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Why deep learning ?

Game changing technology for scientific research



Demo: Inverse Schrodinger Problem
Given ground state density, how to design the potential ? 

[−
1
2

∂2

∂x2
+ V(x)] Ψ(x) = EΨ(x)

https://colab.research.google.com/drive/1e1NFA-E1Th7nN_9-DzQjAaglH6bwZtVU?usp=sharing



What is under the hood ? 



Composes differentiable components to a program 
e.g. a neural network, then optimizes it with gradients 

What is deep learning ?



Computing derivatives of a computer program

f(x + 1ϵ) = f(x) + f′�(x)ϵ

ϵ2 = 0x → x + 1ϵ

C. L. McCARTY,  JR., Editor 

A Simple Automatic Derivative 
Evaluation Program 
R. E. WENGERT 
General Electric Company,* Syracuse, New Yor/c 

A procedure for automatic evaluation of total/partial de- 
rivatives of arbitrary algebraic functions is presented. The 
technique permits computation of numerical values of deriva- 
tives without developing analytical expressions for the deriva- 
tives. The key to the method is the decomposition of the given 
function, by introduction of intermediate variables, into a series 
of elementary functional steps. A library of elementary func- 
tion subroutines is provided for the automatic evaluation and 
differentiation of these new variables. The final step in this 
process produces the desired function's derivative. 

The main feature of this approach is its simplicity. It can be 
used as a quick-reaction tool where the derivation of analytical 
derivatives is laborious and also as a debugging tool for 
programs which contain derivatives. 

Related approaches develop analytical expressions for 
total or partial derivatives of arbitrary algebraic functions 
through application of rather elaborate scanning proce- 
dures on the entire function. The technique reported here, 
instead, generates numerical values of derivatives and is 
made simple by inputting the given complex function as a 
series of elementary function evaluations. 

Proposed Technique 

TOTAL DERIVATIVES. To demonstrate the technique 
for obtaining total derivatives, consider the following 
example. Compute ], where 

f ~ Xl 
X22X~ " 

Numerical values for x~, x2, x3,21,22,23 are given. 
The total derivative ] is evaluated indirectly. 0nly the 

function itself is explicitly programmed. The calculation 
of the given "complex" expression is decomposed, by in- 
troduction of intermediate variables, into a string of ele- 
mentary functional steps using a predeveloped subroutine 
library. These subroutines, examples of which may be 
found in the Appendix, automatically provide derivatives 
for the intermediate variables. As the computation pro- 

* Radio Guidance Operation. 

V o l u m e  7 / N u m b e r  8 / A u g u s t ,  1964 

ceeds, the desired derivative emerges as a by-product of the 
function evaluation. In the given example, decomposition 
might proceed as follows. 

First call the exponentiation subroutine to evaluate the 
elementary function Zl = x22 and its derivative i~ = 2x222 • 

Next call the product subroutine to evaluate z2 = zlx3 
and its derivative i2 = z123 + ~lX3. Note this uses the pre- 
viously computed results zl, i l .  

Finally, call the division subroutine to evaluate f - x~ 
Z2 

and its derivative ] - Z2Xl -- i2Xl. This directly uses the 
Z22 

previously computed results z2, i2, and implicitly Zl and 

The same procedure is used for any function, no matter 
how complex. Note that we do not attempt to directly 
evaluate the derivative of the complex function. Instead 
we proceed in a sequential fashion, evaluating derivatives 
of elementary functions. The end of the sequence is the 
desired derivative of the original complex function. 

Higher order total derivatives are treated in exactly 
the same manner. I t  is only necessary to have library 
subroutines for evaluating higher order derivatives of the 
elementary functions. 

PARTIAL DERIVATIVES. The proposed method may 
also be used to compute partial derivatives. 

