

多信使时代核物质的状态方程

Lie-Wen Chen (陈列文)

School of Physics and Astronomy, Shanghai Jiao Tong University, China

(lwchen@sjtu.edu.cn)

Where does the dense nuclear matter exist?

 Nucleus
 HIC
 SN
 NStar
 NS Merger

 Can we build a unified Energy Density Functional to describe these dense systems?

- Nuclear matter EOS and the symmetry energy (Esym)
- Dense nuclear matter from Nuclear experiments + Neutron star mass and radius +Tidal deformability from GW170817
- **Summary and outlook**

The Symmetry Energy of Finite Nuclei

The Symmetry Energy of Nuclear Matter

对称能是回答以下两个重大科学问题的关键量
 ▶ 中子星和致密核物质的性质是什么?
 ▶ 宇宙中的元素是怎样产生的?

 The Frontiers of Nuclear Science Advisory Committee

◆确定对称能已成为一些核物理大科学装置的重要物理目标,比如:中国兰州CSR/惠州HIAF、 日本RIBF/RIKEN、美国FRIB/MSU和德国FAIR/GSI

QCD Phase Diagram

V.E. Fortov, Extreme States of Matter – on Earth and in the Cosmos, Springer-Verlag, 2011

- Small baryon chemical potential: **Smooth Crossover Transition**
- Large baryon chemical potential: **First-order Phase Transition**
- QCD Critical Endpoint (CEP): where the first-order phase transition ends

Holy Grail of Nuclear **Physics**

Probing QCD phase diagram in Nuclei and Heavy Ion Collisions in terrestrial labs

and in NS Merger, SN, and Nstar in heaven?

HIC Nuclei

NStar NS Merger

NS Mergers/NStar/CCSNe: Ideal and unique site to probe QCD phase diagram at low T and high densities (and large isospin)! **Quark Matter Symmetry Energy?**

SN

M. Di Toro et al., NPA775 (2006); P.C. Chu (初鹏程)/LWC, ApJ780 (2014); LWC,《原子核物理评论》34, 20 (2017) [arXiv:1708.04433]

n_B and **T** in relativistic heavy-ion collisions

n_B and **T** in core-collapse SN and NStar

A typical Core-Collapse Supernova Explosion Xu-Run Huang (黄旭润), Shuai Zhao, and LWC, ApJL923, L26 (2021)

Neutron stars

Density at the center: ~ $2\rho_0$ **Temperature at the center:** ~ 20 MeV (~50 MeV around the shock wave)

Center density: ~ $6\rho_0$; Average density: ~ $2.5\rho_0$ Temperature ~ 0

n_B and **T** in binary neutron star merger

The overall evolution during and after the merger of the low-mass binary with total mass 2.8 M_{\odot}

The baryon density in binary neutron star merger could reach more than $\sim 15\rho_0$ and the temperature could reach $\sim 0-50$ MeV but with large isospin density!

Elias R. Most et al., PRL122, 061101 (2019)

Matter density evolution of BNS mergers with equal mass 1.364M_① (LS220 EOS, Ji-Min Bai(白济民) et al., preliminary)

The high density Esym of nuclear/quark matter is particularly important for NS mergers/NStar/CCSNe!

EOS of Symmetric Nuclear Matter

W.G. Lynch et al., PPNP62, 427 (2009)

Curent status of the EOS of SNM:

Around ρ₀: K₀=240±20 MeV from GMR [U. Garg and G. Colo, PPNP101, 55 (2018)]
 1ρ₀< ρ < 3ρ₀ from K⁺ production in HIC's. The range of densities for the kaon constraint represents an educated guess (有根据的推测⑧) based on available calculations [C. Fuchs, PPNP 56, 1 (2006)]

 2ρ₀< ρ < 5ρ₀ using flow data from BEVALAC, SIS/GSI and AGS [P. Danielewicz, R. Lacey and W.G. Lynch, Science 298, 1592 (2002)]

The EOS of Symmetric NM has been relatively well constrained! (~Soft EOS of SNM at high densities)

The nuclear matter EOS cannot be measured experimentally, its determination thus depends on theoretical approaches

Microscopic Many-Body Approaches

Non-relativistic Brueckner-Bethe-Goldstone (BBG) Theory Relativistic Dirac-Brueckner-Hartree-Fock (DBHF) approach Self-Consistent Green's Function (SCGF) Theory Variational Many-Body (VMB) approach Green's Function Monte Carlo Calculation V_{lowk} + Renormalization Group Nuclear Lattice Approach

• Effective Field Theory

Density Functional Theory (DFT) Chiral Perturbation Theory (ChPT) QCD-based theory

Phenomenological Approaches

Relativistic mean-field (RMF) theory Quark Meson Coupling (QMC) Model Relativistic Hartree-Fock (RHF) Non-relativistic Hartree-Fock (Skyrme-Hartree-Fock) Thomas-Fermi (TF) approximations

Esym: Many-Body Approaches

L.W. Chen, Nucl. Phys. Rev. (原子核物理评论) 34, 20 (2017) [arXiv:1708.04433]

Esym: Experimental Probes

Promising Probes of the $E_{sym}(\rho)$

(an incomplete list !)

