Graph Neural Networks for Particle Physics

Part II

曲慧麟 (CERN)

第九届华大QCD讲习班 2021-10-14

OUTLINE

- Part I (yesterday)
 - Motivation: How to represent HEP data for machine learning?
 - Graph neural networks
 - Example applications in HEP
 - Part II (today)
 - hands-on tutorial: jet tagging with GNNs
 - practicalities

INTRODUCTION

- Jet tagging: identifying the hard scattering particle that initiates the jet
 - examples:
 - heavy flavor tagging (bottom/charm)
 - heavy resonance tagging (top/W/Z/Higgs)
 - quark/gluon discrimination
 - exotic jet tagging (displaced, 4-prong, ...)
 - powerful tools for many new physics searches and standard model measurements
 - One of the frontiers of ML for HEP
 - playground for novel ML approaches / algorithms
 - rich structure / information in a jet
 - How far are we from the performance limit?
 - significant performance improvement in real experiments
 - but also new perspectives and deeper insights into QCD / jet physics

Image credit

BOOSTED JET TAGGING

At high p_T, the decay products from heavy particles (Higgs/W/Z/top) become collimated and can be contained in a single large-R jet

- Large-R jets from resonance (Higgs/W/Z/top) decays exhibit different characteristics that can be used to separate them from jets initiated by QCD radiations
 - different radiation patterns ("substructure")
 - 3-prong (top), 2-prong (W/Z/H) vs 1-prong (gluon/light quark jet)
 - different **flavor** content: existence of one or more b-/c-quarks
 - simultaneously exploiting both **substructure** and **flavor** to maximize the performance

JET AS A POINT CLOUD

Point cloud

From Wikipedia, the free encyclopedia

A **point cloud** is a set of data points in space. Point clouds are generally produced by 3D scanners, which measure a large number of points on the external surfaces of objects around them.

Jet (Particle cloud)

From Wikipedia, the free encyclopedia

A jet (particle cloud) is a set of particles in space. Particle clouds are generally created by clustering a large number of particles measured by particle detectors, e.g., $\mathcal{A}_{\text{EXPERIMENT}}$ and $\mathcal{A}_{\text{EXPERIMENT}}$.

ARCHITECTURE: PARTICLENET

- ParticleNet
 - customized graph neural network architecture for jet tagging with the point cloud approach, based on Dynamic Graph CNN [Y. Wang et al., *arXiv:1801.07829*]
 - explicitly respects the permutation symmetry of the point cloud
 - Key building block: EdgeConv
 - treating a point cloud as a graph: each point is a vertex
 - for each point, a local patch is defined by finding its k-nearest neighbors
 - designing a permutation-invariant "convolution" function
 - define "edge feature" for each center-neighbor pair: e_{ij} = h_☉(x_i, x_j)
 - same h_{Θ} for all neighbor points, and all center points, for symmetry
 - aggregate the edge features in a symmetric way: x_i' = mean_j e_{ij}

HQ and L. Gouskos [Phys.Rev.D 101 (2020) 5, 056019]

PERFORMANCE OF PARTICLENET

- Performance on the public top tagging benchmark dataset
 - ParticleNet achieves the highest performance among all algorithms

G. Kasieczka et al. [SciPost Phys. 7 (2019) 014]

		AUC	Acc	1/	$\epsilon_B \ (\epsilon_S = 0)$.3)	#Param
				single	mean	median	
	CNN [16]	0.981	0.930	$914{\pm}14$	$995 {\pm} 15$	975 ± 18	610k
	ResNeXt [30]	0.984	0.936	1122 ± 47	1270 ± 28	1286 ± 31	1.46M
	TopoDNN [18]	0.972	0.916	295 ± 5	382 ± 5	378 ± 8	59k
Architecture	Multi-body N -subjettiness 6 [24]	0.979	0.922	$792{\pm}18$	$798{\pm}12$	808 ± 13	57k
used by DeepAK8	Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$	58k
X	TreeNiN [43]	0.982	0.933	1025 ± 11	1202 ± 23	1188 ± 24	34k
	P-CNN	0.980	0.930	732 ± 24	845 ± 13	834 ± 14	348k
	ParticleNet [47] (Preliminary ver.)	0.985	0.938	$1298 {\pm} 46$	$1412{\pm}45$	1393 ± 41	498k
	LBN [19]	0.981	0.931	$836{\pm}17$	$859{\pm}67$	$966{\pm}20$	705k
	LoLa [22]	0.980	0.929	722 ± 17	$768{\pm}11$	765 ± 11	127k
	Energy Flow Polynomials [21]	0.980	0.932	384			1k
Ensemble of	Energy Flow Network [23]	0.979	0.927	633 ± 31	729 ± 13	$726{\pm}11$	82k
all taggers 🔭	Particle Flow Network [23]	0.982	0.932	891 ± 18	1063 ± 21	1052 ± 29	82k
\ \	GoaT	0.985	0.939	1368 ± 140		$1549{\pm}208$	35k
	ParticleNet-Lite	0.984	0.937	1262±49			26k
	ParticleNet	0.986	0.940	1615±93			366k

