
Lei Wang (王磊)
https://wangleiphy.github.io

 ifferentiable Scientific Computing

Institute of Physics, CAS

∂
《物理理》

2021年年2⽉月

https://wangleiphy.github.io

Why deep learning ?

Game changing technology for scientific research

Demo: Inverse Schrodinger Problem
Given ground state density, how to design the potential ?

[−
1
2

∂2

∂x2
+ V(x)] Ψ(x) = EΨ(x)

https://colab.research.google.com/drive/1e1NFA-E1Th7nN_9-DzQjAaglH6bwZtVU?usp=sharing

What is under the hood ?

Composes differentiable components to a program
e.g. a neural network, then optimizes it with gradients

What is deep learning ?

Computing derivatives of a computer program

f(x + 1ϵ) = f(x) + f′�(x)ϵ

ϵ2 = 0x → x + 1ϵ

C. L. McCARTY, JR., Editor

A Simple Automatic Derivative
Evaluation Program
R. E. WENGERT
General Electric Company,* Syracuse, New Yor/c

A procedure for automatic evaluation of total/partial de-
rivatives of arbitrary algebraic functions is presented. The
technique permits computation of numerical values of deriva-
tives without developing analytical expressions for the deriva-
tives. The key to the method is the decomposition of the given
function, by introduction of intermediate variables, into a series
of elementary functional steps. A library of elementary func-
tion subroutines is provided for the automatic evaluation and
differentiation of these new variables. The final step in this
process produces the desired function's derivative.

The main feature of this approach is its simplicity. It can be
used as a quick-reaction tool where the derivation of analytical
derivatives is laborious and also as a debugging tool for
programs which contain derivatives.

Related approaches develop analytical expressions for
total or partial derivatives of arbitrary algebraic functions
through application of rather elaborate scanning proce-
dures on the entire function. The technique reported here,
instead, generates numerical values of derivatives and is
made simple by inputting the given complex function as a
series of elementary function evaluations.

Proposed Technique

TOTAL DERIVATIVES. To demonstrate the technique
for obtaining total derivatives, consider the following
example. Compute], where

f ~ Xl
X22X~ "

Numerical values for x~, x2, x3,21,22,23 are given.
The total derivative] is evaluated indirectly. 0nly the

function itself is explicitly programmed. The calculation
of the given "complex" expression is decomposed, by in-
troduction of intermediate variables, into a string of ele-
mentary functional steps using a predeveloped subroutine
library. These subroutines, examples of which may be
found in the Appendix, automatically provide derivatives
for the intermediate variables. As the computation pro-

* Radio Guidance Operation.

V o l u m e 7 / N u m b e r 8 / A u g u s t , 1964

ceeds, the desired derivative emerges as a by-product of the
function evaluation. In the given example, decomposition
might proceed as follows.

First call the exponentiation subroutine to evaluate the
elementary function Zl = x22 and its derivative i~ = 2x222 •

Next call the product subroutine to evaluate z2 = zlx3
and its derivative i2 = z123 + ~lX3. Note this uses the pre-
viously computed results zl, i l .

Finally, call the division subroutine to evaluate f - x~
Z2

and its derivative] - Z2Xl -- i2Xl. This directly uses the
Z22

previously computed results z2, i2, and implicitly Zl and

The same procedure is used for any function, no matter
how complex. Note that we do not attempt to directly
evaluate the derivative of the complex function. Instead
we proceed in a sequential fashion, evaluating derivatives
of elementary functions. The end of the sequence is the
desired derivative of the original complex function.

Higher order total derivatives are treated in exactly
the same manner. I t is only necessary to have library
subroutines for evaluating higher order derivatives of the
elementary functions.

PARTIAL DERIVATIVES. The proposed method may
also be used to compute partial derivatives.

By the chain rule of differentiation, if

f = f (x l , x 2 , " " , z~) ,

then f can be expressed as

Of Of Of / = + + . . . +

By computing, as before, the total derivative], but
with the input derivatives changed to 2~ = 1,

2j = 0, j ~ i,

we will, in effect, have computed Of/Ox~.
Hence a partial derivative subroutine can be con-

structed to act as a control routine which appropriately
sets the input derivatives to zero or one. For each set of
input derivatives (one of which is unity and the others
are zero), the function subroutine outputs assume the
value of the function and one of its partial derivatives.

HIGHER ORDER PARTIAL DERIVATIVES. To obtain
higher order partial derivatives of the given function, first
examine the functional form of higher order total deriva-
tives. To do this, we start by restating the chain rule in a

C o m m u n i c a t i o n s o f t h e ACMM 463

Dual number

“forward mode” automatic differentiation

“comb graph“

Reverse mode automatic differentiation

θ1

ℒx2 x3

θ2

x1

weights

data

“adjoint variable” x =
∂ℒ
∂x

Pullback the adjoint through the computation graph

loss

“comb graph“

Reverse mode automatic differentiation

θ1

ℒx2 x3

θ2

ℒ = 1

x1

weights

data

“adjoint variable” x =
∂ℒ
∂x

Pullback the adjoint through the computation graph

loss

“comb graph“

Reverse mode automatic differentiation

x3 = ℒ
∂ℒ
∂x3

θ1

ℒx2 x3

θ2

ℒ = 1

x1

weights

data

“adjoint variable” x =
∂ℒ
∂x

Pullback the adjoint through the computation graph

loss

“comb graph“

Reverse mode automatic differentiation

x2 = x3
∂x3

∂x2
x3 = ℒ

∂ℒ
∂x3

θ1

ℒx2 x3

θ2

ℒ = 1

x1

weights

data

“adjoint variable” x =
∂ℒ
∂x

Pullback the adjoint through the computation graph

loss

“comb graph“

Reverse mode automatic differentiation

θ1 = x2
∂x2

∂θ1
θ2 = x3

∂x3

∂θ2

x2 = x3
∂x3

∂x2
x3 = ℒ

∂ℒ
∂x3

θ1

ℒx2 x3

θ2

ℒ = 1

x1

weights

data

“adjoint variable” x =
∂ℒ
∂x

Pullback the adjoint through the computation graph

loss

xi = ∑
j: child of i

xj
∂xj

∂xi

Message passing for the adjoint at each node

ℒ = 1with

θ ℒ

x1 x2

x3

x1 = x2
∂x2

∂x1

+x3
∂x3

∂x1

directed
acyclic graph

Reverse mode automatic differentiation

• Accurate to the machine precision

• Reverse mode has the same computational complexity as the
function evaluation: Baur-Strassen theorem ’83