By the chain rule of differentiation, if 

f = f ( x l , x 2 ,  " "  , z~) ,  

then f can be expressed as 

Of Of Of / = + + . . .  + 

By computing, as before, the total derivative ], but 
with the input derivatives changed to 2~ = 1, 

2j = 0, j ~ i, 

we will, in effect, have computed Of/Ox~. 
Hence a partial derivative subroutine can be con- 

structed to act as a control routine which appropriately 
sets the input derivatives to zero or one. For each set of 
input derivatives (one of which is unity and the others 
are zero), the function subroutine outputs assume the 
value of the function and one of its partial derivatives. 

HIGHER ORDER PARTIAL DERIVATIVES. To obtain 
higher order partial derivatives of the given function, first 
examine the functional form of higher order total deriva- 
tives. To do this, we start by restating the chain rule in a 

C o m m u n i c a t i o n s  o f  t h e  ACMM 463 
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“forward mode” automatic differentiation



“comb graph“

Reverse mode automatic differentiation
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Reverse mode automatic differentiation
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Reverse mode automatic differentiation
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Reverse mode automatic differentiation
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xi = ∑
j: child of i

xj
∂xj

∂xi

Message passing for the adjoint at each node
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∂x3
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directed 
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Reverse mode automatic differentiation



• Accurate to the machine precision 

• Reverse mode has the same computational complexity as the 
function evaluation: Baur-Strassen theorem ’83 

• Supports higher order gradients

Advantages of AD: 
�   accurately to machine precision 
 
�

Accuracy of AD can achieve machine precision�

Usual finite difference has truncation and round-off error. 
However, the accuracy of AD can be up to machine precision.�

Advantages of AD: 
�     AD can evaluate arbitrary order derivatives 

Computational Cost of automatic differentiation�

Advantages of automatic differentiation 



Differentiable simulations

Li et al  
PRL ’21 

Learning
density 

functionals

Published as a conference paper at ICLR 2019
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Figure 1: An unrolled simulator as a model for protein structure. NEMO combines a neural
energy function for coarse protein structure, a stochastic simulator based on Langevin dynamics
with learned (amortized) initialization, and an atomic imputation network to build atomic coordinate
output from sequence information. It is trained end-to-end by backpropagating through the unrolled

folding simulation.

protein folding (Dill et al., 2017), in which the folds that natural protein sequences adopt are those
that minimize free energy. Without the availability of external information such as coevolutionary
information (Marks et al., 2012) or homologous structures (Martı́-Renom et al., 2000) to constrain the
energy function, however, contemporary simulations are challenged to generate globally favorable
low-energy structures in available time.

How can we get the representational benefits of energy-based models with the sampling efficiency of
directed models? Here we explore a potential solution of directly training an unrolled simulator of
an energy function as a model for data. By directly training the sampling process, we eschew the
question ‘when has the simulator converged’ and instead demand that it produce a useful answer
in a fixed amount of time. Leveraging this idea, we construct an end-to-end differentiable model
of protein structure that is trained by backpropagtion through folding (Figure 1). NEMO (Neural
energy modeling and optimization) can learn at scale to generate 3D protein structures consisting of
hundreds of points directly from sequence information. Our main contributions are:

• Neural energy simulator model for protein structure that composes a deep energy func-
tion, unrolled Langevin dynamics, and an atomic imputation network for an end-to-end
differentiable model of protein structure given sequence information

• Efficient sampling algorithm that is based on a transform integrator for efficient sampling
in transformed coordinate systems

• Stabilization techniques for long roll-outs of simulators that can exhibit chaotic dynamics
and, in turn, exploding gradients during backpropagation

• Systematic analysis of combinatorial generalization with a new dataset of protein se-
quence and structure

1.1 RELATED WORK

Protein modeling Our model builds on a long history of coarse-grained modeling of protein
structure (Kolinski et al., 1998; Kmiecik et al., 2016). Recently, multiple groups have demonstrated
how to learn full force fields using likelihood-based approaches (Jumper et al., 2018; Krupa et al.,
2017), similar to our maximum likelihood loss (but without backpropagtion through folding for fast
sampling). While this work was in progress, two groups reported neural models of protein structure
(AlQuraishi, 2018; Anand & Huang, 2018), where the former focused on modeling structure in
terms of backbone angles and the latter in terms of residue-residue distances. We show how an
energy function provides a natural framework to integrate both kinds of constraints, which in turn is
important for achieving sample-efficient structural generalization.

