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What this is not (and is) about

Complexity of modern detectors

How do we design and optimize detectors?
Examples
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Multiple competing objectives
The ECCE example
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MOO in HEP/NP
Improving the workflow
m Learning interactions of simulated particles with matter
m Learning event reconstruction, pattern recognition
End-to-end optimization pipelines
Conclusions
Toy example 3

Useful References

[1]1 AI4ANP Winter School, 2020 https://github.org/cfteach

[3] Al-optimized detector design for the future
Electron-lon Collider: the dual-radiator RICH case
https://arxiv.org/abs/1911.05797

[4] Al-assisted Optimization of the ECCE Tracking
System at the Electron lon Collider
https://arxiv.org/abs/2205.09185

[5]1 MODE: White Paper,
https://arxiv.org/pdf/2203.13818.pdf

[6] Machine Learning in Nuclear Physics,
https://arxiv.org/abs/2112.02309
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What this is (and is not) about

WA What you will learn:

These lectures provide an overview of SOTA approaches for detector design with Al in NP/HEP.
| will discuss what the challenges are and which techniques are used in this emerging area of
research and why all this is beneficial for modern complex detector design.

Given the multidisciplinarity, it may be also of inspiration for other applications (actually
embraces a wealth of use cases)

> What you will not learn:
o These are not lectures on Particle Detectors per se
m Forthat, a great classic is Particle Detectors, C. Grupen and B. Schwartz

o These are not lectures on simulation toolkit like Geant to simulate detectors
™ https://geant4.web.cern.ch/

o These lectures in general assume some knowledge of MC event generators, detector
simulation, event reconstruction and particle identification
m | will only explain how they contribute but | won’t go into details

| o These lectures are definitely more focused on Al/ML but you won'’t learn Al/ML in 4.5h
‘* ‘l \ m | will try to provide some concrete examples and leave code snippets for optimization!
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Complexity of
Modern Detectors
in Nuclear Physics
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Detector Design with AI

e Do we need Al to design detectors?

o Naively, no. We have done this in the past without Al.



Detector Design with AI

e Do we need Al to design detectors?

o Naively, no. We have done this in the past without Al.

The design of measuring instruments can be quite complex, still the optimization can be tractable,
i.e. a parametrized model can allow to define a likelihood L =p(x|8), where 8 are the modeling
parameters and x the simulated data. [1]

For instrument whose functionality is based on quantum phenomena — interaction of radiation
with matter — the optimization problem is intractable. Access to the generating function of
observed data through forward simulation (setting referred to as likelihood-free or simulation-based
inference [2])

Over the course of the past eighty eighty years, the intractability of the design optimization
problems commonly encountered in particle physics has not prevented physicists from
successfully conceiving, commissioning, and operating detectors of huge complexity. [1]
=> Long-standing “paradigms”

‘ “ [11A. Baydin,, et al. "Toward machine learning optimization of experimental design." Nuclear Physics News 31.1 (2021): 25-28.
N I [2] K. Cranmer, J. Brehme, G. Louppe, The frontier of simulation-based inference, PNAS Vol 117, No. 48



Detector Design with AI

e \Why these lectures then?

@)

©)

©)

Accurate simulations are computationally expensive

Given the increasing complexity of modern experiments we seek to decrease the
computational burden to optimally design detectors

Improving the detector design involves often optimizing simultaneous “tasks” in a
multidimensional design space

Unprecedented opportunity to rethink the design strategy in terms of geometry,
material, performance, costs...

m still leveraging on existing paradigms (e.g., validation);

(bonus: are complex detectors designed in the past sub-optimal?)

e In this context, Al-assisted approaches able to outperform manual, brute-force, approaches.

©)

Designing detectors with Al is a multidisciplinary effort that combines multiple domains

of expertise



Detector Design with AI

e Fundamental nuclear and particle physics research often requires realizing expensive large-scale
experiments combining multiple sub-detectors to investigate the building blocks of nature.

o “Al techniques that can optimize the design of complex, large-scale experiments have the potential
to revolutionize the way experimental nuclear and particle physics is currently done”. [1]

e More than 50 years have passed since Charpak (Nobel Prize in 1992) revolutionised particle detectors
with the construction of a MWPC. Nowadays we can 3D print scintillation detectors and complex
detection elements with thin layers of AC-coupled resistive silicon sensors. [2,3]

e Thanks to the fast progress in CS in the past two decades, along with optimization software and the
development of DNN, we now have the unique opportunity to integrate these new tools during the design
of complex detection systems.

e Using Al will allow to optimize large detectors in NP experiments like the Electron lon Collider. EIC will
be a flagship nuclear physics facility in the US that will be constructed over the next 10 years and it is
currently at its design phase. Its R&D program can be one of the first to systematically leverage on All.

e In the following I will often utilize the Electron lon Collider detector as a reference for our discussion.