• Supports higher order gradients

Advantages of AD:
�  accurately to machine precision

�

Accuracy of AD can achieve machine precision�

Usual finite difference has truncation and round-off error.
However, the accuracy of AD can be up to machine precision.�

Advantages of AD:
�  AD can evaluate arbitrary order derivatives

Computational Cost of automatic differentiation�

Advantages of automatic differentiation

Differentiable simulations

Li et al
PRL ’21

Learning
density

functionals

Published as a conference paper at ICLR 2019

Structure X

Sequence s

. . .

. . .

Impute

Langevin dynamics

Initialize

Figure 1: An unrolled simulator as a model for protein structure. NEMO combines a neural
energy function for coarse protein structure, a stochastic simulator based on Langevin dynamics
with learned (amortized) initialization, and an atomic imputation network to build atomic coordinate
output from sequence information. It is trained end-to-end by backpropagating through the unrolled

folding simulation.

protein folding (Dill et al., 2017), in which the folds that natural protein sequences adopt are those
that minimize free energy. Without the availability of external information such as coevolutionary
information (Marks et al., 2012) or homologous structures (Martı́-Renom et al., 2000) to constrain the
energy function, however, contemporary simulations are challenged to generate globally favorable
low-energy structures in available time.

How can we get the representational benefits of energy-based models with the sampling efficiency of
directed models? Here we explore a potential solution of directly training an unrolled simulator of
an energy function as a model for data. By directly training the sampling process, we eschew the
question ‘when has the simulator converged’ and instead demand that it produce a useful answer
in a fixed amount of time. Leveraging this idea, we construct an end-to-end differentiable model
of protein structure that is trained by backpropagtion through folding (Figure 1). NEMO (Neural
energy modeling and optimization) can learn at scale to generate 3D protein structures consisting of
hundreds of points directly from sequence information. Our main contributions are:

• Neural energy simulator model for protein structure that composes a deep energy func-
tion, unrolled Langevin dynamics, and an atomic imputation network for an end-to-end
differentiable model of protein structure given sequence information

• Efficient sampling algorithm that is based on a transform integrator for efficient sampling
in transformed coordinate systems

• Stabilization techniques for long roll-outs of simulators that can exhibit chaotic dynamics
and, in turn, exploding gradients during backpropagation

• Systematic analysis of combinatorial generalization with a new dataset of protein se-
quence and structure

1.1 RELATED WORK

Protein modeling Our model builds on a long history of coarse-grained modeling of protein
structure (Kolinski et al., 1998; Kmiecik et al., 2016). Recently, multiple groups have demonstrated
how to learn full force fields using likelihood-based approaches (Jumper et al., 2018; Krupa et al.,
2017), similar to our maximum likelihood loss (but without backpropagtion through folding for fast
sampling). While this work was in progress, two groups reported neural models of protein structure
(AlQuraishi, 2018; Anand & Huang, 2018), where the former focused on modeling structure in
terms of backbone angles and the latter in terms of residue-residue distances. We show how an
energy function provides a natural framework to integrate both kinds of constraints, which in turn is
important for achieving sample-efficient structural generalization.

Learning to infer or sample Structured prediction includes a long history of casting predictions
in terms of energy minimization (LeCun et al., 2006). Recently, others have built hybrid neural
networks that use differentiable optimization as a building block in neural architectures (Wang et al.,

2

Protein
folding

Ingraham et al
ICLR ‘19

ite
ra
tio

n,
w
e
fin

d
ac
cu
ra
te
m
od

el
s
w
ith

ve
ry

lit
tle

da
ta
an
d

m
uc
h
gr
ea
te
r
ge
ne
ra
liz
ab
ili
ty
.

O
ur

re
su
lts

ar
e
ill
us
tr
at
ed

in
Fi
g.

1,
w
hi
ch

is
fo
r
a

on
e-
di
m
en
si
on

al
m
im

ic
of

H
2

de
si
gn

ed
fo
r

te
st
in
g

el
ec
tr
on

ic
st
ru
ct
ur
e

m
et
ho

ds
[4
6]
.
T
he

di
st
ri
bu

tio
n

of
cu
rv
es

of
th
e

M
L

m
od

el
di
re
ct
ly

pr
ed
ic
tin

g
E

fr
om

ge
om

et
ri
es

(d
ir
ec
t
M
L
)
in

Fi
g.

1(
a)

cl
ea
rl
y

fa
ils

to
ca
pt
ur
e
th
e
ph

ys
ic
s.

