorporate PID
information straightforwardly. The corresponding ROC
curves are shown in Fig. 4. Overall, the addition of PID
inputs has a large impact on the performance, increasing
the background rejection power by 10%–15% compared
to the same model without using PID information. This
clearly demonstrates the advantage of particle-based jet
representations, including the particle cloud representa-
tion, as they can easily integrate any additional informa-
tion for each particle. The best performance is obtained
by the ParticleNet model with PID inputs, achieving
almost 15% improvement on the background rejection
power compared to the PFN-Ex (PFN using experimen-
tally realistic PID information) and P-CNN models. The
ParticleNet-Lite model achieves the second-best perfor-
mance and shows about 7% improvement with respect to

FIG. 4: Performance comparison in terms of ROC
curves on the quark-gluon tagging benchmark dataset.

the PFN-Ex and P-CNN models.

V. MODEL COMPLEXITY

Another aspect of machine-learning models is the com-
plexity, e.g., the number of parameters and the computa-
tional cost. Table VI compares the number of parameters
and the computational cost of all the models used in the
top tagging task in Sec. IVA. The computational cost is
evaluated using the inference time per object, which is a
more relevant metric than the training time for real-life
applications of machine-learning models. The inference
time of each model is measured on both the CPU and the
GPU, using the implementations with Apache MXNet.
For the CPU, to mimic the event processing workflow
typically used in collider experiments, a batch size of 1
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PERFORMANCE ON PUBLIC BENCHMARKS

33

ParticleNet-Lite

ParticleNet

ParticleNeXt

SciPost Physics Submission

AUC Acc 1/✏B (✏S = 0.3) #Param
single mean median

CNN [16] 0.981 0.930 914±14 995±15 975±18 610k
ResNeXt [30] 0.984 0.936 1122±47 1270±28 1286±31 1.46M

TopoDNN [18] 0.972 0.916 295±5 382± 5 378 ± 8 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 792±18 798±12 808±13 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 867±15 918±20 926±18 58k
TreeNiN [43] 0.982 0.933 1025±11 1202±23 1188±24 34k
P-CNN 0.980 0.930 732±24 845±13 834±14 348k
ParticleNet [47] 0.985 0.938 1298±46 1412±45 1393±41 498k

LBN [19] 0.981 0.931 836±17 859±67 966±20 705k
LoLa [22] 0.980 0.929 722±17 768±11 765±11 127k
Energy Flow Polynomials [21] 0.980 0.932 384 1k
Energy Flow Network [23] 0.979 0.927 633±31 729±13 726±11 82k
Particle Flow Network [23] 0.982 0.932 891±18 1063±21 1052±29 82k

GoaT 0.985 0.939 1368±140 1549±208 35k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. For the background rejection we also show the mean and median
from an ensemble tagger setup. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

competitive with the technically much more advanced ResNeXt50 and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
competitive and e�cient physics-specific tools. While their performance does not quite match
the state of the art standard networks, it is close enough to test both approaches on key
requirements in particle physics, like treatment of uncertainties, stability with respect to
detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on the
event-level kinematics of the fat jets in the event sample has no visible impact on our quoted
performance metrics. We can then test how correlated the classifier output of the di↵erent
taggers are. We show the pair-wise correlations for a subset of classifier outputs in Fig. 6, with
the correlation matrix given in Tab. 2. As expected from strong classifier performances, most
jets are clustered in the bottom left and top right corners, corresponding to identification as
background and signal, respectively. The largest spread is observed for correlations with the
EFP. Even the two strongest individual classifier outputs with relatively little physics input
— ResNeXt50 and ParticleNet — are not perfectly correlated.

Given that we find the outputs of the di↵erent algorithms not to be fully correlated, we
can investigate whether their combination into a meta-tagger might improve performance.
Note that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed as a poten-
tial analysis tool, but rather as a benchmark of how much unused information is available
in correlations that could be captured by a future approach. It is implemented as a fully
connected network with 5 layers containing 100-100-100-20-2 nodes. All activation functions
are ReLu, apart from the final layer where we use SoftMax. Training is performed with the

15

0.984 0.937 1262±49 26k

0.986 0.940 1615±93 366k

0.987 0.942 1923±48 560k

Table 2. Comparison between the performance reported for different classification algorithms on
the top tagging dataset. The uncertainty quoted corresponds to the standard deviation of nine
trainings with different random weight initialization. If the uncertainty is not quoted then the
variation is negligible compared to the expected value. Bold results represent the algorithm with
highest performance.