At sub-saturation densities (亚饱和密度行为)

- Sizes of n-skins of unstable nuclei from total reaction cross sections
- Proton-nucleus elastic scattering in inverse kinematics
- Parity violating electron scattering studies of the <u>n-skin</u> in ²⁰⁸Pb
- <u>n/p ratio of FAST, pre-equilibrium nucleons</u>
- Isospin fractionation and isoscaling in nuclear multifragmentation
- Isospin diffusion/transport
- Neutron-proton differential flow
- Neutron-proton correlation functions at low relative momenta
- t/³He ratio
- Hard photon production
- <u>Pigmy/Giant resonances</u>
- Nucleon optical potential

Towards high densities reachable at CSR/Lanzhou, FAIR/GSI, RIKEN,

GANIL and, FRIB/MSU (高密度行为)

- π^{-}/π^{+} ratio, K⁺/K⁰ ratio?
- Neutron-proton differential transverse flow
- n/p ratio at mid-rapidity
- Nucleon elliptical flow at high transverse momenta
 n/p ratio of squeeze-out emission

B.A. Li, L.W. Chen, C.M. Ko Phys. Rep. 464, 113(2008) [arXiv:0804.3580] (Citations: 1082+)

Facilities of Radioactive Ion Beams

An incomplete list

- Cooling Storage Ring (CSR) Facility at HIRFL/Lanzhou in China (2008) up to 500 MeV/A for ²³⁸U (~1GeV/A for C) http://www.impcas.ac.cn/zhuye/en/htm/247.htm
- Radioactive Ion Beam Factory (RIBF) at RIKEN in Japan (2007) http://www.riken.jp/engn/index.html
- Texas A&M Facility for Rare Exotic Beams -T-REX (2013) http://cyclotron.tamu.edu
- Facility for Antiproton and Ion Research (FAIR)/GSI in Germany (2022?) up to 2 GeV/A for ¹³²Sn (NUSTAR - NUclear STructure, Astrophysics and Reactions) http://www.gsi.de/fair/index_e.html
- SPIRAL2/GANIL in France (2013) http://pro.ganil-spiral2.eu/spiral2
- Selective Production of Exotic Species (SPES)/INFN in Italy (2015) http://web.infn.it/spes
- Facility for Rare Isotope Beams (FRIB)/MSU in USA (2022?) up to 400(200) MeV/A for ¹³²Sn <u>http://www.frib.msu.edu/</u>
- •The Korean Rare Isotope Accelerator (KoRIA-RAON(RISP Accelerator Complex) (2021?) up to 250 MeV/A for ¹³²Sn, up to 109 pps(NICA, J-PARC-HI)

E_{sym}: **Subsaturation densities**

Z. Zhang (张振) and LWC, PRC92, 031301(R) (2015) 40 0.8 0.6 E_{sym}(p)(MeV) 5 0.4 0.2 0.0 0.12 0.16 0.04 0.08 0.00 ρ(fm⁻³) $\sum \alpha_{\rm p}$ in ²⁰⁸Pb (This Work) 0 Zhang 10 HIC Wang IAS Brown IAS+NSkin Trippa Wada Roca-Maza Kowalski Cao 0 0.00 0.04 0.08 0.12 0.16 ρ(**fm**⁻³)

• $\Delta E(A \sim 208) \propto E_{sym}(\rho_{A=208}), \rho_{A=208} \approx 2/3\rho_0$ • $1/\alpha_D(A = 208) \propto E_{sym}(\rho_{A=45}), \rho_{A=45} \approx 1/3\rho_0$

- HIC: Sn+Sn
 M.B. Tsang *et al.*, Phys. Rev. Lett.102, 122701(2009)
- IAS and IAS+NSkin
 P. Danielewicz and J. Lee, Nucl. Phys. A922, 1 (2014)
- Zhang: Isotope binding energy difference
 Z. Zhang and L.W. Chen, Phys. Lett. B726, 234 (2013)
- Wang: Fermi energy difference
 N. Wang *et al.*, Phys. Rev. C 87, 034327 (2013)
- Brown: Doubly magic nuclei
 B.A. Brown, Phys. Rev. Lett. 11, 232502 (2013)
- Trippa: Giant dipole resonance
 L. Trippa *et al.*, Phys. Rev. C 77
- Roca-Maza: Giant quadrupole resonance
 X. Roca-Maza *et al.*, Phys. Rev. C 87, 034301 (2013)
- Cao: Pygmy dipole resonance
 L.G. Cao and Z.Y. Ma, Chin. Phys. Lett. 25, 1625 (2008)

Wada and Kowalski: experimental results of the symmetry energies at densities below $0.2\rho_0$ and temperatures in the range 3 ~11 MeV from the analysis of cluster formation in heavy ion collisions.

Wada et al., Phys. Rev. C85, (2012) 064618; Kowlski et al., Phys. Rev. C75, (2007) 014601. Natowitz et al., Phys. Rev. Lett. 104, (2010) 202501.

E_{sym}: **Subsaturation densities**

Clustering effects on Esym within NL-RMF for n, p, t, h, α matter

Zhao-Wen Zhang (张肇文) and LWC, PRC95, 064330 (2017)

See also: S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Phys. Rev. C 81, 015803 (2010).