N
ex
t,

w
e
de
m
on

st
ra
te

K
SR

w
ith

ne
ur
al

X
C
fu
nc
tio

na
ls
fr
om

th
e
fi
rs
tt
w
o
ru
ng

s
of

Ja
co
b’
s

la
dd

er
[4
7]

by
co
ns
tr
ai
ni
ng

th
e
re
ce
pt
iv
e
fi
el
d

of
th
e

co
nv
ol
ut
io
na
l
ne
ur
al

ne
tw
or
k

[4
8]
.
T
he

lo
ca
l
de
ns
ity

ap
pr
ox

im
at
io
n
(L
D
A
)
ha
s
a
re
ce
pt
iv
e
fi
el
d
of

ju
st

th
e

cu
rr
en
t
po

in
t,
w
hi
le

th
e
ge
ne
ra
liz

ed
gr
ad
ie
nt

ap
pr
ox

im
a-

tio
n

(G
G
A
)
in
cl
ud

es
th
e

ne
ar
es
t-
ne
ig
hb

or
po

in
ts
,
th
e

m
in
im

al
in
fo
rm

at
io
n
fo
r
co
m
pu

tin
g
th
e
sp
at
ia
l
gr
ad
ie
nt

of
th
e
de
ns
ity

.
In

Fi
gs
.
1(
b)

an
d
1(
c)
,
th
e
ef
fe
ct

of
th
e

K
SR

yi
el
ds

re
as
on

ab
ly

ac
cu
ra
te

re
su
lts

in
th
e
vi
ci
ni
ty

of
th
e

da
ta
,
bu

t
no

t
be
yo

nd
.
T
he

K
SR

L
D
A

be
ha
ve
s

si
m
ila

rl
y
to

th
e
un

if
or
m

ga
s
L
D
A

[4
6]
.
W
he
n

an
X
C

fu
nc
tio

na
l
w
ith

a
gl
ob

al
re
ce
pt
iv
e
fi
el
d

is
in
cl
ud

ed
in

Fi
g.

1(
d)
,
ch
em

ic
al

ac
cu
ra
cy

is
ac
hi
ev
ed

fo
r
al
l
se
pa
ra
-

tio
ns

in
cl
ud

in
g

th
e

di
ss
oc
ia
tio

n
lim

it.
Si
m
ila

r
re
su
lts

ca
n
be

ac
hi
ev
ed

fo
r
H

4
,
th
e
on

e-
el
ec
tr
on

se
lf
-i
nt
er
ac
tio

n
er
ro
r
ca
n
ea
si
ly

be
m
ad
e
to

va
ni
sh
,
an
d
th
e
in
te
ra
ct
io
n

of
a
pa
ir

of
H

2
m
ol
ec
ul
es

ca
n

be
fo
un

d
w
ith

ou
t
an
y

tr
ai
ni
ng

on
th
is

ty
pe

of
m
ol
ec
ul
e
(d
is
cu
ss
ed

be
lo
w
).

M
od

er
n
D
FT

fin
ds

th
e
gr
ou

nd
-s
ta
te
el
ec
tro

ni
c
de
ns
ity

by
so
lv
in
g
th
e
K
oh

n-
Sh

am
eq
ua
tio

ns
:

!
−
∇2 2

þ
v s
½n
#ðr

Þ"
ϕ
iðr

Þ¼
ϵ i
ϕ
iðr

Þ:
ð1
Þ

T
he

de
ns
ity

is
ob

ta
in
ed

fr
om

oc
cu
pi
ed

or
bi
ta
ls

nð
rÞ

¼
P

i
jϕ

iðr
Þj2

.H
er
e,
v s
½n
#ðr

Þ¼
vð
rÞ

þ
v H

½n
#ðr

Þþ
v X

C
½n
#ðr

Þ
is

th
e
K
S

po
te
nt
ia
l
co
ns
is
tin

g
of

th
e
ex
te
rn
al

on
e-
bo

dy
po

te
nt
ia
l
an
d
th
e
de
ns
ity

-d
ep
en
de
nt

H
ar
tre

e
(H

)
an
d
X
C

po
te
nt
ia
ls
.
T
he

X
C

po
te
nt
ia
l
v X

C
½n
#ðr

Þ¼
δE

X
C
=δ
nð
rÞ

is
th
e

fu
nc
tio

na
l
de
riv

at
iv
e

of
th
e

X
C

en
er
gy

fu
nc
tio

na
l

E
X
C
½n
#¼

R
ϵ X

C
½n
#ðr

Þn
ðr
Þd
r,

w
he
re

ϵ X
C
½n
#ðr

Þ
is

th
e
X
C

en
er
gy

pe
r
el
ec
tro

n.
T
he

to
ta
l
el
ec
tro

ni
c
en
er
gy

E
is

th
en

gi
ve
n
by

th
e
su
m
of

th
e
no

ni
nt
er
ac
tin

g
ki
ne
tic

en
er
gy

T
s½n

#,
th
e
ex
te
rn
al

on
e-
bo

dy
po

te
nt
ia
l
en
er
gy

V
½n
#,
th
e
H
ar
tre

e
en
er
gy

U
½n
#,
an
d
X
C

en
er
gy

E
X
C
½n
#.

T
he

K
S
eq
ua
tio

ns
ar
e,
in

pr
in
ci
pl
e,
ex
ac
tg

iv
en

th
e
ex
ac
t

X
C

fu
nc
tio

na
l
[2
0,
54

],
w
hi
ch

in
pr
ac
tic
e
is
th
e
on

ly
te
rm

ap
pr
ox

im
at
ed

in
D
FT

.
Fr
om

a
co
m
pu

ta
tio

na
l
pe
rs
pe
ct
iv
e,

th
e
ei
ge
nv
al
ue

pr
ob

le
m

of
E
q.
(1
)i
s
so
lv
ed

re
pe
at
ed
ly

un
til

th
e
de
ns
ity

co
nv
er
ge
s
to

a
fix

ed
po

in
t
st
ar
tin

g
fr
om

an
in
iti
al
gu

es
s.
W
e
us
e
lin

ea
rd

en
si
ty

m
ix
in
g
[5
5]

to
im

pr
ov
e

co
nv
er
ge
nc
e,

nð
in
Þ

kþ
1
¼

nð
in
Þ

k
þ
αð
nð

ou
tÞ

k
−
nð

in
Þ

k
Þ.