Hands-on Tutorial

WEAVER

- <u>https://github.com/hqucms/weaver</u>
 - a streamlined yet flexible machine learning R&D framework for HEP
 - data loading: both in-memory and out-of-memory (scalable to O(100M) entries/TB level)
 - supports common HEP data formats: ROOT, HDF5, awkward array
 - input preprocessing: transformation/standardization, reweighting/sampling, padding, shuffling, etc.
 - training: built-in training/validation loop for classification and regression
 - monitoring/visualization via TensorBoard
 - deployment: exporting PyTorch model to ONNX
 - optimized inference w/ ONNXRuntime on CPUs/GPUs in Python/C/C++/etc.
 - To train a neural network with Weaver:
 - a YAML data configuration file describing how to process the input data.
 - a python model configuration file providing the neural network module and the loss function

TOP TAGGING DATASET

- https://zenodo.org/record/2603256
 - hadronic tops for signal, qcd dijets background, both generated with Pythia8
 - no MPI/pile-up included
 - Delphes ATLAS detector card
 - clustering of particle-flow entries (produced by Delphes E-flow) into anti- k_T 0.8 jets in the p_T range [550,650] GeV
 - all top jets are matched to a parton-level top within $\Delta R = 0.8$, and to all top decay partons within 0.8
 - the leading 200 jet constituent four-momenta are stored, with zero-padding for jets with fewer than 200
 - constituents are sorted by p_T , with the highest p_T one first
 - 1.2M / 400k / 400k for train / val / testing

- To make it easier to copy the commands:
 - https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
 - Setup Weaver and weaver-benchmark

prerequisite: install the dependent packages
https://github.com/hqucms/weaver#set-up-your-environmen

git clone https://github.com/hqucms/weaver.git
cd weaver
git pull # update to the latest status
git clone https://github.com/hqucms/weaver-benchmark.git

- To make it easier to copy the commands:
 - https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
 - Download and convert the dataset

```
# in the weaver/ directory
mkdir top-dataset
cd top-dataset
# download the top-tagging dataset
curl -0 'https://zenodo.org/record/2603256/files/train.h5'
curl -0 'https://zenodo.org/record/2603256/files/val.h5'
curl -0 'https://zenodo.org/record/2603256/files/test.h5'
cd ..
# back in the weaver/ directory
# convert the h5 files to awkward arrays
python weaver-benchmark/utils/convert_top_datasets.py -i top-dataset/ -o
top-dataset/converted
```

- To make it easier to copy the commands:
 - https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889

Training the ParticleNet model

```
# in the weaver/ directory
python train.py \
    --data-train top-dataset/converted/train_file_0.awkd \
    --data-val top-dataset/converted/val_file_0.awkd \
    --data-test top-dataset/converted/test_file_0.awkd \
    --data-config weaver-benchmark/data/top/pf_points_features.yaml \
    --network-config weaver-benchmark/networks/top/particlenet_pf.py \
    --model-prefix outputs/{auto}/net \
    --predict-output pred.root \
    --num-workers 1 --fetch-step 1 --data-fraction 1 \
    --gpus 0 --batch-size 128 --num-epochs 20 \
    --start-lr 5e-3 --optimizer ranger \
    --log logs/{auto}.log --tensorboard _particle_net
```

