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Format of these lectures

e First two lectures are going to be hands on
 We will cover the very basics of deep learning
 What is going on under the hood
e How can you build your own NN from scratch
* Then we will go step by step towards how to train
 |ecture 1 you learn : How do | train an NN classifier

e | ecture 2 you learn : How do | train an NN regression



Format of these lectures

e Lecture3
* This will cover an overview of what is going on in field
 We will talk about state of the art uses
e Graph NNs and friends
e Anomaly detection
 Real-time operations

* This last lecture is a survey of the field



What Will We Cover Today

Slides are straight out of a class | teach on data science+physics
* This class will be available online in the fall

What is a neural network?

* Historical context

* Why do they work?

How does a neural network “learn”?

How can neural networks be designed?



Key Terms

Supervised Learning

e Classification

e Regression
Unsupervised Learning

e Clustering

e Dimensional Reduction
Architectures

e Linear Models

* Perceptron, support vector machine, logistic regression

e Neural network
Training

e Backpropogation

e (Stochastic) gradient descent



Origins of Machine Learning

e | assume you are all familiar with fitting
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Events / 2 GeV

Events - Bkg

What is the right fit
function?

* When we are trying to fit for the Higgs boson data?
* We need a signal model and a background model

* How do we determine the right backtround model?
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What is the right fit
function?

* When we are trying to fit for the Higgs boson data?
* We need a signal model and a background model

* How do we determine the right backtround model?
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Building a Model

 Throwing a barrage of functions at the problem
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We can try a whole library of functions
The likelihood we get translates to our fit



Building a Model

 Throwing a barrage of functions at the problem
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We can try a whole library of functions
The likelihood we get translates to our fit
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 (Gaussian processes allow us to build function choice from the data
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Splines+GaussianProcesses

 (Gaussian processes allow us to build function choice from the data
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Splines+GaussianProcesses
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 (Gaussian processes allow us to build function choice from the data
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Splines+GaussianProcesses

Prediction

* How do we fully automate this whole procedure of approximation?



Google Collab

https://colab.research.google.com/github/
MIT-8s50/course/blob/main/Lecture10/
deeplearning.ipynb



Simple Machine Learning
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How can | predict if a point is red or blue given x; and x2?
(Lets use the notebook)
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Logistic Regression

e Simplest neural network
* No hidden layers
 [wo Iinputs

 One output neuron with a sigmoid activation.
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Neural Network

* Generically composed of neurons which receive inputs with
weights (W) and a bias (b), and pass outputs based on an
activation function (@)

O
O & = oWt~ +b)
O




Dense Neural Network

* Multiple layers: output of previous layer is fed forward to next layer
after applying non-linear activation function

* Fully connected: many independent weights

* Learning: Use analytic derivatives and stochastic gradient descent to
find optimal weights

Architecture:

Dense Network
Fully-connected Network (FC)
Multi-Layer Perceptron (MLP)
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Activation Functions

Sigmoid Linear Tanh
Softmax RelLU LeakyRelLU

(multiclass)
eti
J X
J
2 €
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Neural Network

 Neural networks are universal function approximators, but
we still must find an optimal approximating function

all possible functions

(hypothesis space)

/

optimal
approximating
function

 We do so by adjusting the weights, architecture
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e Layer: /(x) = p(W'x +b)

Approximating

O

¢ Linear"'l—inear: 2 linear(z’ﬂlinear(x)) — flinear(w{x + bl)

e RelLU+Linear:
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Approximating (Example)

o
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What kind of function can this network architecture approximate?
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Approximating (Example)
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Approximating (Example)
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What kind of function can this network architecture approximate?




Approximating (Example)
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What kind of function can this network architecture approximate?




Learning - Optimization

* To learning the optimal weights we need the derivative of
the loss w.r.t. weight
0L

e W o> W—Q—
ow

 With multiple weights we need the gradient of the loss
w.r.t. weights

A

Loss

e WoW—aV, L

Weight
07 Parameter



Backpropagation

e Can write a neural network as a function of composed
operations

o (Wi, 07 _((W;_1,...00;(W,X)...))