Fi
gu

re
2(
a)

sh
ow

s
th
e
un

ro
lle
d
co
m
pu

ta
tio

n
flo

w
.W

e
ap
pr
ox

im
at
e
th
e

X
C

en
er
gy

pe
r
el
ec
tro

n
us
in
g
a
ne
ur
al

ne
tw
or
k
ϵ X

C
;θ
½n
#,

w
he
re

θ
re
pr
es
en
ts
th
e
tra

in
ab
le
pa
ra
m
et
er
s.
To

ge
th
er

w
ith

th
e
se
lf-
co
ns
is
te
nt

ite
ra
tio

ns
in

Fi
g.

2(
b)
,
th
e
co
m
bi
ne
d

co
m
pu

ta
tio

na
lg

ra
ph

re
se
m
bl
es

a
re
cu
rr
en
tn

eu
ra
ln

et
w
or
k

[5
6]

or
de
ep

eq
ui
lib

riu
m

m
od

el
[5
7]

w
ith

ad
di
tio

na
lf
ix
ed

co
m
pu

ta
tio

na
l

co
m
po

ne
nt
s.

D
en
si
ty

m
ix
in
g

im
pr
ov
es

(a
)

(b
)

(c
)

(d
)

FI
G
.1
.

O
ne
-d
im

en
si
on
al
H

2
di
ss
oc
ia
tio

n
cu
rv
es

fo
rs
ev
er
al
M
L

m
od
el
s
tra

in
ed

fr
om

tw
o
m
ol
ec
ul
es

(r
ed

di
am

on
ds
)
w
ith

op
tim

al
m
od
el
s
(h
ig
hl
ig
ht
ed

in
co
lo
r)
se
le
ct
ed

by
th
e
va
lid

at
io
n
m
ol
ec
ul
e

at
R
¼

3
(b
la
ck

tri
an
gl
es
).

T
he

to
p
pa
ne
l
sh
ow

s
en
er
gy

(w
ith

E
N
N
,
th
e
nu
cl
eu
s-
nu
cl
eu
s
re
pu
ls
io
n
en
er
gy
)
w
ith

ex
ac
t
va
lu
es

sh
ow

n
by

th
e
bl
ac
k
da
sh
ed

lin
e.

T
he

bo
tto

m
pa
ne
l
sh
ow

s
th
e

di
ff
er
en
ce

fr
om

th
e
ex
ac
tc
ur
ve
s
w
ith

ch
em

ic
al

ac
cu
ra
cy

in
gr
ay

sh
ad
ow

.(
a)

di
re
ct
ly

pr
ed
ic
ts
E
fr
om

ge
om

et
rie

s
an
d
cl
ea
rly

fa
ils

to
ca
pt
ur
e
th
e
ph
ys
ic
s
fr
om

ve
ry

lim
ite
d
da
ta
.(
b)
–(
d)

sh
ow

ou
r

m
et
ho
d
(K

SR
)w

ith
di
ff
er
en
ti
np

ut
s
to
th
e
m
od

el
to
al
ig
n
w
ith

th
e

fir
st
tw
o
ru
ng
s
of

Ja
co
b’
s
la
dd
er

[4
7]

(L
D
A

an
d
G
G
A
)
an
d
th
en

gl
ob
al

(a
fu
lly

no
nl
oc
al

fu
nc
tio

na
l).

U
ni
fo
rm

ga
s
L
D
A

[4
6]

is
sh
ow

n
in
br
ow

n.
G
ra
y
lin

es
de
no
te
15

sa
m
pl
ed

fu
nc
tio

na
ls
du
rin

g
tra

in
in
g,

w
ith

da
rk
er

lin
es

de
no
tin

g
la
te
r
sa
m
pl
es
.A

to
m
ic

un
its

us
ed

th
ro
ug

ho
ut
.

(a
)

(b
)

(c
)

FI
G
.2

.
K
S-
D
FT

as
a
di
ff
er
en
tia
bl
e
pr
og
ra
m
.B

la
ck

ar
ro
w
s
ar
e

th
e
co
nv
en
tio

na
lc
om

pu
ta
tio

n
flo

w
.T

he
gr
ad
ie
nt
s
flo

w
al
on
g
re
d

da
sh
ed

ar
ro
w
s
to

m
in
im

iz
e
th
e
en
er
gy

lo
ss

L
E
an
d
de
ns
ity

lo
ss

L
n
.(
a)

T
he

hi
gh

-le
ve
lK

S
se
lf-
co
ns
is
te
nt

ca
lc
ul
at
io
ns

w
ith

lin
ea
r

de
ns
ity

m
ix
in
g
(p
ur
pl
e
di
am

on
ds
).

(b
)
A

si
ng
le

K
S

ite
ra
tio

n
pr
od
uc
es

v X
C
;θ
½n
#
an
d

E
X
C
;θ
½n
#
by

in
vo
ki
ng

th
e

X
C

en
er
gy

ca
lc
ul
at
io
n
tw
ic
e,
on
ce

di
re
ct
ly

an
d
on
ce

ca
lc
ul
at
in
g
a
de
riv

at
iv
e

us
in
g
au
to
m
at
ic

di
ff
er
en
tia
tio

n.
(c
)
T
he

X
C

en
er
gy

ca
lc
ul
at
io
n

us
in
g
th
e
gl
ob
al

X
C

fu
nc
tio

na
l.

PH
Y
SI
C
A
L
R
E
V
IE
W

L
E
T
T
E
R
S
12

6,
03

64
01

(2
02

1)

03
64

01
-2

iteration,w
e
find

accurate
m
odels

w
ith

very
little

data
and

m
uch

greater
generalizability.

O
ur

results
are

illustrated
in

Fig.
1,

w
hich

is
for

a
one-dim

ensional
m
im

ic
of

H
2

designed
for

testing
electronic

structure
m
ethods

[46].
T
he

distribution
of

curves
of

the
M
L

m
odel

directly
predicting

E
from

geom
etries

(direct
M
L
)
in

Fig.
1(a)

clearly
fails

to
capture

the
physics.