[1] R. Stevens et al., Al for Science: Report on the Department of Energy (DOE) Town Halls on Artificial Intelligence (Al) for Science
‘ ‘i [2] Y. Mishnayot et al., 3-dimensional printing of scintillating materials, Rev. Sci. Instrum., 85:085102, 2014
gl [3] G. Giacomini et al., Fabrication and performance of AC-coupled LGADs.
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EIC Science
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National Academy of Sciences

Finding 1: An EIC can uniquely address
three profound questions about nucleons —
neutrons and protons — and how they are
assembled to form the nuclei of atoms:

o How does the mass of the nucleon arise?

o  How does the spin of the nucleon arise?

o  What are the emergent properties of dense systems of gluons?

Finding 2: These three high-priority science questions can
be answered by an EIC with highly polarized beams of
electrons and ions, with sufficiently high luminosity and
variable center of mass energy.

Finding 3: An EIC would be a unique facility in the world
and would maintain U.S. leadership in nuclear physics

Finding 4: An EIC would maintain U.S. leadership in the
accelerator science and technology colliders and help to
maintain scientific leadership more broadly.

A machine for delving deeper than ever before into the building blocks of matter



EIC Science

World-wide interest

Map of institution’s locations

SCIENCE REQUIREMENTS
AND DETECTOR
CONCEPTS FOR THE
ELECTRON-ION COLLIDER
EIC Yellow Report

EIC Yellow Report (2021)
arXiv:2103.05419

@ wﬁw’
i "

V

e  Origin of Nucleon Spin e Light-ion tagging

e Confined motion of partons e Pion/Kaon structure

EICUG membership @

time of EICUG Meetings

e 3D imaging quarks and gluons e Diffractive jets?
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e Quarks and gluons in the nucleus

Slide taken from J. Lajoie, The
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Typical EIC experimental measurements

Inclusive Reactions in ep/eA

Semi-Inclusive Reactions in ep/eA \/

Exclusive Reactions in ep/eA




EIC Schedule and Milestones
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Call for Collaboration Proposals
for Detectors at the Electron-lon Collider

Deadline forSubmission was., ™,
December 1; 2021 .

Brookhaven Nalional‘i:aporalory (BNL) and me Thomas Jefferson National Accelerator Facility
(dLab) are pleased to the Call for C¢ orati P for Detectors to be located at
the Eliflron-lon Collider (EIC). The EIC will have the capacity to host two interaction regions, each
with a corresponding detector. It is expected that each of these two detectors would be

represented by a Collaboration.

EIC Detector Proposal Advisory Panel Meeting

suoljeloge||09-010.d

Process completed on March 21, 2022
Panel Report

6. Recommuind stions: ECCE Reference Detector

The panel unanimously recommends ECCE as Detector 1. The proto-collaboration is urged to

openly accept additional collaborators and quickly consolidate its design so that the Project
Detector can advance to CD2/3a in a timely way.

L

EIC DETECTOR 1 GENERAL MEETING

Following the DPAP process , the EIC Community is moving towards the formation
of a scientific collaboration to support the realization of the EIC project detector
temporarily referred to as "Detector-1"

uol}eloqge||oD
spJjemo|


https://indico.bnl.gov/event/15297/contributions/61816/attachments/40383/67420/EIC%20Project%20Update%20March%202022.pdf
https://www.bnl.gov/eic/cfc.php
https://www.bnl.gov/eic/cfc.php
https://www.bnl.gov/dpapanelmeeting/
https://www.bnl.gov/dpapanelmeeting/files/pdf/dpap_report_3-21-2022_final.pdf

EIC Comprehensive Chromodynamics

Experiment

EIC Project POC
Rolf Ent (JLab)

Computing Team
Cristiano Fanelli (MIT)
David Lawrence (JLab)

Computing Working Groups:
Artificial Intelligence
William Phelps (CNU/JLab)
Computing and Software
Joe Osbom (ORNL)

Detector Team
Doug Higinbotham (JL:
Ken Read (ORNL)
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Particle ID
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Xiaochun He (GSU)
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Xuan Li (LANL),
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Calorimetry
Friederike Bock (ORNL), Yongsun Kim
(Selong U)