- To make it easier to copy the commands:
 - https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
 - Training the Deep Set / Particle Flow Network

```
# in the weaver/ directory
python train.py \
    --data-train top-dataset/converted/train_file_0.awkd \
    --data-val top-dataset/converted/val_file_0.awkd \
    --data-test top-dataset/converted/test_file_0.awkd \
    --data-config weaver-benchmark/data/top/pf_features_mask.yaml \
    --network-config weaver-benchmark/networks/top/pfn_pf.py \
    --model-prefix outputs/{auto}/net \
    --predict-output pred.root \
    --num-workers 1 --fetch-step 1 --data-fraction 1 \
    --gpus 1 --batch-size 128 --num-epochs 20 \
    --start-lr 5e-3 --optimizer ranger \
    --log logs/{auto}.log --tensorboard _pfn
```

--gpus ' # to run on CPU

- To make it easier to copy the commands:
 - https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
 - Monitor training progress with TensorBoard

in the weaver/ directory
tensorboard --logdir=runs
open tensorboard in the web browser
http://localhost:6006

- To make it easier to copy the commands:
 - https://gist.github.com/hqucms/3a9d9e9b53bf21253831108e8dbf8889
 - Evaluate the performance

in the weaver/ directory
jupyter notebook
open jupyter in the web browser
http://localhost:8888

LUNDNET: Jet tagging in the Lund plane With graph networks

JETS IN THE LUND PLANE

- Jets in the Lund plane
 - each emission (splitting) is mapped to a point in the 2D (angle, transverse momentum) plane
 - further emissions (of the secondary particles) are represented in additional leaf planes

- different kinematic regimes are clearly separated in the Lund plane
- often used in the discussion of resummations of large logarithms in perturbation theory / Monte Carlo parton shower generators
- can also be measured experimentally [ATLAS, PRL 124, 222002 (2020)]

CONSTRUCTING THE LUND PLANE

- The Lund plane of a jet can be constructed in the following way:
 - (1) recluster a jet *j* with the Cambridge/Aachen algorithm.
 - (2) undo the last clustering step, defining two subjets j_a, j_b ordered in p_T .
 - (3) a set of kinematic variables (denoted as $\mathcal{T}^{(i)}$) can be defined for the current splitting:

$$\Delta^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2, \quad k_t \equiv p_{tb} \Delta_{ab}, \quad m^2 \equiv (p_a + p_b)^2,$$
$$z \equiv \frac{p_{tb}}{p_{ta} + p_{tb}}, \quad \kappa \equiv z\Delta, \qquad \psi \equiv \tan^{-1} \frac{y_b - y_a}{\phi_b - \phi_a},$$

- (4) repeat (2) and (3) on j_a, j_b until j_a, j_b become single particles.
- Equivalently, the full Lund plane can also be represented as a binary Lund tree, with a tuple of variables $\mathcal{T}^{(i)}$ for each node i

LUNDNET

- F. Dreyer and HQ [JHEP 03 (2021) 052]
- The Lund plane/Lund tree essentially encodes the full radiation patterns of a jet
 - a natural input for ML algorithms on jets [c.f. F. Dreyer, G. Salam and G. Soyez, JHEP 12 (2018) 064]
 - LundNet: a graph neural network on the Lund tree
 - overall architecture similar to ParticleNet
 - each node exchanges information with one parent and two child nodes, using EdgeConv
 - global pooling of all nodes at the end to get feature maps for final classification
 - but unlike ParticleNet:
 - no expensive k-nearest neighbor finding needed
 - graph structure determined by the Lund tree
 - only 3 (instead of 16) neighbors in EdgeConv
 - significantly lower computational cost
 - Two variants of LundNet studied
 - LundNet-5: using all five Lund variables,
 - LundNet-3: using only three Lund variables, $(\ln k_t, \ln \Delta, \ln z)$

 $(\ln k_t, \ln \Delta, \ln z, \ln m, \psi)$

PERFORMANCE OF LUNDNET

F. Dreyer and HQ [JHEP 03 (2021) 052]

- Significantly improved performance for top tagging compared to ParticleNet
 - similar performance for W tagging and q/g discrimination
- Almost an order of magnitude speed-up in training/inference time compared to ParticleNet