Alpha BEC effects on Esym within NL-RMF for cold npα matter

Zhao-Wen Zhang (张肇文) and LWC, PRC100, 054304 (2019)

E_{sym}: Around saturation density

LWC et al., Invited Review/PPNP 58 analyses of terrestrial nuclear experiments and astrophysical observations

> $E_{sym}(\rho_0) = 31.7 \pm 3.1$ $L = 57.5 \pm 24.5 \text{ MeV}$

Similar conclusion has been obtained in:

B. A. Li and X. Han, Phys. Lett. B727, 276 (2013); M. Oertel, M. Hempel, T. Klahn, and S. Typel, Rev. Mod. Phys. 89, 015007 (2017).

Assuming all the constraints are equally reliable !!!

Very recent PREX-II data suggest stiff Esym around saturation density!

E_{sym}: Around saturation density

Multiplicity ratio: $Lc=53.8\pm1.7\pm7.8$ MeV $L=65.4\pm2.1\pm12.1$ MeV **pT> ratio:** Lc=56.8±0.4±10.4 MeV L=69.8±0.7±16.0 MeV

RHIC-STAR isobaric collisions data favor stiff Esym around saturation density!

E_{sym}: **Supra-saturation density**

A Soft or Stiff Esym at supra-saturation densities ???

pion ratio (FOPI): ImIQMD, Feng/Jin, PLB683, 140(2010)

上海交通大學

Tong-Gang Yue (岳侗钢),

LWC, Z. Zhang (张振),

E_{sym}: **Current Status**

• There are MANY constraints on $E_{sym}(\rho_0)$ and L, and the world average values are: $E_{sym}(\rho_0) = 31.7 \pm 3.1 \text{ MeV}$ $L = 57.5 \pm 24.5 \text{ MeV}$ Very recent PREX-II makes the situation elusive !!! (This Talk)

• The symmetry energy at subsaturation densities have been relatively well-constrained

Z. Zhang(张振)/LWC, PLB726, 234 (2013); PRC92, 031301(R)(2015)

•Based on the GW multimessenger measurements, the high density Esym cannot be too stiff or too soft but still with large uncertainty!!! (This Talk)

Y. Zhou (周颖), LWC, ApJ886, 52(2019) [arXiv:1907.12284]

- Nuclear matter EOS and the symmetry energy (Esym)
- Dense nuclear matter from Nuclear experiments + Neutron star mass and radius +Tidal deformability from GW170817
- Summary and outlook

Characteristic Parameters of NM EOS

PHYSICAL REVIEW C 80, 014322 (2009)

Higher-order effects on the incompressibility of isospin asymmetric nuclear matter

Lie-Wen Chen,^{1,2} Bao-Jun Cai,¹ Che Ming Ko,³ Bao-An Li,⁴ Chun Shen,¹ and Jun Xu³ ¹Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

²Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, People's Republic of China ³Cyclotron Institute and Physics Department, Texas A&M University, College Station, Texas 77843-3366, USA ⁴Department of Physics, Texas A&M University-Commerce, Commerce, Texas 75429-3011, USA

(Received 27 May 2009; published 30 July 2009)

$$E(\rho,\delta) = E_0(\rho) + E_{\text{sym}}(\rho)\delta^2 + E_{\text{sym},4}(\rho)\delta^4 + O(\delta^6)$$

Jie Pu (普洁) et al., to be Submiited

Order of the characteristic parameters according to the expansion with χ and δ : Order-0: $E_0(\rho_0)$; Order-2: K_0 , $E_{sym}(\rho_0)$; Order-3: J_0 , L; Order-4: I_0 , $K_{sym}(\rho_0)$, $E_{sym,4}(\rho_0)$

□ J₀≈? and K_{sym}≈? High Density Behaviors?
 Data of finite nuclei + Flow Data in HIC + Observed NStar Largest Mass + NStar M-R from NICER + Tidal Deformability of Neutron Star (from GW170817) analyzed simultaneously within a unified Nuclear Energy Density Functional

The nuclear energy density functional theory (e.g., SHF/RMF) is still the only realistic framework to simultaneously investigate the physics of heavy nuclei and neutron stars as well as heavy-ion collisions !!!

Pulsars: Neutron Stars? Quark Stars? Hybrid Stars? Others?

V.E. Fortov, Extreme States of Matter – on Earth and in the Cosmos, Springer-Verlag Berlin Heidelberg 2011

 $\begin{array}{l} Mass: \sim 1.4 \ M_{\odot}, Radius: \sim 10 \ km \\ Extremely neutron-rich matter \\ Density at the center: \sim 6\rho_0 \\ Average density: \sim 2.5\rho_0 \end{array}$

The mass of ud Quark Star can be $2.77M_{\odot}$, Z. Cao (曹政), LWC, P.C. Chu (初鹏程), and Y. Zhou (周颖), arXiv:2009.00942.