N
ext,

w
e
dem

onstrate
K
SR

w
ith

neuralX
C
functionals

from
the

firsttw
o
rungs

of
Jacob’s

ladder
[47]

by
constraining

the
receptive

field
of

the
convolutional

neural
netw

ork
[48].

T
he

local
density

approxim
ation

(L
D
A
)
has

a
receptive

field
of

just
the

current
point,

w
hile

the
generalized

gradient
approxim

a-
tion

(G
G
A
)
includes

the
nearest-neighbor

points,
the

m
inim

al
inform

ation
for

com
puting

the
spatial

gradient
of

the
density.

In
Figs.

1(b)
and

1(c),
the

effect
of

the
K
SR

yields
reasonably

accurate
results

in
the

vicinity
of

the
data,

but
not

beyond.
T
he

K
SR

L
D
A

behaves
sim

ilarly
to

the
uniform

gas
L
D
A

[46].
W
hen

an
X
C

functional
w
ith

a
global

receptive
field

is
included

in
Fig.

1(d),
chem

ical
accuracy

is
achieved

for
all

separa-
tions

including
the

dissociation
lim

it.
Sim

ilar
results

can
be

achieved
for

H
4 ,
the

one-electron
self-interaction

error
can

easily
be

m
ade

to
vanish,

and
the

interaction
of

a
pair

of
H

2
m
olecules

can
be

found
w
ithout

any
training

on
this

type
of

m
olecule

(discussed
below

).
M
odern

D
FT

finds
the

ground-state
electronic

density
by

solving
the

K
ohn-Sham

equations:

!
− ∇

2

2
þ
v
s ½n#ðrÞ "

ϕ
i ðrÞ¼

ϵ
i ϕ

i ðrÞ:
ð1Þ

T
he

density
is

obtained
from

occupied
orbitals

nðrÞ¼
P

i jϕ
i ðrÞj 2.H

ere,v
s ½n#ðrÞ¼

vðrÞþ
v
H ½n#ðrÞþ

v
X
C ½n#ðrÞ

is
the

K
S

potential
consisting

of
the

external
one-body

potential
and

the
density-dependent

H
artree

(H
)
and

X
C

potentials.
T
he

X
C

potential
v
X
C ½n#ðrÞ¼

δE
X
C =δnðrÞ

is
the

functional
derivative

of
the

X
C

energy
functional

E
X
C ½n#¼

R
ϵ
X
C ½n#ðrÞnðrÞdr,

w
here

ϵ
X
C ½n#ðrÞ

is
the

X
C

energy
per

electron.T
he

total
electronic

energy
E
is

then
given

by
the

sum
ofthe

noninteracting
kinetic

energy
T
s ½n#,

the
external

one-body
potential

energy
V
½n#,

the
H
artree

energy
U
½n#,

and
X
C

energy
E
X
C ½n#.

T
he

K
S
equations

are,in
principle,exactgiven

the
exact

X
C

functional
[20,54],

w
hich

in
practice

is
the

only
term

approxim
ated

in
D
FT.

From
a
com

putational
perspective,

the
eigenvalue

problem
ofE

q.(1)is
solved

repeatedly
until

the
density

converges
to

a
fixed

point
starting

from
an

initialguess.W
e
use

lineardensity
m
ixing

[55]to
im

prove
convergence,

n
ðinÞ
kþ

1 ¼
n
ðinÞ
k

þ
αðn

ðoutÞ
k

−
n
ðinÞ
k

Þ.
Figure

2(a)
show

s
the

unrolled
com

putation
flow

.W
e
approxim

ate
the

X
C

energy
per

electron
using

a
neural

netw
ork

ϵ
X
C
;θ ½n#,

w
here

θ
represents

the
trainable

param
eters.Together

w
ith

the
self-consistent

iterations
in

Fig.
2(b),

the
com

bined
com

putationalgraph
resem

bles
a
recurrentneuralnetw

ork
[56]

or
deep

equilibrium
m
odel[57]

w
ith

additionalfixed
com

putational
com

ponents.
D
ensity

m
ixing

im
proves

(a)
(b)

(c)
(d)

FIG
.1.

O
ne-dim

ensionalH
2
dissociation

curves
forseveralM

L
m
odels

trained
from

tw
o
m
olecules

(red
diam

onds)
w
ith

optim
al

m
odels

(highlighted
in

color)selected
by

the
validation

m
olecule

at
R
¼

3
(black

triangles).
T
he

top
panel

show
s
energy

(w
ith

E
N
N ,

the
nucleus-nucleus

repulsion
energy)

w
ith

exact
values

show
n
by

the
black

dashed
line.

T
he

bottom
panel

show
s
the

difference
from

the
exactcurves

w
ith

chem
icalaccuracy

in
gray

shadow
.(a)

directly
predicts

E
from

geom
etries

and
clearly

fails
to

capture
the

physics
from

very
lim

ited
data.(b)–(d)

show
our

m
ethod

(K
SR

)w
ith

differentinputs
to
the

m
odelto

align
w
ith

the
firsttw

o
rungs

of
Jacob’s

ladder
[47]

(L
D
A

and
G
G
A
)
and

then
global

(a
fully

nonlocal
functional).

U
niform

gas
L
D
A

[46]
is

show
n
in
brow

n.G
ray

linesdenote
15

sam
pled

functionalsduring
training,w

ith
darker

lines
denoting

later
sam

ples.A
tom

ic
units

used
throughout.

(a)
(b)

(c)

FIG
.2.