Chris Cuevas (iLab),

Renuka Rajput-Ghoshal (JLab)
. DAQ/Electronics/Readout

Martin Purschke (BNL)

Proto-collaboration that comprised scientists from 98 institutions
Develop low-risk, cost-effective, flexible and optimized EIC detector

Detector concept based on a 1.5 T solenoidal magnet

ECCE Steering Committee
Or Hen (MIT)
Tanja Horn (CUA)
John Lajoie (ISU)

Physics Benchmarks

Team
Carlos Munoz-Camacho
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L

https://www.ecce-eic.org

sted Detector Desi
the ECCE Tracker Example

Cristiano Fanelli', K;
on behalf of the ECCE

Laboratory for Nuc]

Cas
University of Re

Diversity, Equity a
Inclusion
Narbe Kalantarians (VUU, co-chair)
Christine Nattrass (UTK, co-chair)
Simonetta Liuti (UVA)
Elena Long (UNH)

Editorial Team
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Executive Summary
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Reference Detector

Tracker

Combines:

e |TS-3 Sitechnology
o Gaseous detectors
e AC-LGAD ToFs

PID with Cherenkov
detectors

e  dual radiator ring-imaging
Cherenkov detector (RICH) in the
hadron direction

e DIRC (detection of internally
reflected Cherenkov light) in the
barrel

e modular RICH in the electron
direction.

Simulating these detectors is typically
compute expensive, involving many
photons that need to be tracked through
complex surfaces.

All three rely on pattern recognition of ring
images in reconstruction, and the DIRC is

the one having the more complex ring
patterns!




R e f e r e n C e D e t e C t O r In these lectures | will often refer to

these subsystems
We have a reference (ECCE) detector.

Possible updates are currently being investigated (detector-1). Tracker System + PID

n=-—In [lzlll <%)]

e The tracking system reconstructs charged particle tracks. It combines different technologies.
e Imaging Cherenkov detectors are the backbone of PID in EIC. Compute intensive to simulate / reconstruct.




Tdeal vs Real Detectors

|deal Case:
e (Given a process,
o detect all final state particles with 100% efficiency,
o determining the particles types with certainty and
o reconstructing their “true” 4-momenta

Real Case:

e For most particle species we deal with

e decay products, secondary vertices, invariant mass peaks;

e one really never gets 100% acceptance (due to support system, beam pipe,
sub-detector frames, cracks, ...)

e as well as a 100% detection efficiency (due to detector imperfections, the limitations
of our reconstruction algorithms, DAQ, etc.)

e PID is never 100% accurate and we deal with finite detector resolutions (detector
size and technology limitations, costs...)

e Background processes make the overall picture more complicated

‘7 ‘I A. Kiselev, EIC Detector Design, CFNS SS, 2019



How do we detect particles?

Long-lived: through their
interaction with the detector
material

o Tracking
o Calorimetry
o PID detectors

Short-lived: through measuring
their decay products

neutrinos
electrons
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p K o
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none

Ionisation,
electromagnetic
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hadronic

electromagnetic
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Missing energy

Track and
EM shower

Penetrating track

Track and
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EM shower

hadron shower

Secondary vertex

Invariant mass




Particle Reconstruction

tracking em calo had calo muon syst

e The tracking system
reconstructs charged
particle tracks. It combines
different technologies.

photons

electrons

muons

e Calorimetry measurement
is “destructive”
—components belonging to
the tracking system are the
closest to the IP

Innermost »  Qutermost



Particle Identification with Cherenkov

electrons/photons m/Kl/p
-3.5t0-2.0 Backward T suppression up to 20 MeV
=
<10 GeV/c
-2.0to-1.0 Backward T suppression up to 50 MeV
1:1E-3 - 1:1E-2
<30
-1.0to0 1.0 Barrel T suppression up to 100 MeV <6 GeVic
=
1.0t0 3.5 Forward 3oe/mupto15 50 MeV <50 GeV/c
GeVic

e Cherenkov detectors form the backbone of PID at EIC

o  Currently, all EIC detector designs use a dual radiator ring-imaging Cherenkov detector (RICH) in the hadron
direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a modular RICH in the

electron direction.

o  Simulating these detectors is typically compute expensive, involving many photons that need to be tracked
through complex surfaces.

o  All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one having the more
w complex ring patterns!