Learning to infer or sample Structured prediction includes a long history of casting predictions
in terms of energy minimization (LeCun et al., 2006). Recently, others have built hybrid neural
networks that use differentiable optimization as a building block in neural architectures (Wang et al.,

2

Protein 
folding

Ingraham et al  
ICLR ‘19
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Coil design in fusion reactors (stellarator)  



Coil parameters Total cost

Differentiable stellarator design

Differentiable programming is broader than training neural networks

Back propagation for cheap and accurate gradient

McGreivy et al  2009.00196



How to think about AD ?
• AD is modular, and one can control its granularity 

• Benefits of writing customized primitives 

• Reducing memory usage 

• Increasing numerical stability 

• Call to external libraries written agnostically to AD
(or, even a quantum processor)

https://github.com/PennyLaneAI/pennylane



Forward mode
“Propagate the perturbation”

Same direction as the function evaluation 
Same complexity as numerical finite difference

∂ℒ
∂x1

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

Backpropagation = Reverse mode AD applied to neural networks

Forward versus reverse modes

Reverse mode  
“Pull back the adjoint”

Backtrace the computation graph 
Needs to store intermediate results



Examples of primitives

Loop/Condition/Sort/Permutations are also differentiable 

…

~200 functions to cover most of  numpy in HIPS/autograd
https://github.com/HIPS/autograd/blob/master/autograd/numpy/numpy_vjps.py

Primitives with gradients implemented in Autograd�

http://videolectures.net/deeplearning2017_johnson_automatic_differentiation/



Differentiable programming tools

HIPS/autograd

SciML



Differentiable Scientific Computing
•  Many scientific computations (FFT, Eigen, SVD!) are differentiable 

•  Differentiable ray tracer

•  Differentiable Monte Carlo/Tensor Network/Functional RG/
Dynamical Mean Field Theory/Density Functional Theory/
Hartree-Fock/Coupled Cluster/Gutzwiller/Molecular Dynamics…

•  ODE integrators are differentiable with O(1) memory 

Differentiable fluid simulationsand

Differentiate through domain-specific computational processes 
to solve learning, control, optimization and inverse problems

https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.csail.mit.edu/tzumao/diffrt/
https://arxiv.org/abs/1806.07366
https://rse-lab.cs.washington.edu/papers/spnets2018.pdf


V ΨH

matrix
diagonalization

  ℒ

Inverse Schrodinger Problem

Differentiable Eigensolver

Useful for inverse Kohn-Sham problem, Jensen & Wasserman ‘17 



Differentiable Eigensolver
H Ψ = ΨE

Forward mode: What happen if H → H + dH Perturbation theory

Reverse mode: How should I change 

?

∂ℒ/∂Ψ ∂ℒ/∂Eand ?
Transposed

perturbation theory!
H given

Hamiltonian engineering via differentiable programming 

https://github.com/wangleiphy/DL4CSRC/tree/master/2-ising See also Fujita et al, PRB ‘18



Differentiable Quantum Chemistry  

AD for coupled cluster 2011.11690
https://github.com/CCQC/Quax https://github.com/fishjojo/pyscfad

E(Z + ϵ) = E(Z) + E′�(Z)ϵ +
1
2

E′�′�(Z)ϵ2 + …

Quantum Alchemy 2109.11238

nuclear charge

Z = (6,8)Z = (7,7)

AD for SCF: Steiger et al, Future Generation Computer Systems ’05, Tamayo-Mendoza et al ACS Cent. Sci. ’18
AD for VMC: Sorella and Capriotti J. Chem. Phys. ’10

https://github.com/diffqc/dqcCodes:



Adiabatic perturbation

4 Rolf Heid Autumn School on Correlated Electrons, Jülich, September 2020

Qn =
dnE

dln

����
l!0

type of perturbation l order n physical property Q

displacements of atoms 1 atomic force
dR 2 force constants

� 3 anharmonic force constants
homogeneous strain h 1 stress

2 elastic constants
� 3 higher order elastic constants

homogeneous electric field E 1 dipole moment
2 polarizability

dR + h 2+1 Grüneisen parameter
dR + E 1+2 Raman scattering cross section

Differentiable density functional theory

Differentiable DFT for a 
unified, flexible, and (very likely) more efficient framework

Baroni et al,  
RMP 2001



Dynamics systems Principle of least actions

Optics, (quantum) mechanics, field theory…

S = ∫ ℒ(qθ, ·qθ, t)dtdx
dt

= fθ(x, t)

Classical and quantum control

Differentiable ODE integrators
“Neural ODE” Chen et al, 1806.07366



Differentiable functional optimization

T = ∫
x1

x0

1 + (dy/dx)2

2g(y1 − y0)
dx

The brachistochrone problem 
Johann Bernoulli,1696

https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/brachistochrone



Differentiable functional optimization

T = ∫
x1

x0

1 + (dy/dx)2

2g(y1 − y0)
dx

The brachistochrone problem 
Johann Bernoulli,1696

https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/brachistochrone



Dynamics systems Principle of least actions

Optics, (quantum) mechanics, field theory…

S = ∫ ℒ(qθ, ·qθ, t)dtdx
dt

= fθ(x, t)

Classical and quantum control

Differentiable ODE integrators
“Neural ODE” Chen et al, 1806.07366



Quantum optimal control

No gradient: 
not scalable

Forward mode: 
slow

Reverse mode w/ discretize steps:  
piesewise-constant assumption

i
dU
dt

= HU

https://qucontrol.github.io/krotov/
v1.0.0/11_other_methods.html

Differentiable programing (Neural ODE) for 
unified, flexible, and efficient quantum control 

https://colab.research.google.com/drive/
1T0_sJMwmk7rbpxHMcBZwdD9pnYZx93oh?usp=sharing



Differentiable Programming Tensor Networks 

Liao, Liu, LW, Xiang, 1903.09650, PRX ‘19 https://github.com/wangleiphy/tensorgrad



 

“Tensor network is 21 century’s matrix”

Neural networks and 
Probabilistic graphical models

—Mario Szegedy

Quantum circuit architecture,  
parametrization, and simulation



GRADIENT METHODS FOR VARIATIONAL OPTIMIZATION . . . PHYSICAL REVIEW B 94, 155123 (2016)

A. Computing the gradient

The objective function f that we want to minimize [see
Eq. (6)] is a real function of the complex-valued A, or,
equivalently, the independent variables A and Ā. The gradient
is then obtained by differentiating f (Ā,A) with respect to Ā,

grad = 2 × ∂f (Ā,A)
∂Ā

= 2 × ∂Ā ⟨"(Ā)| H |"(A)⟩
⟨"(Ā)|"(A)⟩

− 2 × ⟨"(Ā)| H |"(A)⟩
⟨"(Ā)|"(A)⟩2 ∂Ā⟨"(Ā)|"(A)⟩,

where we have clearly indicated A and Ā as independent
variables. In the implementation we will always make sure
the PEPS is properly normalized, such that the numerators
drop out. By subtracting from every term in the Hamiltonian
its expectation value, the full Hamiltonian can be redefined as

H → H − ⟨"(Ā)|H |"(A)⟩, (7)

such that the gradient takes on the simple form

grad = 2 × ∂Ā⟨"(Ā)|H |"(A)⟩.
The gradient is thus obtained by differentiating the energy
expectation value ⟨"(Ā)| H |"(A)⟩ with respect to every Ā
tensor in the bra level and taking the sum of all contributions.
Every term in this infinite sum is obtained by omitting one
Ā tensor and leaving the indices open. The full infinite

summation is then obtained by letting the Hamiltonian operator
and this open spot in the network travel through the channels
separately, just as in the case of the structure factor in Sec. II D.

Let us first define a new tensor that captures the infinite sum
of Hamiltonian operators acting inside a channel,

= + + + . . .