* The loss is a function of the network output — use chain
rule to calculate gradients
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Backpropagation

oL 0L ox(L) gs(L)
OW (L)  gx(L) gs(L) oW (L)
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form of the loss non-linearity
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Backpropagation

0L oL Ox(L) psL) ox(L—1) Hg(L—1)

OW L) — 9x(D) 9s(L) gx(L—1) §s(L—1) gW (L—1)
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Stochastic Gradient Descent

* SGD: w=w—aV &
e Use estimate to traverse the loss function

 Advanced estimates use “memory”, other optimizations

Y — sGD

 Able to handle large
dimensionality,
complex surfaces
(saddle points,
local minima)

—_— Momentum§
w— NAG S
- Adagrad
X Adadelta
A4 | — Rmsprop |




Large Hadron Collider

e Large Hadron Collider (proton - proton)

e Dedicated detectors to record
data from collisions

particles, e + y (EG)
e Many overlapping collisions in addition to the primary one, called pileup (PU)

e Want to design algorithm to distinguish primary EG energy deposits from PU




CMS Detector

Electromagnetic
Callorimeter

Calorimeter Superconducting
Solenoid Iron return yoke intersperseed

with muon chambers U U

Electron

Muon

Charged hadron (e.g. pion)

- = =. Neutral hadron (e.g. neutron) -=-==-Photon
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Dataset Explanation

* Real photon and electrons will deposit energy in certain
patterns

e PU is either random or from other sources, should not
match

* We describe energy deposits using
“shower shape variables”

* |.e. How much energy is in certain
regions around the center? How
correlated are deposits in n and
¢? How many crystals in
particular directions?
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Dataset Visualization

Unclustered energy

Energy shared between

particles

7

7

SIS

! T S~

Start with pattern of detector hits
Two main tasks:
Associate each incident particle with a collection of hits

O
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- Clusters corresponding to
individual incident particles



Designing ML
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How can | predict if a point is red or blue given x7 and x2 and x3 and ...?

(Lets use the notebook)
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Batch Norm & Dropout

* |n addition we often employ these two to improve perf

Batch Norm makes output Gaussian-like

Input: Values of x over a mini-batch: B = {x1._ . };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

1 m
1B EZIIL’@
1=

1 m
0% — > (wi — ps)?
1=1

Li — UB
\/O'% + €

y; < vx; + B = BN, 5(z;)

// mini-batch mean

// mini-batch variance

// normalize

Z/E\z‘<—

// scale and shift

Dropout randomly removes weights

a) Standard Neural Net

(b) After applying dropout.

 Both Strategies make NNs more robust to deviations
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More Complex Architectures



Unsupervised Learning

e \What if we don’t have/use labels?

 Autoencoder (AE):

Latent
Space

Encoder Decoder

* [ oss = output - input

e |atent space can be used for
clustering

e |f one class of data is used to
train, different classes may not 4 4
reconstruct well (anom a|y Input Data Encoded Data Reconstructed Data
detection)
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Convolutional Neural Network (CNN)

* Used extensively for images (Conv2D), also useful for 1D and 3D cases

* Small dense network takes a local region as input, scans over whole
Image

e # filters, kernel size, stride

‘\ii filters

* Typically followed by Pooling layer
to reduce dimensionality

+—>
kernel size
Convolution Pooling Convolution Pooling Fully Fully Output
+RelLU +RelLU Connected Connected perdictions
=
dog (0.01)

L

----------- Cat (0.01)
Boat (0.94)
- Bird (0.94)

-
-
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Recurrent Neural Network (RNN)

e Designed for sequential inputs (ex. language)
e Retain “memory”

* Long short-term memory (LSTM), gated recurrent unit
(GRU)
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Graph Neural Network (GNN)

e Take in a set of points
e Construct a graph out of these points
e Make links between the neighbors

e |terate back and forth with the neighbors
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Transformers

e QOriginated from recursive neural networks
» Reading a whole sentence is better than iteratively
* Done by applying Attention (effectively a big linear layer)

e Basically a Graph with a notion of ordering

RNNs vs Transformer: Encoder-Decoder @) @ )
Output

Encoder
t t t t
Attention

f f f f f f f f

{ ! f | f

Embedding

f f t }

Input Decoder

S
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Next Lecture

 We are going to look at another application of ML
e Using ML for regressions

e How can we solve for complex physical scenarios
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