
Deep Learning

Phil Harris

Stolen from Dylan Rankin

Lecture 1 NNPSS

Format of these lectures
• First two lectures are going to be hands on

• We will cover the very basics of deep learning

• What is going on under the hood

• How can you build your own NN from scratch

• Then we will go step by step towards how to train

• Lecture 1 you learn : How do I train an NN classifier

• Lecture 2 you learn : How do I train an NN regression

2

Format of these lectures
• Lecture 3

• This will cover an overview of what is going on in field

• We will talk about state of the art uses

• Graph NNs and friends

• Anomaly detection

• Real-time operations

• This last lecture is a survey of the field

3

What Will We Cover Today
• Slides are straight out of a class I teach on data science+physics

• This class will be available online in the fall

• What is a neural network?

• Historical context

• Why do they work?

• How does a neural network “learn”?

• How can neural networks be designed?

4

Key Terms
• Supervised Learning

• Classification

• Regression

• Unsupervised Learning

• Clustering

• Dimensional Reduction

• Architectures

• Linear Models

• Perceptron, support vector machine, logistic regression

• Neural network

• Training

• Backpropogation

• (Stochastic) gradient descent

5

Origins of Machine Learning
• I assume you are all familiar with fitting

6

1.Take a distribution

2.Fit it

3. Change physics forever

• When we are trying to fit for the Higgs boson data?

• We need a signal model and a background model

• How do we determine the right backtround model?

7What is the right fit
function?

• When we are trying to fit for the Higgs boson data?

• We need a signal model and a background model

• How do we determine the right backtround model?

8What is the right fit
function?

We progressively
fit more complicated
models until it passes
 f-test

• Throwing a barrage of functions at the problem

9

Building a Model

We can try a whole library of functions
The likelihood we get translates to our fit

• Throwing a barrage of functions at the problem

10

Building a Model

We can try a whole library of functions
The likelihood we get translates to our fit

• Gaussian processes allow us to build function choice from the data

11

Splines+GaussianProcesses

12

Splines+GaussianProcesses

• Gaussian processes allow us to build function choice from the data

13

Splines+GaussianProcesses

• Gaussian processes allow us to build function choice from the data

• How do we fully automate this whole procedure of approximation?

14

Splines+GaussianProcesses

https://colab.research.google.com/github/
MIT-8s50/course/blob/main/Lecture10/

deeplearning.ipynb

Google Collab

Simple Machine Learning

16

How can I predict if a point is red or blue given x1 and x2?

x1

x2

(Lets use the notebook)

Logistic Regression
• Simplest neural network

• No hidden layers

• Two inputs

• One output neuron with a sigmoid activation.

17

w1

w2

ℓ =
1

1 + ewTx+b

wT = (w1 w2)

x1

x2

Neural Network
• Generically composed of neurons which receive inputs with

weights (W) and a bias (b), and pass outputs based on an
activation function (φ)

18

.

.

.

.

.

.

.

.

.

ℓk−1
1

ℓk
j = ϕ(Wijℓk−1

i + bj)

ℓk−1
2

ℓk−1
3

ℓk−1
N

W1j

W2j

W3j

WNj

Dense Neural Network

19

• Multiple layers: output of previous layer is fed forward to next layer
after applying non-linear activation function

• Fully connected: many independent weights

• Learning: Use analytic derivatives and stochastic gradient descent to
find optimal weights

Architecture:

Dense Network
Fully-connected Network (FC)
Multi-Layer Perceptron (MLP)

Activation Functions

20

Sigmoid

LeakyReLU

TanhLinear

ReLUSoftmax

exi

∑J
j=1 exj

(multiclass)

Neural Network
• Neural networks are universal function approximators, but

we still must find an optimal approximating function

21

(hypothesis space)
all possible functions

32

neural networks are universal function approximators,
but we still must find an optimal approximating function

we do so by adjusting the weights

optimal
approximating

function

• We do so by adjusting the weights, architecture

Approximating
• Layer:

• Linear+Linear:

• ReLU+Linear:

22

ℓ(x) = ϕ(WTx + b)

ℓlinear(ℓlinear(x)) = ℓlinear(WT
1 x + b1)

= WT
2(WT

1 x + b1) + b2

= WT
2 WT

1 x + WT
2 b1 + b2

ℓ̃linear(x) = W̃Tx + b̃

ℓlinear(ℓReLU(x)) == W̃Tx + b̃ , WT
1 x + b1 > 0

b2 , WT
1 x + b1 < 0

n boundaries

n

Approximating (Example)

23

What kind of function can this network architecture approximate?

x f(x)=?