	Number of	Training time	Inference time
	parameters	[ms/sample/epoch]	[ms/sample]
LundNet	395k	0.472	0.117
ParticleNet	369k	3.488	1.036
Lund+LSTM	67k	0.424	0.131

DGL + PyTorch Nvidia GTX 1080Ti batch size = 256

ROBUSTNESS OF LUNDNET

- Moreover, LundNet provides a systematic way to control the robustness of the tagger
 - robustness assessed by applying the model trained on hadron-level samples to parton-level samples and compare the difference
 - the non-perturbative region can be effectively rejected by applying a kt cut on the Lund plane, therefore improving the robustness of the tagger against non-perturbative effects
 - LundNet-3 shows much higher resilience than LundNet-5

QCD rejection v. W tagging efficiency

F. Dreyer and HQ

Resilience:

$$\zeta_{\rm NP} = \left(\frac{\Delta \epsilon_W^2}{\langle \epsilon \rangle_W^2} + \frac{\Delta \epsilon_{\rm QCD}^2}{\langle \epsilon \rangle_{\rm QCD}^2}\right)^{-1/2}$$

where $\Delta \epsilon = \epsilon - \epsilon'$ and $\langle \epsilon \rangle = 1/2 (\epsilon + \epsilon')$

 ϵ : hadron-level ϵ' : parton-level

ParticleNeXt: Pushing the limit of jet tagging

PARTICLENEXT: PAIRWISE FEATURES

- ParticleNeXt: next-generation of ParticleNet, for better performance
- The first enhancement is the addition of (explicit) pairwise features on the edges

$$e_{ij} = MLP(x_i, x_j)$$

$$\mathbf{e}_{ij} = \mathsf{MLP}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{x}_{ij})$$

• Examples of pairwise features: $\Delta_{ij}^2 \equiv (y_i - y_j)^2 + (\phi_i - \phi_j)^2, \quad m^2 \equiv (p_i + p_j)^2,$ $k_T \equiv \min(p_{T,i}, p_{T,j}) \Delta_{ij}, \quad z \equiv \frac{\min(p_{T,i}, p_{T,j})}{p_{T,i} + p_{T,j}}$ (use the logarithm to improve stability of the training)

PARTICLENEXT: ATTENTIVE POOLING

- Use attention-based pooling to increase the expressive power
 - for both the local neighborhood pooling, and the final global pooling

PARTICLENEXT: MULTI-SCALE AGGREGATION

- Introduce multi-scale aggregation to better capture both short- and long-range correlations
 - perform local aggregation for the 4, 8, 16 and 32 nearest neighbors (with different attentive pooling) and combine the 4 aggregated representations with a MLP
 - on the other hand: remove dynamic kNN (based on learned features), i.e., use only kNN in $\eta \phi$ space, to reduce computational cost
 - In this case the kNN needs to be performed only once, and then the graph connectivity is fixed

DATASET

- A new jet tagging dataset was generated for the development of ParticleNeXt
 - all events are generated with MadGraph5_aMC@NLO v3.1.1 at LO and interfaced with Pythia v8.245 for parton shower (w/ the default tune and MPI enabled)
 - fast detector simulation w/ Delphes v3.5.0, using the CMS card
 - tracking resolution parametrization based on the CMS Run1 performance [1405.6569]
 - jets clustered from the Delphes e-flow objects using the anti-kt algorithm w/ R=0.8
 - = only consider jets w/ 500 < $p_{\rm T}$ 1000 GeV, and $|\eta|$ < 2
 - input features for each jet constituent particle: 4-momenta, PID, impact parameters and errors
 - top-tagging benchmark:
 - Top quark jets: $pp \rightarrow t\bar{t} \ (t \rightarrow bW, W \rightarrow qq')$
 - truth matching criteria: $\Delta R(jet, q) < 0.8$ for all three quarks from hadronic top decay
 - QCD jets: $pp \rightarrow Z(\rightarrow \nu \bar{\nu}) + j (j = u, d, s, c, b, g)$
 - Higgs-tagging benchmark:
 - Higgs boson jets: $pp \rightarrow hh \ (h \rightarrow b\bar{b})$
 - truth matching criteria: $\Delta R(jet, b) < 0.8$ for both quarks from the Higgs decay
 - QCD jets: $pp \rightarrow Z(\rightarrow \nu \bar{\nu}) + j (j = u, d, s, c, b, g)$