= ,

where the big tensor is again the inverted channel operator of
Eq. (4) with momentum zero. Because we have redefined the
Hamiltonian in Eq. (7), the inversion of the channel operator
is well defined, because the vector on which the inverse acts
has a zero component along the channel fixed point ρL.

With this blue tensor all different relative positions of the
Hamiltonian terms and the tensor Ā that is being differentiated
(the open spot) can be explicitly summed, similarly to the
expression for the structure factor [Eq. (5)]. There are a few
more terms because every Hamiltonian term corresponds to a
two-site operator and has different orientations.

The full expression is

grad = + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + + ,

155123-7
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before…

Differentiable tensor network optimization

https://github.com/wangleiphy/tensorgrad 1 GPU (Nvidia P100) week
Lowest variational energy Vanderstraeten et al, PRB ‘16

Finding ground state of a quantum magnet
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Carleo & Troyer, Science ‘17
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Liao, Liu, LW, Xiang, PRX ‘19

Further progress for challenging physical problems: 
frustrated magnets, fermions, thermodynamics …

Chen et al, ‘19 
Xie et al, ’20 

Tang et al ’20 
…

Differentiable tensor network optimization



Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, Lei Wang, 1912.10877, Quantum ‘20

Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design

Differentiable Programming Quantum Circuits

https://arxiv.org/abs/1912.10877


4

FIG. 1. Illustration of the three common steps of hybrid quantum-classical algorithms. These steps have

to be repeated until convergence or when a su�ciently good quality of the solution is reached. 1) State

preparation involving the quantum hardware capable of tunable gates characterized by parameters “n (blue),

2) measurement of the quantum state and evaluation of the objective function (red), 3) iteration of the

optimization method to determine promising changes in the state preparation (green). Notice that a single

parameter “n may characterize more than one gate, for example see “1 and “6 in the blue box. In practice,

many state preparations and measurements are necessary before proceeding with a single update of the

parameters.

quantum state, records the outcomes and analyze them to obtain the value of the objective function

corresponding to the prepared state. The third step is the classical optimization iteration that,

based on previous results, suggests new parameter values to improve the quality of the state. We

pictorially illustrate these three parts and their interplay in Fig. 1.

As mentioned, the goal of variational algorithms is to find an approximate solution to certain

problems. The quality of such approximation is given by the value of the objective function that one

desires to maximize (or minimize). The objective function is expressed as a quantum observable,

noted here with Ĉ, of the qubit register. It can be a genuinely quantum quantity, as is the case

for the energy of molecular systems, or classical in nature, for example when it is associated to

combinatorial optimization, scheduling problems or financial modeling. Given the quantum register

in state |„Í, the objective function is given by the expectation value È„| Ĉ |„Í.

⟨H⟩θ
Peruzzo et al,  

Nat. Comm. ’13 

Quantum circuit as a variational ansatz or a machine learning model 

θ6

θ6θ4

θ5

θ2

θ3

θ1

θ1

θ1

θ

Variational quantum algorithms



Differentiable quantum circuits
compute gradient in classical simulations

Unfortunately, forward mode is slow 
Reverse mode is memory consuming



Quantum circuit computation graph

ℒ|x1⟩ |x2⟩

U1

|xN⟩. . .|x0⟩

U2 UN

The same “comb graph” as the feedforward neural network,  
except that quantum computing is reversible

Quantum 
state

Unitaries

O(1) memory AD for reversible neural nets Gomez et al, 1707.04585 Chen et al, 1806.07366



Train a 10,000 layer, 
300,000 parameter 
circuit on a laptop

https://yaoquantum.org/

according to Wirtingers derivative [53] for com-
plex numbers, where L is a real-valued objective
function that depends on the final state. Start-
ing from L = 1 we can obtain the adjoint of the
output state.

To pull back the adjoints through the compu-
tational graph, we perform the backward calcu-
lation [54]

. . .

|ÂkÍ = U †
k
|Âk+1Í

|ÂkÍ = U †
k
|Âk+1Í

. . .