Approximating (Example)

24

(W2
11W

1
11 + W2

21W
1
12 + W2

31W
1
13 + W2

41W
1
14)x + W2

11b
1
1 + W2

21b
1
2 + W2

31b
1
3 + W2

41b
1
4 + b2

1

(W2
11W

1
11 + W2

21W
1
12 + W2

31W
1
13)x + W2

11b
1
1 + W2

21b
1
2 + W2

31b
1
3 + b2

1

(W2
11W

1
11 + W2

21W
1
12)x + W2

11b
1
1 + W2

21b
1
2 + b2

1

(W2
11W

1
11)x + W2

11b
1
1 + b2

1

b2
1

= W̃Tx + b̃ , WT
1 x + b1 > 0

b2 , WT
1 x + b1 < 0

x > −
b1

4

W1
14

−
b1

4

W1
14

> x > −
b1

3

W1
13

x < −
b1

1

W1
11

−
b1

3

W1
13

> x > −
b1

2

W1
12

−
b1

2

W1
12

> x > −
b1

1

W1
11

W2
11W

1
11x + W2

21W
1
12x + W2

31W
1
13x + W2

41W
1
14x + W2

11b
1
1 + W2

21b
1
2 + W2

31b
1
3 + W2

41b
1
4 + b2

1

All

Drop
One
Drop
Two

Drop
Three

Drop
It Like it’s Hot

Approximating (Example)

25

What kind of function can this network architecture approximate?

x f(x)=?

x

x > −
b1

4

W1
14−

b1
4

W1
14

> x > −
b1

3

W1
13

x < −
b1

1

W1
11

−
b1

3

W1
13

> x > −
b1

2

W1
12

−
b1

2

W1
12

> x > −
b1

1

W1
11

Approximating (Example)

26

What kind of function can this network architecture approximate?

x f(x)=?

x

Learning - Optimization
• To learning the optimal weights we need the derivative of

the loss w.r.t. weight

•

• With multiple weights we need the gradient of the loss
w.r.t. weights

•

27

33

learning as optimization

Loss

Weight
Parameter

to learn the weights, we need the derivative of the loss w.r.t. the weight
i.e. “how should the weight be updated to decrease the loss?”

w = w � ↵
@L
@w

with multiple weights, we need the gradient of the loss w.r.t. the weights

w = w � ↵rwL

w → w − α
∂ℒ
∂w

w → w − α∇wℒ

Backpropagation

• Can write a neural network as a function of composed
operations

•

• The loss is a function of the network output → use chain
rule to calculate gradients

28

ϕL(wL, ϕL−1(wL−1, . . . ϕ1(w1, x) . . .))

36

backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the
form of the loss

derivative of the
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

Backpropagation

29

36

backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the
form of the loss

derivative of the
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

Backpropagation

30

37

backpropagation

now let’s go back one more layer…

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

again we’ll draw the dependency graph:

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

Stochastic Gradient Descent
• SGD:

• Use estimate to traverse the loss function

• Advanced estimates use “memory”, other optimizations

• Able to handle large  
dimensionality,  
complex surfaces  
(saddle points,  
local minima)

31

w = w − α ∇̃wℒ

Large Hadron Collider
• Large Hadron Collider (proton - proton)

• Dedicated detectors to record  
data from collisions

• Electromagnetic calorimeter (ECAL)  
is designed to measure energy of EM  
particles, e + γ (EG)

• Many overlapping collisions in addition to the primary one, called pileup (PU)

• Want to design algorithm to distinguish primary EG energy deposits from PU

32

p p

CMS Detector

33

CMS ECAL

34

Dataset Explanation
• Real photon and electrons will deposit energy in certain

patterns

• PU is either random or from other sources, should not
match

• We describe energy deposits using  
“shower shape variables”

• i.e. How much energy is in certain  
regions around the center? How  
correlated are deposits in η and  
φ? How many crystals in  
particular directions?

35

Dataset Visualization

36

Designing ML

37

How can I predict if a point is red or blue given x1 and x2 and x3 and …?
(Lets use the notebook)

Batch Norm & Dropout
• In addition we often employ these two to improve perf

38

Batch Norm makes output Gaussian-like Dropout randomly removes weights

• Both Strategies make NNs more robust to deviations

More Complex Architectures

39

Unsupervised Learning
• What if we don’t have/use labels?

• Autoencoder (AE):

• Loss = output - input

• Latent space can be used for
clustering

• If one class of data is used to
train, different classes may not
reconstruct well (anomaly
detection)

40

Convolutional Neural Network (CNN)

• Used extensively for images (Conv2D), also useful for 1D and 3D cases

• Small dense network takes a local region as input, scans over whole
image

• # filters, kernel size, stride

• Typically followed by Pooling layer  
to reduce dimensionality

41

filters

kernel size

stride

Recurrent Neural Network (RNN)

• Designed for sequential inputs (ex. language)

• Retain “memory”

• Long short-term memory (LSTM), gated recurrent unit
(GRU)

42

Graph Neural Network (GNN)
• Take in a set of points

• Construct a graph out of these points

• Make links between the neighbors

• Iterate back and forth with the neighbors

•

43

Transformers
• Originated from recursive neural networks

• Reading a whole sentence is better than iteratively

• Done by applying Attention (effectively a big linear layer)

• Basically a Graph with a notion of ordering

44

Next Lecture
• We are going to look at another application of ML

• Using ML for regressions

• How can we solve for complex physical scenarios

45