Composition of Neutron Star Matter

^{2.5} (^{2.0}) ^{2.0} ^(1.1) ^(1.5) ^(1.5) ^(1.5) ^(1.6) ⁽

- The maximum baryon density could reach about 30ρ₀ in heavy ion collisions at but with high temperature (>110 MeV)
- The critical density for deconfinement/chiral symmetry restoration at T = 0 could be >>6 ρ_0 ($\mu_B \sim 1.6$ GeV)!
- Quark phase exists inside Nstars??? (E. Annala et al., Nature Physics (2020))

Tidal Deformability

Tidal Deformability (Polarizability) (oscillation response coefficient λ)

$$Q_{ij} = \lambda \varepsilon_{ij}$$

 Q_{ij} : Quadrupole moment ε_{ii} : Tidal field of companion

k₂: Love number R: Radius M: Mass

Éanna É. Flanagan and Tanja Hinderer, Phys.Rev.D 77, 021502(R) (2008) F.J. Fattoyev, J. Carvajal, W.G. Newton, and Bao-An Li, Phys. Rev. C 87, 015806 (2013)

Binary Neutron Star Merger

LIGO is sensitive to increase in orbital frequency as system loses energy to both gravitational waves and internal excitation of neutron stars. GW170817 data place limits on polarizability (deformability) Λ of NS and hence limits on NS radius.

Multimessenger era: GW170817

- On August 17, 2017, the merger of two neutron stars was observed with gravitational waves (GW) by the LIGO and Virgo detectors.
- The Fermi and Integral spacecrafts independently detected a short gamma ray burst.
- Extensive follow up observations detected this event at X-ray, ultra-violet, visible, infrared, and radio wavelengths.
- □ No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of *r*-process nuclei synthesized in the ejecta

EOS of Neutron Star Matter

Our assumptions
 Core of the neutron stars consist of infinite β-equilibrium npeµ matter with charge neutrality. Its EOS is determined by the Nuclear Energy Density Functionals

The inner crust $2.46 \times 10^{-4} \text{ fm}^{-3} = n_{\text{out}} < n < n_t$

 $P = a + b\epsilon^{4/3}$

n_t is determined self-consistently by using dynamical method (J Xu(徐骏)/LWC/Li/Ma, ApJ697,1549(2009))

$$a = \frac{P_{\text{out}}\epsilon_{\text{t}}^{4/3} - P_{\text{t}}\epsilon_{\text{out}}^{4/3}}{\epsilon_{\text{t}}^{4/3} - \epsilon_{\text{out}}^{4/3}} \quad b = \frac{P_{\text{t}} - P_{\text{out}}}{\epsilon_{\text{t}}^{4/3} - \epsilon_{\text{out}}^{4/3}}$$

The outer crust

 $6.93 \times 10^{-13} \, \text{fm}^{-3} < n < n_{\text{out}}$ (EOS of BPS)

 $4.73 \times 10^{-15} \text{ fm}^{-3} < n < 6.93 \times 10^{-13} \text{ fm}^{-3}$ (EOS of Feynman-Metropolis-Teller)

The extended SHF Energy Density Functional

	Extended Skyrme Interaction:	
Momentum-dependence of many-body forces	$\begin{aligned} v_{i,j} &= t_0 (1 + x_0 P_{\sigma}) \delta(\mathbf{r}) \\ &+ \frac{1}{2} t_1 (1 + x_1 P_{\sigma}) [\mathbf{K}'^2 \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{K}^2] \\ &+ t_2 (1 + x_2 P_{\sigma}) \mathbf{K}' \cdot \delta(\mathbf{r}) \mathbf{K} \\ &+ \frac{1}{6} t_3 (1 + x_3 P_{\sigma}) n(\mathbf{R})^{\alpha} \delta(\mathbf{r}) \\ &+ i W_0 (\boldsymbol{\sigma}_i + \boldsymbol{\sigma}_j) \mathbf{K}' \cdot \delta(\mathbf{r}) \mathbf{K} \\ &+ \frac{1}{2} t_4 (1 + x_4 P_{\sigma}) [\mathbf{K}'^2 n(\mathbf{R})^{\beta} \delta(\mathbf{r}) + \delta(\mathbf{r}) n(\mathbf{R})^{\beta} \mathbf{K}^2] \\ &+ t_5 (1 + x_5 P_{\sigma}) \mathbf{K}' \cdot n(\mathbf{R})^{\gamma} \delta(\mathbf{r}) \mathbf{K} \end{aligned}$	N. Chamel, S. Goriely, and J.M. Pearson, PRC80, 065804 (2009) Z. Zhang/LWC, PRC94 064326 (2016)
LWC/Ko/Li/Xu,	PRC82, 024321(2010)	$G_{S} = G_{V} = G_{V}$

13 Skyrme parameters: $\alpha, t_0 \sim t_5, x_0 \sim x_5$ $\mathcal{H} = \mathcal{K} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \frac{G_S}{2} (\nabla \rho)^2 - \frac{G_V}{2} (\nabla \rho_1)^2$ 13 macroscopic nuclear properties: $-\frac{G_{SV}}{2} \delta \nabla \rho \nabla \rho_1 + \mathcal{H}_{Coul} + \mathcal{H}_{SO} + \mathcal{H}_{sg}$, (13) $n_0, E_0, K_0, J_0, E_{sym}, L, K_{sym}, m_{s,0}^*, m_{v,0}^*, G_S, G_V, G_{SV}, G'_0$