K
S-D

FT
as

a
differentiable

program
.B

lack
arrow

s
are

the
conventionalcom

putation
flow

.T
he

gradients
flow

along
red

dashed
arrow

s
to

m
inim

ize
the

energy
loss

L
E
and

density
loss

L
n .(a)

T
he

high-levelK
S
self-consistentcalculations

w
ith

linear
density

m
ixing

(purple
diam

onds).
(b)

A
single

K
S

iteration
produces

v
X
C
;θ ½n#

and
E
X
C
;θ ½n#

by
invoking

the
X
C

energy
calculation

tw
ice,once

directly
and

once
calculating

a
derivative

using
autom

atic
differentiation.

(c)
T
he

X
C

energy
calculation

using
the

global
X
C

functional.

PH
Y
SIC

A
L
R
E
V
IE
W

L
E
T
T
E
R
S
126,

036401
(2021)

036401-2

Dick et al, 2106.04481
Kasim, Vinko, PRL ‘21

Coil design in fusion reactors (stellarator)

Coil parameters Total cost

Differentiable stellarator design

Differentiable programming is broader than training neural networks

Back propagation for cheap and accurate gradient

McGreivy et al 2009.00196

How to think about AD ?
• AD is modular, and one can control its granularity

• Benefits of writing customized primitives

• Reducing memory usage

• Increasing numerical stability

• Call to external libraries written agnostically to AD
(or, even a quantum processor)

https://github.com/PennyLaneAI/pennylane

Forward mode
“Propagate the perturbation”

Same direction as the function evaluation
Same complexity as numerical finite difference

∂ℒ
∂x1

=
∂ℒ
∂xn

∂xn

∂xn−1
⋯

∂x2

∂x1

Backpropagation = Reverse mode AD applied to neural networks

Forward versus reverse modes

Reverse mode
“Pull back the adjoint”

Backtrace the computation graph
Needs to store intermediate results

Examples of primitives

Loop/Condition/Sort/Permutations are also differentiable

…

~200 functions to cover most of numpy in HIPS/autograd
https://github.com/HIPS/autograd/blob/master/autograd/numpy/numpy_vjps.py

Primitives with gradients implemented in Autograd�

http://videolectures.net/deeplearning2017_johnson_automatic_differentiation/

Differentiable programming tools

HIPS/autograd

SciML

Differentiable Scientific Computing
• Many scientific computations (FFT, Eigen, SVD!) are differentiable

• Differentiable ray tracer

• Differentiable Monte Carlo/Tensor Network/Functional RG/
Dynamical Mean Field Theory/Density Functional Theory/
Hartree-Fock/Coupled Cluster/Gutzwiller/Molecular Dynamics…

• ODE integrators are differentiable with O(1) memory

Differentiable fluid simulationsand

Differentiate through domain-specific computational processes
to solve learning, control, optimization and inverse problems

https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.csail.mit.edu/tzumao/diffrt/
https://arxiv.org/abs/1806.07366
https://rse-lab.cs.washington.edu/papers/spnets2018.pdf

V ΨH

matrix
diagonalization

 ℒ

Inverse Schrodinger Problem

Differentiable Eigensolver

Useful for inverse Kohn-Sham problem, Jensen & Wasserman ‘17

Differentiable Eigensolver
H Ψ = ΨE

Forward mode: What happen if H → H + dH Perturbation theory

Reverse mode: How should I change

?

∂ℒ/∂Ψ ∂ℒ/∂Eand ?
Transposed

perturbation theory!
H given

Hamiltonian engineering via differentiable programming

https://github.com/wangleiphy/DL4CSRC/tree/master/2-ising See also Fujita et al, PRB ‘18

Differentiable Quantum Chemistry

AD for coupled cluster 2011.11690
https://github.com/CCQC/Quax https://github.com/fishjojo/pyscfad

E(Z + ϵ) = E(Z) + E′�(Z)ϵ +
1
2

E′�′�(Z)ϵ2 + …

Quantum Alchemy 2109.11238

nuclear charge

Z = (6,8)Z = (7,7)

AD for SCF: Steiger et al, Future Generation Computer Systems ’05, Tamayo-Mendoza et al ACS Cent. Sci. ’18
AD for VMC: Sorella and Capriotti J. Chem. Phys. ’10

https://github.com/diffqc/dqcCodes:

Adiabatic perturbation

4 Rolf Heid Autumn School on Correlated Electrons, Jülich, September 2020

Qn =
dnE

dln

����
l!0

type of perturbation l order n physical property Q

displacements of atoms 1 atomic force
dR 2 force constants

� 3 anharmonic force constants
homogeneous strain h 1 stress

2 elastic constants
� 3 higher order elastic constants

homogeneous electric field E 1 dipole moment
2 polarizability

dR + h 2+1 Grüneisen parameter
dR + E 1+2 Raman scattering cross section

Differentiable density functional theory

Differentiable DFT for a
unified, flexible, and (very likely) more efficient framework

Baroni et al,
RMP 2001

Dynamics systems Principle of least actions

Optics, (quantum) mechanics, field theory…

S = ∫ ℒ(qθ, ·qθ, t)dtdx
dt

= fθ(x, t)

Classical and quantum control

Differentiable ODE integrators
“Neural ODE” Chen et al, 1806.07366

Differentiable functional optimization

T = ∫
x1

x0

1 + (dy/dx)2

2g(y1 − y0)
dx

The brachistochrone problem
Johann Bernoulli,1696

https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/brachistochrone

Differentiable functional optimization

T = ∫
x1

x0

1 + (dy/dx)2

2g(y1 − y0)
dx

The brachistochrone problem
Johann Bernoulli,1696

https://github.com/QuantumBFS/SSSS/tree/master/1_deep_learning/brachistochrone

Dynamics systems Principle of least actions

Optics, (quantum) mechanics, field theory…

S = ∫ ℒ(qθ, ·qθ, t)dtdx
dt

= fθ(x, t)