(2)

The two equations above are implemented
Yao.AD with the apply_back! method. Based
on the obtained information, we can compute the
adjoint of the gate matrix using [54]

Uk = |Âk+1ÍÈÂk|. (3)

This outer product is not explicitly stored as a
dense matrix. Instead, it is handled efficiently by
customized low rank matrices described in Ap-
pendix E. Finally, we use mat_back! method to
compute the adjoint of gate parameters ◊k from
the adjoint of the unitary matrix Uk.

Figure 6 demonstrates the procedure in a con-
crete example. The black arrows show the for-
ward pass without any allocation except for the
output state and the objective function L. In the
backward pass, we uncompute the states (blue
arrows) and backpropagate the adjoints (red ar-
rows) at the same time. For the block de-
fined as put(nbit, i=>chain(Rz(–), Rx(—),
Rx(“))), we obtain the desired –, — and “ by
pushing the adjoints back through the mat func-
tions of PutBlock and ChainBlock. The imple-
mentation of the AD engine is generic so that
it works automatically with symbolic computa-
tion. We show an example of calculating the
symbolic derivative of gate parameters in Ap-
pendix G. One can also integrate Yao.AD with
classical automatic differentiation engines such as
Zygote to handle mixed classical and quantum
computational graphs, see [55].

Listing 9: 10000-layer VQE⌥ ⌅
julia> using Yao, YaoExtensions

julia> n = 10; depth = 10000;

julia> circuit = dispatch!(
variational_circuit(n, depth),
:random);

julia> gatecount(circuit)
Dict{Type{#s54} where #s54 <:

AbstractBlock,Int64} with 3 entries:
RotationGate{1,Float64,ZGate} => 200000
RotationGate{1,Float64,XGate} => 100010
ControlBlock{10,XGate,1,1} => 100000

julia> nparameters(circuit)
300010

julia> h = heisenberg(n);

julia> for i = 1:100
_, grad = expect�(h, zero_state(n)=>

circuit)
dispatch!(-, circuit, 1e-3 * grad)
println("Step $i, energy = $(expect(

h, zero_state(n)=>circuit))")
end⌃ ⇧

To demonstrate the efficiency of Yao’s AD en-
gine, we use the codes in Listing 9 to simulate
the variational quantum eigensolver (VQE) [56]
with depth 10, 000 (with 300, 010 variational pa-
rameters) on a laptop. The simulation would
be extremely challenging without Yao, either due
to overwhelming memory consumption in the re-
verse mode AD or unfavorable computation cost
in the forward mode AD.

Here, variational_circuit is predefined in
YaoExtensions to have a hardware efficient ar-
chitecture [57] shown in Fig. 9. The dispatch!
function with the second parameter specified to
:random gives random initial parameters. The
expect function evaluates expectation values of
the observables; the second argument can be a
wave function or a pair of the input wave func-
tion and circuit ansatz like above. expect� eval-
uates the gradient of this observable for the in-
put wave function and circuit parameters. Here,
we only make use of its second return value.
For batched registers, the gradients of circuit pa-
rameters are accumulated rather than returning
a batch of gradients. dispatch!(-, circuit,
...) implements the gradient descent algorithm

9



+ + =

• Differentiable programming quantum circuits 
• Batch parallelization with GPU acceleration 
• Quantum block intermediate representation

Features:

Xiu-Zhe Roger Luo (IOP, CAS → Waterloo & PI)
Jin-Guo Liu (IOP, CAS → Harvard & QuEra) 

Yao.jl: Extensible, Efficient Framework for 
Quantum Algorithm Design

https://yaoquantum.org/
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Jin-Guo Liu (IOP, CAS → Harvard & QuEra) 

Yao.jl: Extensible, Efficient Framework for 
Quantum Algorithm Design

https://yaoquantum.org/



Thank you!
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Jin-Guo Liu, 
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Xiu-Zhe Luo 
Waterloo & PI

Hai-Jun Liao 
 IOP CAS

Pan Zhang 
 ITP CAS

Tao Xiang 
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