PHYSICAL REVIEW C 94, 064326 (2016)

Extended Skyrme interactions for nuclear matter, finite nuclei, and neutron stars

(张振,中山大学) Zhen Zhang¹ and Lie-Wen Chen^{1,2,*}

¹Department of Physics and Astronomy and Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China

²Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China

symmetry energy softer at subsaturation densities (favored by experimental constraints and theoretical predictions) but stiffer at higher densities (favored by the observation of $2M_{\odot}$ neutron stars) challenges the SHF model with the conventional Skyrme interactions. For example, the Skyrme interaction TOV-min [28], which is built by fitting properties of both finite nuclei and neutron stars, can successfully support $2M_{\odot}$ neutron stars but predicts a neutron matter EOS significantly deviating from the ChEFT calculations [14] as well as the constraint extracted from analyzing the electric-dipole polarizability in ²⁰⁸Pb [49] at densities below about $0.5\rho_0$.

Furthermore, it is well known that a notorious shortcoming of the conventional standard Skyrme interactions is that they predict various instabilities of nuclear matter around

saturation density or at supra-saturation densities, which in principle hinders the application of the Skyrme interactions in the study of dense nuclear matter as well as neutron stars. For instance, most of the conventional standard Skyrme interactions predict spin or spin-isospin polarization in the density region of about $(1 \sim 3.5)\rho_0$ [25,51], including the famous SLy4 interaction [19] which has been widely used in both nuclear physics and neutron star studies and leads to spinisospin instability of symmetric nuclear matter at densities beyond about $2\rho_0$ [52]. On the other hand, the calculations Momentumdependence of many-body forces plays an important role for the highdensity behaviors of EOS!

The eSHF can describe simultaneously nuclear matter, finite nuclei, and neutron stars! The eSHF EDF is very flexible to mimic various density behaviors for EOS (13 parameters)

 $E_0(\rho) = a_2 \rho^{2/3} + a_3 \rho^{3/3} + a_4 \rho^{(\alpha+3/3)} + a_5 \rho^{5/3} + a_6 \rho^{(\beta+5/3)} + a_7 \rho^{(\gamma+5/3)}$

The extended Skyrme force for HIC

100 fm/c 600 fm/c

Ground state LHV Calculations

The rms radius, fraction of bound nucleons, binding energy of ground state evolution

Very stable ground state of the initialized nuclei!

R. Wang (王睿), LWC, and Z. Zhang (张振), PRC99, 044607 (2019)

The GPU parallel computing with large enough test particle number (up to ~100000 !)

Constraining the in-medium nucleon-nucleon cross section from the width of nuclear giant dipole resonance

Rui Wang $^{\mathrm{a},\mathrm{b}}$, Zhen Zhang $^{\mathrm{c}}$, Lie-Wen Chen $^{\mathrm{d}}$, Che Ming Ko $^{\mathrm{e}}$, Yu-Gang Ma $^{\mathrm{a},\mathrm{b}}$

基于格点Hamiltonian方法和随机碰撞方法,发展了完 整的格点Boltzmann-Uehling-Uhlenbeck(BUU)输运 模型并成功用于描述原子核的集体运动

Invited Review

REVIEW published: 06 October 2020 doi: 10.3389/fphy.2020.00330

Nuclear Collective Dynamics in Transport Model With the Lattice Hamiltonian Method

Rui Wang^{1,2}, Zhen Zhang³, Lie-Wen Chen^{4*} and Yu-Gang Ma^{1,2}

王睿, 张振, LWC, and Y.G.Ma

Extended Skyrme forces with fixed J₀&K_{sym}

 $n_0, E_0, K_0, J_0, E_{sym}, L, K_{sym}, m^*_{s,0}, m^*_{v,0}, G_S, G_V, G_{SV}, G'_0$

TABLE I. Experimental data for 12 spherical even-even nuclei binding energies $E_{\rm B}$ [27], charge r.m.s. radii $r_{\rm c}$ [28–30], ISGMR energies $E_{\rm GMR}$ and its exprimental error [31], and spin-orbit energy level splittings $\epsilon_{\rm ls}^A$ [32].

$^{A}_{Z}\mathrm{X}$	$E_{\rm B}({\rm MeV})$	$r_{ m c}({ m fm})$	$E_{\rm GMR}({\rm MeV})$	$\epsilon^A_{\rm ls}({ m MeV})$
¹⁶ O	-127.619	2.6991		$6.30(1 p \nu)$
				$6.10(1 \mathrm{p}\pi)$
40 Ca	-342.052	3.4776		
48 Ca	-416.001	3.4771		
⁵⁶ Ni	-483.995	3.7760		
⁶⁸ Ni	-590.408			
88 Sr	-768.468	4.2240		
⁹⁰ Zr	-783.898	4.2694	$17.81{\pm}0.35$	
$^{100}\mathrm{Sn}$	-825.300			
116 Sn	-988.681	4.6250	$15.90{\pm}0.07$	
$^{132}\mathrm{Sn}$	-1102.84			
^{144}Sm	-1195.73	4.9524	15.25 ± 0.11	
$^{208}\mathrm{Pb}$	-1636.43	5.5012	14.18 ± 0.11	$1.32(2d\pi)$
				$0.89(3 p \nu)$
				$1.77(2 \mathrm{f} \nu)$