Classical and quantum control

Differentiable ODE integrators
“Neural ODE” Chen et al, 1806.07366

Quantum optimal control

No gradient:
not scalable

Forward mode:
slow

Reverse mode w/ discretize steps:
piesewise-constant assumption

i
dU
dt

= HU

https://qucontrol.github.io/krotov/
v1.0.0/11_other_methods.html

Differentiable programing (Neural ODE) for
unified, flexible, and efficient quantum control

https://colab.research.google.com/drive/
1T0_sJMwmk7rbpxHMcBZwdD9pnYZx93oh?usp=sharing

Differentiable Programming Tensor Networks

Liao, Liu, LW, Xiang, 1903.09650, PRX ‘19 https://github.com/wangleiphy/tensorgrad

“Tensor network is 21 century’s matrix”

Neural networks and
Probabilistic graphical models

—Mario Szegedy

Quantum circuit architecture,
parametrization, and simulation

GRADIENT METHODS FOR VARIATIONAL OPTIMIZATION . . . PHYSICAL REVIEW B 94, 155123 (2016)

A. Computing the gradient

The objective function f that we want to minimize [see
Eq. (6)] is a real function of the complex-valued A, or,
equivalently, the independent variables A and Ā. The gradient
is then obtained by differentiating f (Ā,A) with respect to Ā,

grad = 2 × ∂f (Ā,A)
∂Ā

= 2 × ∂Ā ⟨"(Ā)| H |"(A)⟩
⟨"(Ā)|"(A)⟩

− 2 × ⟨"(Ā)| H |"(A)⟩
⟨"(Ā)|"(A)⟩2 ∂Ā⟨"(Ā)|"(A)⟩,

where we have clearly indicated A and Ā as independent
variables. In the implementation we will always make sure
the PEPS is properly normalized, such that the numerators
drop out. By subtracting from every term in the Hamiltonian
its expectation value, the full Hamiltonian can be redefined as

H → H − ⟨"(Ā)|H |"(A)⟩, (7)

such that the gradient takes on the simple form

grad = 2 × ∂Ā⟨"(Ā)|H |"(A)⟩.
The gradient is thus obtained by differentiating the energy
expectation value ⟨"(Ā)| H |"(A)⟩ with respect to every Ā
tensor in the bra level and taking the sum of all contributions.
Every term in this infinite sum is obtained by omitting one
Ā tensor and leaving the indices open. The full infinite

summation is then obtained by letting the Hamiltonian operator
and this open spot in the network travel through the channels
separately, just as in the case of the structure factor in Sec. II D.

Let us first define a new tensor that captures the infinite sum
of Hamiltonian operators acting inside a channel,

= + + + . . .

= ,

where the big tensor is again the inverted channel operator of
Eq. (4) with momentum zero. Because we have redefined the
Hamiltonian in Eq. (7), the inversion of the channel operator
is well defined, because the vector on which the inverse acts
has a zero component along the channel fixed point ρL.

With this blue tensor all different relative positions of the
Hamiltonian terms and the tensor Ā that is being differentiated
(the open spot) can be explicitly summed, similarly to the
expression for the structure factor [Eq. (5)]. There are a few
more terms because every Hamiltonian term corresponds to a
two-site operator and has different orientations.

The full expression is

grad = + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + + ,

155123-7

2 3 4 5 6 7
D

10�5

10�4

10�3

10�2

en
er

gy
re

la
ti
ve

er
ro

r

simple update

full update

Corboz [34]

Vanderstraeten [35]

present work

2 3 4 5 6 7
D

0.30

0.32

0.34

0.36

0.38

0.40

0.42

st
ag

ge
re

d
m

ag
ne

ti
za

ti
on

now, w/ differentiable programming
Liao, Liu, LW, Xiang, PRX ‘19

before…

Differentiable tensor network optimization

https://github.com/wangleiphy/tensorgrad 1 GPU (Nvidia P100) week
Lowest variational energy Vanderstraeten et al, PRB ‘16

Finding ground state of a quantum magnet

2 3 4 5 6 7
D

10�5

10�4

10�3

10�2

en
er

gy
re

la
ti
ve

er
ro

r

simple update

full update

Corboz [34]

Vanderstraeten [35]

present work

2 3 4 5 6 7
D

0.30

0.32

0.34

0.36

0.38

0.40

0.42

st
ag

ge
re

d
m

ag
ne

ti
za

ti
on

Finite size
Neural network

Carleo & Troyer, Science ‘17

10x10 cluster

Infinite size
Tensor network

Liao, Liu, LW, Xiang, PRX ‘19

Further progress for challenging physical problems:
frustrated magnets, fermions, thermodynamics …

Chen et al, ‘19
Xie et al, ’20

Tang et al ’20
…

Differentiable tensor network optimization

Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, Lei Wang, 1912.10877, Quantum ‘20

Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design

Differentiable Programming Quantum Circuits

https://arxiv.org/abs/1912.10877

4

FIG. 1. Illustration of the three common steps of hybrid quantum-classical algorithms. These steps have

to be repeated until convergence or when a su�ciently good quality of the solution is reached. 1) State

preparation involving the quantum hardware capable of tunable gates characterized by parameters “n (blue),

2) measurement of the quantum state and evaluation of the objective function (red), 3) iteration of the

optimization method to determine promising changes in the state preparation (green). Notice that a single

parameter “n may characterize more than one gate, for example see “1 and “6 in the blue box. In practice,

many state preparations and measurements are necessary before proceeding with a single update of the

parameters.

quantum state, records the outcomes and analyze them to obtain the value of the objective function

corresponding to the prepared state. The third step is the classical optimization iteration that,

based on previous results, suggests new parameter values to improve the quality of the state. We

pictorially illustrate these three parts and their interplay in Fig. 1.