PERFORMANCE: TOP TAGGING

- Training/validation/test splitting:
 - 1.6M / 0.4M / 2M
- Training repeated for 3 times starting from randomly initialized weights
 - the median-accuracy training is reported, and the standard deviation of the 3 trainings is quoted as the uncertainty
- Significant improvement in background rejection w/ ParticleNeXt
 - ~50% higher BKG rejection (@ ϵ_S = 70%)
 - computational cost still under control

	Accuracy	AUC	1/8	ε_b at	Parameters	Inferen	nce time	Training time
			$\varepsilon_s = 70\%$	$\varepsilon_s = 50\%$		(CPU)	(GPU)	(GPU)
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425	366k	23 ms	$0.30 \mathrm{~ms}$	1.0 ms
ParticleNeXt	0.981	0.9982	2008 ± 75	8621 ± 309	560k	$30 \mathrm{ms}$	$0.54~\mathrm{ms}$	$1.7 \mathrm{ms}$

ABLATION STUDY

- Investigated the effects of the new features of ParticleNeXt by removing each of them and repeat the training
 - all the new features contribute
 - ~20% loss in BKG rejection if any of the three is removed

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 70\%$	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425
ParticleNeXt	0.981	0.9982	2008 ± 75	$\bf 8621 \pm 309$
ParticleNeXt (w/o pairwise features)	0.980	0.9980	1695 ± 70	7353 ± 193
ParticleNeXt (w/o attentive pooling)	0.980	0.9981	1689 ± 72	7463 ± 696
ParticleNeXt (w/o multi-scale aggregation)	0.981	0.9980	1664 ± 57	7407 ± 193

Model Ensembling

- Model ensembling still helps, even for the new ParticleNeXt
 - ensembling method: average the DNN outputs from the 3 independent trainings
 - ~30% improvement for ParticleNeXt with the 3-model ensemble
 - ~15% for ParticleNet

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 70\%$	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425
ParticleNeXt	0.981	0.9982	2008 ± 75	8621 ± 309
ParticleNet (average ensemble)	0.980	0.9980	1558	6897
ParticleNeXt (average ensemble)	0.982	0.9984	2558	11494

EXTENDED TRAINING DATASET

Training on a larger dataset

training/validation/test splitting:

10M / 1M / 2M

- i.e., 5x more jets for training compared to the baseline dataset
- Substantial gain in performance
 - ~70% higher BKG rejection (@ ϵ_S = 70%)
- *Question:* Can we encode more physics into the network to make the training more data-efficient?

	Accuracy	AUC	$1/\varepsilon_b$ at $\varepsilon_s = 70\%$	$1/\varepsilon_b$ at $\varepsilon_s = 50\%$
ParticleNet	0.980	0.9979	1342 ± 4	6173 ± 425
ParticleNeXt	0.981	0.9982	2008 ± 75	8621 ± 309
ParticleNeXt (extended dataset)	0.983	0.9986	3378	15873

PERFORMANCE ON PUBLIC BENCHMARKS

– Top tagging landscape

	AUC	Acc	1/	$\epsilon_B \ (\epsilon_S = 0$.3)	#Param
			single	mean	median	
CNN [16]	0.981	0.930	914±14	$995{\pm}15$	975 ± 18	610k
ResNeXt $[30]$	0.984	0.936	1122 ± 47	1270 ± 28	1286 ± 31	1.46M
TopoDNN [18]	0.972	0.916	295 ± 5	382 ± 5	378 ± 8	59k
Multi-body N -subjettiness 6 [24]	0.979	0.922	792 ± 18	$798{\pm}12$	$808{\pm}13$	57k
Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926{\pm}18$	58k
TreeNiN [43]	0.982	0.933	1025 ± 11	$1202{\pm}23$	1188 ± 24	34k
P-CNN	0.980	0.930	732 ± 24	845 ± 13	834 ± 14	348k
ParticleNet [47]	0.985	0.938	1298 ± 46	$1412{\pm}45$	$1393 {\pm} 41$	498k
LBN [19]	0.981	0.931	836±17	$859{\pm}67$	$966{\pm}20$	705k
LoLa [22]	0.980	0.929	722 ± 17	$768{\pm}11$	765 ± 11	127k
Energy Flow Polynomials [21]	0.980	0.932	384			1k
Energy Flow Network [23]	0.979	0.927	633 ± 31	$729{\pm}13$	$726{\pm}11$	82k
Particle Flow Network [23]	0.982	0.932	891±18	1063 ± 21	1052 ± 29	82k
GoaT	0.985	0.939	1368±140		$1549{\pm}208$	35k
ParticleNet-Lite	0.984	0.937	1262±49			26k
ParticleNet	0.986	0.940	1615±93			366k
ParticleNeXt	0.987	0.942	1923±48			560k