Our Strategy:

- □ Higher-order J0 and Ksym are fixed at various values
- □ $E_{sym}(\rho_c)$ and $L(\rho_c)$ at $\rho_c = 0.11$ fm⁻³ are fixed at $E_{sym}(\rho_c) = 26.65$ MeV and $L(\rho_c) = 47.3 + / -7.8$ MeV using heavy isotope binding energy difference and α_D of ²⁰⁸Pb (Z. Zhang(张振)/LWC, PLB726, 234(2013); PRC90, 064317(2014))
- Other 9 lower-order parameters and W₀ are calibrated to fit data of finite nuclei
 Causality

Minimizing the Chi-square $\chi^2(p)$:

 $\chi^{2}(P) = \sum_{n=1}^{N} \left(\frac{\mathcal{O}_{n}^{(\text{th})}(P) - \mathcal{O}_{n}^{(\text{exp})}}{\Lambda \mathcal{O}} \right)^{2}$

Lower-order parameters are basically fixed by nuclear properties, while higher-order parameters are not important for nuclei

Observed NStar max. mass and Tidal def.

28 OCTOBER 2010 | VOL 467 | NATURE | 1081

LETTER

doi:10.1038/nature09466

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Observed heaviest Nstar so far (before 2019):

J0 and Ksym: Flow data, NStar Mass, Λ

EOS: Flow data, NStar Mass, Λ

Y. Zhou(周颖)/LWC/Z. Zhang(张振), PRD99, 121301(R) (2019) [arXiv:1901.11364]

 $L(\rho_c)=47.3+/-7.8$ MeV using α_D of ²⁰⁸Pb (Z. Zhang(张振), LWC, PRC90, 064317(2014))

L(ρ_c) indeed affects the extraction of Esym at high densities but does not change much the NStar matter EOS!

Consistent with LIGO/Virgo constraints (see, e.g., D. Radice et al., ApJL852, L29(2018)) but more stringent due to nuclear data added

L(ρ_c)=55.1 MeV: J0:[-455,-342] MeV, K_{sym}:[-138,-38] MeV E_{sym}(2ρ₀):[46.9, 57.6] MeV

New Observed Heaviest NStar

nature astronomy

LEIIER: https://doi.org/10.1038/s41550-019-0880-

Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar

H. T. Cromartie^{1*}, E. Fonseca², S. M. Ransom³, P. B. Demorest⁴, Z. Arzoumanian⁵, H. Blumer^{6,7}, P. R. Brook^{6,7}, M. E. DeCesar⁸, T. Dolch⁹, J. A. Ellis¹⁰, R. D. Ferdman¹¹, E. C. Ferrara^{12,13}, N. Garver-Daniels^{6,7}, P. A. Gentile^{6,7}, M. L. Jones^{6,7}, M. T. Lam^{6,7}, D. R. Lorimer^{6,7}, R. S. Lynch¹⁴, M. A. McLaughlin^{6,7}, C. Ng^{15,16}, D. J. Nice⁸, T. T. Pennucci¹⁷, R. Spiewak¹⁸, I. H. Stairs¹⁵, K. Stovall⁴, J. K. Swiggum¹⁹ and W. W. Zhu²⁰

edge-on) binary pulsar systems. By combining data from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-yr data set with recent orbital-phase-specific observations using the Green Bank Telescope, we have measured the mass of the MSP J0740+6620 to be $2.14^{+0.10}_{-0.09}$ M_{\odot} (68.3% credibility interval; the 95.4% credibility interval is $2.14^{+0.20}_{-0.18}$ M_{\odot}). It is highly likely to be the most massive neutron star yet observed, and serves as a strong constraint on the neutron star interior EoS.

THE ASTROPHYSICAL JOURNAL LETTERS, 915:L12 (15pp), 2021 July 1 © 2021. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/ac03b8

Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620

E. Fonseca^{1,2,3,4}, H. T. Cromartie^{5,37}, T. T. Pennucci^{6,7}, P. S. Ray⁸, A. Yu. Kirichenko^{9,10}, S. M. Ransom⁶, P. B. Demorest¹¹, I. H. Stairs¹², Z. Arzoumanian¹³, L. Guillemot^{14,15}, A. Parthasarathy¹⁶, M. Kerr⁸, I. Cognard^{14,15}, P. T. Baker¹⁷, H. Blumer^{3,4}, P. R. Brook^{3,4}, M. DeCesar¹⁸, T. Dolch^{19,20}, F. A. Dong¹², E. C. Ferrara^{21,22,23}, W. Fiore^{3,4}, N. Garver-Daniels^{3,4}, D. C. Good¹², R. Jennings²⁴, M. L. Jones²⁵, V. M. Kaspi^{1,2}, M. T. Lam^{26,27}, D. R. Lorimer^{3,4}, J. Luo²⁸, A. McEwen²⁵, J. W. McKee²⁸, M. A. McLaughlin^{3,4}, N. McMann²⁹, B. W. Meyers¹², A. Naidu³⁰, C. Ng³¹, D. J. Nice³², N. Pol²⁹, H. A. Radovan³³, B. Shapiro-Albert^{3,40}, C. M. Tan^{1,20}, S. P. Tendulkar^{34,35}, J. K. Swiggum³², H. M. Wahl^{3,4}, and W. W. Zhu³⁶