As mentioned, the goal of variational algorithms is to find an approximate solution to certain

problems. The quality of such approximation is given by the value of the objective function that one

desires to maximize (or minimize). The objective function is expressed as a quantum observable,

noted here with Ĉ, of the qubit register. It can be a genuinely quantum quantity, as is the case

for the energy of molecular systems, or classical in nature, for example when it is associated to

combinatorial optimization, scheduling problems or financial modeling. Given the quantum register

in state |„Í, the objective function is given by the expectation value È„| Ĉ |„Í.

⟨H⟩θ
Peruzzo et al,

Nat. Comm. ’13

Quantum circuit as a variational ansatz or a machine learning model

θ6

θ6θ4

θ5

θ2

θ3

θ1

θ1

θ1

θ

Variational quantum algorithms

Differentiable quantum circuits
compute gradient in classical simulations

Unfortunately, forward mode is slow
Reverse mode is memory consuming

Quantum circuit computation graph

ℒ|x1⟩ |x2⟩

U1

|xN⟩. . .|x0⟩

U2 UN

The same “comb graph” as the feedforward neural network,
except that quantum computing is reversible

Quantum
state

Unitaries

O(1) memory AD for reversible neural nets Gomez et al, 1707.04585 Chen et al, 1806.07366

Train a 10,000 layer,
300,000 parameter
circuit on a laptop

https://yaoquantum.org/

according to Wirtingers derivative [53] for com-
plex numbers, where L is a real-valued objective
function that depends on the final state. Start-
ing from L = 1 we can obtain the adjoint of the
output state.

To pull back the adjoints through the compu-
tational graph, we perform the backward calcu-
lation [54]

. . .

|ÂkÍ = U †
k
|Âk+1Í

|ÂkÍ = U †
k
|Âk+1Í

. . .

(2)

The two equations above are implemented
Yao.AD with the apply_back! method. Based
on the obtained information, we can compute the
adjoint of the gate matrix using [54]

Uk = |Âk+1ÍÈÂk|. (3)

This outer product is not explicitly stored as a
dense matrix. Instead, it is handled efficiently by
customized low rank matrices described in Ap-
pendix E. Finally, we use mat_back! method to
compute the adjoint of gate parameters ◊k from
the adjoint of the unitary matrix Uk.

Figure 6 demonstrates the procedure in a con-
crete example. The black arrows show the for-
ward pass without any allocation except for the
output state and the objective function L. In the
backward pass, we uncompute the states (blue
arrows) and backpropagate the adjoints (red ar-
rows) at the same time. For the block de-
fined as put(nbit, i=>chain(Rz(–), Rx(—),
Rx(“))), we obtain the desired –, — and “ by
pushing the adjoints back through the mat func-
tions of PutBlock and ChainBlock. The imple-
mentation of the AD engine is generic so that
it works automatically with symbolic computa-
tion. We show an example of calculating the
symbolic derivative of gate parameters in Ap-
pendix G. One can also integrate Yao.AD with
classical automatic differentiation engines such as
Zygote to handle mixed classical and quantum
computational graphs, see [55].

Listing 9: 10000-layer VQE⌥ ⌅
julia> using Yao, YaoExtensions

julia> n = 10; depth = 10000;

julia> circuit = dispatch!(
variational_circuit(n, depth),
:random);

julia> gatecount(circuit)
Dict{Type{#s54} where #s54 <:

AbstractBlock,Int64} with 3 entries:
RotationGate{1,Float64,ZGate} => 200000
RotationGate{1,Float64,XGate} => 100010
ControlBlock{10,XGate,1,1} => 100000

julia> nparameters(circuit)
300010

julia> h = heisenberg(n);

julia> for i = 1:100
_, grad = expect�(h, zero_state(n)=>

circuit)
dispatch!(-, circuit, 1e-3 * grad)
println("Step $i, energy = $(expect(

h, zero_state(n)=>circuit))")
end⌃ ⇧

To demonstrate the efficiency of Yao’s AD en-
gine, we use the codes in Listing 9 to simulate
the variational quantum eigensolver (VQE) [56]
with depth 10, 000 (with 300, 010 variational pa-
rameters) on a laptop. The simulation would
be extremely challenging without Yao, either due
to overwhelming memory consumption in the re-
verse mode AD or unfavorable computation cost
in the forward mode AD.

Here, variational_circuit is predefined in
YaoExtensions to have a hardware efficient ar-
chitecture [57] shown in Fig. 9. The dispatch!
function with the second parameter specified to
:random gives random initial parameters. The
expect function evaluates expectation values of
the observables; the second argument can be a
wave function or a pair of the input wave func-
tion and circuit ansatz like above. expect� eval-
uates the gradient of this observable for the in-
put wave function and circuit parameters. Here,
we only make use of its second return value.
For batched registers, the gradients of circuit pa-
rameters are accumulated rather than returning
a batch of gradients. dispatch!(-, circuit,
...) implements the gradient descent algorithm

9

+ + =

• Differentiable programming quantum circuits
• Batch parallelization with GPU acceleration
• Quantum block intermediate representation

Features:

Xiu-Zhe Roger Luo (IOP, CAS → Waterloo & PI)
Jin-Guo Liu (IOP, CAS → Harvard & QuEra)

Yao.jl: Extensible, Efficient Framework for
Quantum Algorithm Design

https://yaoquantum.org/

+ + =

• Differentiable programming quantum circuits
• Batch parallelization with GPU acceleration
• Quantum block intermediate representation

Features:

Xiu-Zhe Roger Luo (IOP, CAS → Waterloo & PI)
Jin-Guo Liu (IOP, CAS → Harvard & QuEra)

Yao.jl: Extensible, Efficient Framework for
Quantum Algorithm Design

https://yaoquantum.org/

Thank you!

 ∂

Jin-Guo Liu,
QuEra & Harvard

Xiu-Zhe Luo
Waterloo & PI

Hai-Jun Liao
 IOP CAS

Pan Zhang
 ITP CAS

Tao Xiang
 IOP CAS