V. Mikuni, F. Canelli

[2/02.05073]

G. Kasieczka et al.
[<u>1902.09914]</u>

Quark/gluon tagging

	Acc	AUC	$1/\epsilon_B~(\epsilon_S=0.5)$	$1/\epsilon_B \ (\epsilon_S=0.3)$
ResNeXt-50 [16]	0.821	0.9060	30.9	80.8
P-CNN [16]	0.827	0.9002	34.7	91.0
PFN [32]	-	0.9005	$34.7 {\pm} 0.4$	-
ParticleNet-Lite [16]	0.835	0.9079	37.1	94.5
ParticleNet [16]	0.840	0.9116	$39.8 {\pm} 0.2$	98.6 ± 1.3
ABCNet [17]	0.840	0.9126	$42.6 {\pm} 0.4$	$118.4{\pm}1.5$
SPCT	0.824	0.899	$34.4{\pm}0.4$	100.3 ± 1.5
PCT	0.841	0.9140	$43.3{\pm}0.7$	117.5 ± 1.4
ParticleNeXt	0.841	0.9129	41±0.1	105±1.0

Huilin Qu (CERN)

Mass Decorrelation

MASS (DE)CORRELATION

- One feature of these taggers is the correlation with the jet mass
 - jet mass shape of the background becomes similar to that of the signal after selection with the tagger: "Mass sculpting"
 - not necessarily a problem, but a mass-independent tagger is often more desirable:
 - if using the mass variable to separate signal and background
 - tagging signal jets with an unknown mass

- How to reduce the tagger's correlation with jet mass?
- More broadly: How to develop a classifier that is decorrelated with one or more auxiliary variables?

METHOD I: TRANSFORM TAGGER RESPONSE

- A tagger is mass-correlated because its response changes with the jet mass
 - a mass-independent tagger has a uniform response w.r.t the jet mass
 - Mass decorrelation method 1: the "brute-force" way

Transforming the tagger response such that it no longer changes with the jet mass

DESIGNING DECORRELATED TAGGER (DDT)

- Designing Decorrelated Tagger (DDT) [JHEP 1605 (2016) 156]
 - transforms the tagger response as a function of the jet p_T and $\rho = ln(m_{SD}^2/p_T^2)$:

$$\mathsf{Tagger}^{\mathsf{DDT}}(\rho, P_{\mathsf{T}}) = \mathsf{Tagger}(\rho, P_{\mathsf{T}}) - \mathsf{Tagger}^{(\times\%)}(\rho, P_{\mathsf{T}})$$

where $T_{agger}(x^{(x^{(n)})}(\rho, P_T))$ is the threshold for a background efficiency of x%, derived from simulated background (QCD) events

 after the transformation, the selection Tagger^{DDT}>0 (or <0) yields a constant background efficiency of x% across the m_{SD} and the p_T range

N₂DDT

- N₂: generalized energy correlation functions [JHEP 1612 (2016 153] for 2-prong (W/Z/H) tagging
- N₂^{DDT}: mass-decorrelated version of N₂ using the DDT method

METHOD 2: MODIFY TRAINING PROCEDURE

Mass decorrelation method 2: the "active" way

Modifying the training procedure/target to prevent mass correlation

 $L = L_{CE}$ Cross-Entropy loss

$$L = L_{CE} + L_{MD}$$

Cross-Entropy loss + Mass-decorrelation loss

Broadly speaking, this method involves choosing a differentiable metric to quantify the level of mass correlation and then minimize both the classification loss and this mass correlation metric