ABSTRACT

We report results from continued timing observations of PSR J0740+6620, a high-mass, 2.8-ms radio pulsar in orbit with a likely ultra-cool white dwarf companion. Our data set consists of combined pulse arrival-time measurements made with the 100-m Green Bank Telescope and the Canadian Hydrogen Intensity Mapping Experiment telescope. We explore the significance of timing-based phenomena arising from general-relativistic dynamics and variations in pulse dispersion. When using various statistical methods, we find that combining ~ 1.5 years of additional, high-cadence timing data with previous measurements confirms and improves upon previous estimates of relativistic effects within the PSR J0740+6620 system, with the pulsar mass $m_{\rm p} = 2.08^{+0.07}_{-0.07} \,\mathrm{M}_{\odot}$ (68.3% credibility) determined by the relativistic Shapiro time delay. For the first time, we measure secular variation in the orbital period and argue that this effect arises from apparent acceleration due to significant transverse motion. After incorporating contributions from Galactic differential rotation and off-plane acceleration in the Galactic potential, we obtain a model-dependent distance of $d = 1.14^{+0.17}_{-0.15}$ kpc (68.3% credibility). This improved distance confirms the ultra-cool nature of the white dwarf companion determined from recent optical observations. We discuss the prospects for future observations with next-generation facilities, which will likely improve the precision on $m_{\rm p}$ for J0740+6620 by an order of magnitude within the next few years.

-1₄>297

New Observed Heaviest NStar

Y. Zhou(周颖), L.W. Chen*, ApJ886, 52(2019) [arXiv:1907.12284]

The maximum mass of static NS is about 2.3M_o!

 $F_l > -(2l+1),$

Y. Zhou (周颖), L.W. Chen*, ApJ886, 52(2019) [arXiv:1907.12284]

$$\frac{\hbar^2 k_F^2}{3m_s^*} (1+F_0') = \left. \frac{\partial^2 \mathcal{E}(\rho, \rho_1, s_0, s_1)}{\partial(\rho_1)^2} \right|_{\rho_1 = s_0 = s_1 = 0}$$
$$E_{\text{sym}}(\rho) = \frac{\hbar^2 k_F^2}{6m_s^*} (1+F_0') \quad \text{Z. Zhang}(\text{KB})/\text{LWC, PRC94, 064326 (2016)}$$

The Landau stability conditions,

$$\mu_e = \mu_n - \mu_p = 4\delta E_{\rm sym}(\rho)$$

 $F'_l > -(2l+1),$ Negative Esym leads to
isospin instability:
Pure Neutron Matter will appear $G'_l > -(2l+1),$

Ruling out the "supersoft" Esym means the pure neutron matter cannot appear inside NStars

PHYSICAL REVIEW LETTERS 126, 172502 (2021)

Editors' Suggestion

Featured in Physics

PREX:

Accurate Determination of the Neutron Skin Thickness of ²⁰⁸Pb through Parity-Violation in Electron Scattering

The Lead (Pb) Radius EXperiment

D. Adhikari,¹ H. Albataineh,² D. Androic,³ K. Aniol,⁴ D. S. Armstrong,⁵ T. Averett,⁵ C. Ayerbe Gayoso,⁵ S. Barcus,⁶

 $R_n - R_p = 0.283 \pm 0.071$ fm. **PREX-II:** Rskin = [0.212, 0.354] fm for Pb208 Huge Nskin!

In PREX, the neutron density distribution in 208Pb is determined by measuring the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons off 208Pb and thus is free from the strong interaction uncertainties

What determines the Nskin thickness? --- The density slope parameter L, especially Lc at $\rho_c \sim 2\rho_0/3$ (average density of nuclei)!!!

B. A. Brown, PRL85, 5296 (2000); R. J. Furnstahl, NPA706, 85 (2002); L.W. Chen et al., PRC72, 064309 (2005); M. Centelles et al., PRL102, 122502 (2009); L. W. Chen et al., PRC 82, 024321 (2010); X. Roca-Maza et al., PRL106, 252501 (2011),

上海交通大學

Implications of Rskin from PREX-II

T.G. Yue (岳侗钢), , LWC*, Z. Zhang (张振), and Y. Zhou (周颖), arXiv:2102.05267

Lc cannot be too big!!! Lc < 73 MeV and then set an upper limit on Rskin: <0.27 fm for Pb208

eSHF provides a single unified framework to simultaneously describe the finite nuclei (Eb, Rc, GMR, Nskin-PREX-II) + Flow data in HIC+NStar (e.g., NICER)+GW170817

 $E_{sym}(\rho_0) = 34.5 \pm 1.5 \text{ MeV} \text{ and } L = 85.5 \pm 22.2 \text{ MeV}$

THE ASTROPHYSICAL JOURNAL, 929:183 (7pp), 2022 April 20 © 2022. The Author(s). Published by the American Astronomical Society. https://doi.org/10.3847/1538-4357/ac5e2a

Fan Li (李帆), B.J. Cai, Y. Zhou, W.Z. Jiang, and LWC, ApJ 929, 183 (2022)

OPEN ACCESS

Effects of Isoscalar- and Isovector-scalar Meson Mixing on Neutron Star Structure

Fan Li¹, Bao-Jun Cai², Ying Zhou², Wei-Zhou Jiang³⁽¹⁾, and Lie-Wen Chen^{1,4}⁽¹⁾

 δ meson and its coupling to σ meson may play an important role in the RMF model !!!