Acc AUC 1/✏B (✏S = 0.5) 1/✏B (✏S = 0.3)
ResNeXt-50 [16] 0.936 0.9837 302±5 1147±58
P-CNN [16] 0.930 0.9803 201±4 759±24
PFN [32] - 0.9819 247±3 888±17
ParticleNet-Lite [16] 0.937 0.9844 325±5 1262±49
ParticleNet [16] 0.940 0.9858 397±7 1615±93

JEDI-net [20] 0.9263 0.9786 - 590.4
JEDI-net with

P
O [20] 0.9300 0.9807 - 774.6

SPCT 0.931 0.9813 230±10 851±70
PCT 0.939 0.9849 354±12 1287±41

have transverse momentum pT 2 [500, 550] GeV and rapidity |y| < 1.7 for the reconstruc-
tion. For the training, testing and evaluation, the recommended splitting is used with
1.6M/200k/200k events respectively. Each particle contains the four momentum and the
expected particles type (electron, muon, photon, or charged/neutral hadrons). For each
particle, a set of 13 kinematic features is used. These features are chosen to match the ones
used in [16, 17]. The AUC and background rejection power are listed in Tab. 3.

Table 3. Comparison between the performance reported for different classification algorithms on
the quark and gluon dataset. The uncertainty quoted corresponds to the standard deviation of
nine trainings with different random weight initialization. If the uncertainty is not quoted then the
variation is negligible compared to the expected value. Bold results represent the algorithm with
highest performance.

Acc AUC 1/✏B (✏S = 0.5) 1/✏B (✏S = 0.3)
ResNeXt-50 [16] 0.821 0.9060 30.9 80.8
P-CNN [16] 0.827 0.9002 34.7 91.0
PFN [32] - 0.9005 34.7±0.4 -
ParticleNet-Lite [16] 0.835 0.9079 37.1 94.5
ParticleNet [16] 0.840 0.9116 39.8±0.2 98.6±1.3
ABCNet [17] 0.840 0.9126 42.6±0.4 118.4±1.5

SPCT 0.824 0.899 34.4±0.4 100.3±1.5
PCT 0.841 0.9140 43.3±0.7 117.5±1.4

6 Computational cost

Besides the algorithm performance, the computational cost is also an important figure of
merit. To compare the amount of computational resources required to evaluate each model,

– 7 –

ParticleNeXt 0.841 0.9129 41±0.1 105±1.0

Top tagging landscape

Quark/gluon tagging

G. Kasieczka et al.  
[1902.09914]

V. Mikuni, F. Canelli 
[2102.05073]

https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/2102.05073
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MASS (DE)CORRELATION
One feature of these taggers is the correlation with the jet mass 

jet mass shape of the background becomes similar to that of the signal after selection with 
the tagger: “Mass sculpting” 

not necessarily a problem, but a mass-independent tagger is often more desirable: 

if using the mass variable to separate signal and background 

tagging signal jets with an unknown mass

37
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 tagging: DeepAK8bb→H
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Background di-jet sample

CMS DP-2020/002

How to reduce the tagger’s correlation 
with jet mass?

More broadly: How to develop a classifier 
that is decorrelated with one or more 
auxiliary variables?

https://cds.cern.ch/record/2707946/
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METHOD 1: TRANSFORM TAGGER RESPONSE
A tagger is mass-correlated because its response changes with the jet mass 

a mass-independent tagger has a uniform response w.r.t the jet mass 

Mass decorrelation method 1: the “brute-force” way

38
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mass-correlated

Transforming the tagger response such that 
it no longer changes with the jet mass

Transformation
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DESIGNING DECORRELATED TAGGER (DDT)
Designing Decorrelated Tagger (DDT) [JHEP 1605 (2016) 156] 

transforms the tagger response as a function of the jet 
pT and ρ = ln(mSD2/pT2): 
 
 
where Tagger(x%)(ρ, pT) is the threshold for a background 
efficiency of x%, derived from simulated background 
(QCD) events 

after the transformation, the selection TaggerDDT>0 (or 
<0) yields a constant background efficiency of x% across 
the mSD and the pT range 

N2DDT 

N2: generalized energy correlation functions [JHEP 1612 (2016) 

153] for 2-prong (W/Z/H) tagging 

N2DDT: mass-decorrelated version of N2 using the DDT 
method

39

TaggerDDT(ρ, pT) = Tagger(ρ, pT) − Tagger(x%)(ρ, pT)
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CMS-PAS-JME-18-002

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html


G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r P
ar

tic
le

 P
hy

sic
s 

- O
ct

ob
er

 1
4,

 2
02

1 
- H

ui
lin

 Q
u 

(C
ER

N
)

METHOD 2: MODIFY TRAINING PROCEDURE
Mass decorrelation method 2: the “active” way 

Broadly speaking, this method involves choosing a differentiable metric to 
quantify the level of mass correlation and then minimize both the 
classification loss and this mass correlation metric 

mass correlation can be measured with a number of metrics  

KL divergence of the pass / fail mass shapes (e.g., CMS DeepDoubleB/C [CMS-DP-2018-046]) 

mutual information 

a neural network — the GAN approach (e.g., CMS DeepAK8-MD) 

distance correlation [Phys. Rev. Lett. 125, 122001] 