- mass correlation can be measured with a number of metrics
 - KL divergence of the pass / fail mass shapes (e.g., CMS DeepDoubleB/C [CMS-DP-2018-046])
 - mutual information
 - a neural network the GAN approach (e.g., CMS DeepAK8-MD)
 - distance correlation [Phys. Rev. Lett. 125, 122001]
 - ••••

DEEPAK8-MD

- DeepAK8-MD: mass-decorrelation using adversarial training [1611.01046]
 - added a mass prediction network to predict the jet mass from the learned features
 - higher mass prediction accuracy -> stronger correlation w/ the jet mass
 - accuracy of the mass prediction included in the loss function as a penalty
 - minimizing the joint loss -> improving classification accuracy while preventing mass correlation
 - in addition: signal/background samples reweighted to a ~flat (p_T, m_{SD}) distribution to aid the training
 - The adversarial training approach works reasonably well
 - significantly reduced mass sculpting while still strong performance
 - however the training process is quite challenging and requires a lot of fine-tuning...

Qu (CERN)

METHOD 3: REWEIGHT TRAINING SAMPLES

- For ML taggers, mass correlation arises because signal (t/W/Z/H) and background (QCD) jets have very different mass distributions
 - maximizing signal/background separation inevitably causes the tagger responses to depend on the jet mass
 - if signal and background jets have similar mass distributions, then mass sculpting simply cannot happen
 - Mass decorrelation method 3: the "passive" way

Reweighting the training samples such that signal and background jets have the same mass distributions

METHOD 4: GENERATE SPECIAL TRAINING SAMPLES

- The reweighting method works well for binary classification, but not sufficient for multi-class taggers
 - multiple signals, so cannot reweight the background mass shape to the signals
 - can possibly reweight everything to a flat / background-like mass distribution
 - but very low stats for signal away from the mass peak -> poor performance
 - Instead of reweighting, can generate dedicated samples to populate the full mass range
 - Mass decorrelation method 4: the "actively-passive" way

Generating a special training sample in which the signal particle has a flat mass distribution

PARTICLENET-MD

- ParticleNet-MD
 - a generic mass-decorrelated 2-prong (W / Z / H / ...) tagger
 - w/ also flavour information: i.e., X->bb, X->cc and X->qq
 - trained using a dedicated signal sample
 - hadronic decays of a spin-0 particle X: $X \to b\bar{b}, X \to c\bar{c}, X \to q\bar{q}$
 - flat mass spectrum: $m_X \in [15, 250]$ GeV
 - signal and background further reweighted to a flat [p_T, m_{SD}] distribution
 - using the ParticleNet graph neural network architecture
 - Very good mass decorrelation with this approach
 - also very straightforward to train
 - no need to modify training procedure / loss

TAGGER CALIBRATION IN DATA

DEEPAK8 IN CMS

- Advanced deep learning-based algorithm for boosted object tagging, using AK8 (anti-k_T R=0.8) jets
 - multi-class classifier for top quark and W, Z, Higgs boson tagging
 - sub-classes based on decay modes (e.g., $H \rightarrow bb, H \rightarrow cc, H \rightarrow VV^* \rightarrow 4q$)
 - output scores can be aggregated/transformed for different tasks -> highly versatile tagger
 - directly uses jet constituents (particle-flow candidates / secondary vertices)
 - ID convolutional neural network (CNN) based on the ResNet [arXiv: 1512.03385] architecture
 - significant performance improvement

PERFORMANCE IN DATA

CMS [JINST 15 (2020) P06005]

TAGGER CALIBRATION IN DATA

- Crucial to calibrate these taggers in real data for them to be used in analyses
 - Top/W tagging efficiency

<u>JINST 15 (2020) P06005</u>

- measured using the single- μ sample enriched in semi-leptonic ttbar events
- fit jet mass templates in the "pass" and "fail" categories simultaneously to extract efficiency in data
 - simulation-to-data scale factors SF := eff(data) / eff(MC) derived to correct the simulation
 - jet mass scale and resolution scale factors can also be extracted
- H->bb/H->cc tagging efficiency: measured via proxy jets, gluon->bb/cc, using a di-jet sample Mistag rates of background jet typically derived directly from analysis-specific control regions

TAGGER CALIBRATION IN DATA (II)

CMS DP-2020/025

Simulation-to-data scale factors typically consistent with 1.0 within 10-20%