FSUGold + δ - σ mixing provides a single unified framework to simultaneously describe the finite nuclei (Eb, Rc, GMR, Nskin-PREX-II) + Flow data in HIC+NStar (e.g., NICER)+GW170817

Asymmetric Nuclear Matter and Neutron Star Properties in Relativistic *ab initio* Theory in the Full Dirac Space

Sibo Wang,¹ Hui Tong,^{2,3} Qiang Zhao,⁴ Chencan Wang,⁵ Peter Ring,⁶ and Jie Meng^{7,8,*}

S. Wang, H. Tong, Q. Zhao, C. Wang, P. Ring, and J. Meng, arXiv:2203.05397

 Table 2

 Nuclear Matter Bulk Parameters, NS Properties, and Ground-state Properties of ²⁰⁸Pb and ⁴⁸Ca in FSUGold, FSU-J0, FSU-δ6.7, and FSU-δ6.2

Quantity	FSUGold	FSU-J0	FSU-86.7	FSU-86.2
$n_0({\rm fm}^{-3})$	0.148	0.148	0.148	0.148
e_0 (MeV)	-16.31	-16.31	-16.31	-16.31
$K_0(MeV)$	229.2	229.2	229.2	229.2
J ₀ (MeV)	-521.6	-322.0	-322.0	-322.0
m^*_{Dirac}	0.610	0.610	0.610	0.610
$m^*_{\text{Dirac},n,0.5}$	0.610	0.610	0.576	0.578
$m^*_{\text{Dirac},p,0.5}$	0.610	0.610	0.643	0.640

Fan Li (李帆), B.J. Cai, Y. Zhou, W.Z. Jiang, and LWC, ApJ 929, 183 (2022)

The isospin splitting of the nucleon Dirac mass in FSUGold + δ - σ mixing framework is in surprisingly good agreement with the microscopic RBHF calculations in the Full Dirac Space !!!

- Nuclear matter EOS and the symmetry energy (Esym)
- **Dense nuclear matter from** *Nuclear experiments* + *Neutron star mass and radius* +*Tidal deformability from GW170817*
- **Summary and outlook**

Summary and Outlook

●通过重离子碰撞,原子核结构性质(mass, neutron skin, GR/PG),
以及核子光学势的研究,我们已经对亚饱和密度以及饱和密度附近
核物质对称能有了比较好的认识:
业饱和密度区的核物质对称能 – 比较精确
▶ 饱和密度附近的核物质对称能:
World Average: $E_{sym}(\rho_0) = 31.7 \pm 3.1$ MeV and $L=57.5 \pm 24.5$ MeV
But KEX-II data make the situation quite elusive!!! 西姆拉伯伯古西西西拉拉伯哈尔哈尔西西古法地
史有佛的约米需安史有佛的头短数据和史刊靠的理论方法。
●GW170817给出了对称能高密行为的上限,2.14倍太阳质量的存在排
除了"超软"的局密对称能,意味着中子星内部不存在纯中子物质
●决定核物质状态方程的 高密行为 依然是一个巨大的,丰中子核引起的
重离子碰撞的实验数据以及中子星/引力波观测数据将变得非常重要!
●单个(相对论和非相对论)能量密度泛函能成功描述核实验数据和天文学
观测数据(高密核物质中超子自由度、介子凝聚、夸克自由度???)

Acknowledgements

Collaborators:

Bao-Jun Cai, Ying Zhou (Shadow Creator Inc., Shanghai) Peng-Cheng Chu (QTU, Qingdao) Wei-Zhou Jiang (SEU. Nanjing) Che Ming Ko, Kai-Jia Sun (TAMU. Texas) **Bao-An Li (TAMU-Commerce, Texas)** Xiao-Hua Li (USC, Hengyang) **Jie Pu (Henan Normal U) Rui Wang** (SINAP, CAS and Fudan U, Shanghai) **De-Hua Wen (SCUT, Guanzhou) Zhi-Gang Xiao (Tsinghua, Beijing) Chang Xu (NJU, Nanjing)** Jun Xu (SINAP, CAS, Shanghai) **Zhangbu** Xu (BNL) **Gao-Chan Yong (IMP, Lanzhou) Zhen Zhang** (SYSU, Zhuhai) Fan Li, Xu-Run Huang, Si-Pei Wang, Zhen Cao, Tong-Gang Yue, Ji-Min Bai (SJTU, Shanghai)

Funding:

National Natural Science Foundation of China Major State Basic Research Development Program (973 Program) in China Shanghai Rising-Stars Program, Shanghai "Shu-Guang" Project , Shanghai "Eastern Scholar" Science and Technology Commission of Shanghai Municipality

谢谢! Thanks!