…

40

Modifying the training procedure/target 
to prevent mass correlation

L = LCE

Cross-Entropy loss

Modification L = LCE + LMD

Cross-Entropy loss + Mass-decorrelation loss
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DEEPAK8-MD

41

Feature extractor Classifier

1D CNN Fully Connected
Classification

output

back propagation

Fully Connected

Mass predictor

Mass  
prediction

Joint loss  
L = LC − λLMP

back propagation

Loss  
LMP
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DeepAK8-MD: mass-decorrelation using adversarial training [1611.01046] 

added a mass prediction network to predict the jet mass from the learned features 

higher mass prediction accuracy -> stronger correlation w/ the jet mass 

accuracy of the mass prediction included in the loss function as a penalty 

minimizing the joint loss -> improving classification accuracy while preventing mass correlation 

in addition: signal/background samples reweighted to a ~flat (pT, mSD) distribution to aid the 
training 

The adversarial training approach works reasonably well 

significantly reduced mass sculpting while still strong performance 

however the training process is quite challenging and requires a lot of fine-tuning…

CMS-PAS-JME-18-002

DeepAK8
DeepAK8-MD

Nominal DeepAK8

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-18-002/index.html
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METHOD 3: REWEIGHT TRAINING SAMPLES
For ML taggers, mass correlation arises because signal (t/W/Z/H) and 
background (QCD) jets have very different mass distributions 

maximizing signal/background separation inevitably causes the tagger responses to 
depend on the jet mass 

if signal and background jets have similar mass distributions, then mass sculpting 
simply cannot happen 

Mass decorrelation method 3: the “passive” way

42

Reweighting the training samples such that signal and 
background jets have the same mass distributions

Jet mass

A
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Reweighting

Background 
Signal

Background 
Signal
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METHOD 4: GENERATE SPECIAL TRAINING SAMPLES

The reweighting method works well for binary classification, but not sufficient 
for multi-class taggers 

multiple signals, so cannot reweight the background mass shape to the signals 

can possibly reweight everything to a flat / background-like mass distribution 

but very low stats for signal away from the mass peak -> poor performance 

Instead of reweighting, can generate dedicated samples to populate the full 
mass range 

Mass decorrelation method 4: the “actively-passive” way
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Generating a special training sample in which the 
signal particle has a flat mass distribution
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PARTICLENET-MD
ParticleNet-MD 

a generic mass-decorrelated 2-prong (W / Z / H / …) tagger 

w/ also flavour information: i.e., X->bb, X->cc and X->qq 

trained using a dedicated signal sample 

hadronic decays of a spin-0 particle X: , ,  

flat mass spectrum: mX ∈ [15, 250] GeV 

signal and background further reweighted to a flat [pT, mSD] distribution 

using the ParticleNet graph neural network architecture 

Very good mass decorrelation with this approach 

also very straightforward to train 

no need to modify training procedure / loss

X → bb̄ X → cc̄ X → qq̄

44

CMS DP-2020/002

https://cds.cern.ch/collection/CMS%20Detector%20Performance%20Summaries?ln=en


TAGGER CALIBRATION IN DATA
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DEEPAK8 IN CMS
Advanced deep learning-based algorithm for boosted object tagging, using AK8 (anti-kT R=0.8) jets 

multi-class classifier for top quark and W, Z, Higgs boson tagging 

sub-classes based on decay modes (e.g., H→bb, H→cc, H→VV*→4q) 

output scores can be aggregated/transformed for different tasks -> highly versatile tagger 

directly uses jet constituents (particle-flow candidates / secondary vertices) 

1D convolutional neural network (CNN) based on the ResNet [arXiv: 1512.03385] architecture 

significant performance improvement
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Particles
• Up to 100 PF candidates(*)

• Sorted in descending pT order

• Uses basic kinematic variables, 
Puppi weights, and track 
properties (quality,  covariance, 
displacement, etc.)

Secondary vertices
• Up to 7 SVs(*) (inside jet cone)

• Sorted in descending SIP2D order

• Uses SV kinematics and properties 
(quality, displacement, etc.)

(*) Number chosen to include all candidates for ≥ 90% of the events

���
�	����	� �����	
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PERFORMANCE IN DATA
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TAGGER CALIBRATION IN DATA
Crucial to calibrate these taggers in real data for them to be used in analyses 

Top/W tagging efficiency 

measured using the single-µ sample enriched in semi-leptonic ttbar events 

fit jet mass templates in the “pass” and “fail” categories simultaneously to extract efficiency in data 

simulation-to-data scale factors SF := eff(data) / eff(MC) derived to correct the simulation 

jet mass scale and resolution scale factors can also be extracted 

H->bb/H->cc tagging efficiency: measured via proxy jets, gluon->bb/cc, using a di-jet sample 

Mistag rates of background jet typically derived directly from analysis-specific control regions
48
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TAGGER CALIBRATION IN DATA (II)

Simulation-to-data scale factors typically consistent with 1.0 within 10-20%
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