Particle Identification: DIRC

H
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- Image of expansion volume taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054
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3D (x,y,t) readout allows to
separate spatial overlaps.

Patterns take up significant
fractions of the PMT in x,y and are
read out over 50-100 ns due to
propagation time in bars.

H12700 PMTs have a time
resolution of O(200 ps) and
read-out electronics giving time
information in 1 ns buckets.

1PMT made by 64 pixels, each
pixel is 6mm x 6mm size

Displayed PDF. Patterns are
sparse with variable photon yield
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Particle Identification:

DIRC
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A. Ali et al., The GlueX DIRC Program, 2020 JINST 15 C04054.

0



Event Display and Reconstructed Features

Reconstruction typically deals with
+ve charged tracks relatively large feature space (low and
high-level features) combining

-ve charged tracks sub-detectors

oy

For illustrative purposes, showing
example of calorimetry (outer layers)

pril- 1
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How do we design
and optimize
Detectors?
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AI for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021

Table 1 Popular ML methods in design of mechanical materials

It is a relatively new but active area of research.

Many applications in, e.g., industrial material,

molecular and drug design.

:1163-1172.

ML method Characteristics

Example applications in mechanical materials design

Linear regression;

Model the linear or polynomial relationship
polynomial regression i

between input and output variables

Support vector machine; Separate high-dimensional data space with
SVR one or a set of hyperplanes

Random forest Construct multiple decision trees for

classification or prediction

Feedforward neural
network (FFNN); MLP

Connect nodes (neurons) with information
flowing in one direction

Capture features at different hierarchical
levels by calculating convolutions; operate
on pixel-based or voxel-based data

Recurrent neural network
(RNN); LSTM; GRU

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Generative adversarial
networks (GANs)

Train two opponent neural networks to
generate and discriminate separately until
the two networks reach equilibrium;
generate new data according to the
distribution of training set

Gaussian process
regression (GPR);
Bayesian learning

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Active learning Interacts with a user on the fly for labeling
new data; augment training data with
post-hoc experiments or simulations

Genetic or evolutionary
algorithms

Mimic evolutionary rules for optimizing
objective function

Reinforcement learning Maximize cumulative awards with agents
reacting to the environments.

Graph neural networks Operate on non-Euclidean data structures;
(GNNs) applicable tasks include link prediction,
node i ion and graph ication

Modulus'*? or strength'** prediction

Strength'?* or hardness'?* prediction; structural topology
optimization'**

Modulus™* or toughness**® prediction

Prediction of modulus,”’!!? strength,** toughness'* or i
hardness;” prediction of hyperelastic o plastic behaviors"*>*4*
identification of collision load conditions; "’ design of spinodoid
metamaterials'®*

05 o
104,10 102,103 o

Prediction of strain fields' or elastic properties’
high-contrast composites, modulus of unidirectional
composites,'** stress fields in cantilevered structures,'* or yield
strength of additive-manufactured metals;'*' prediction of
fatigue crack propagation in polycrystalline alloys;'*® prediction
of crystal plasticity; *° design of tessellate composites;'*” "
design of stretchable graphene kirigami;'**
structural topology optimization'*®***

Prediction of fracture patterns in crystalline solids;'**
of plastic behaviors in

prediction

144

modeling of porous media'”

Prediction of modulus distribution by solving inverse
elasticity problems;*** prediction of strain or stress fields in
composites;'*? composite design;'®* structural topology

D afio 165167 s jals design®s®

Modulus** or strength'*'** prediction; design of
supercompressible and recoverable metamaterials''®

Strength prediction***

Hardness Prediction;”" designs of active

materials; ®*! design of modular metamaterials’®*

Deriving microstructure-based traction-separation laws'”*

ials design'®®

Functional space

Desired properties (redox
potential, solubility, toxicity)

Chemical space

(Drug-like, photovoltaics,
polymers, dyes)

Z. Zhou et al., Scientific Reports, vol. 9, n

Direct Inverse

Experiment or
simulation (Schrodinger
equation)

o

High-throughput virtual
screening (e.g., with 3
filtering stages)

1, pp. 1-10, 2019

Inverse

Optimization
evolutionary strategies
generative models (VAE

GAN,RL)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018




Full Optimization of Detectors/Accelerators

e \When it comes to designing detectors and accelerators with Al this is a frontier topic
with few examples in the literature.

S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin, and A.G. Baydin. Black-Box Optimization with Local Generative Surrogates, 2020. arXiv:
2002.04632.

T. Dorigo. Geometry optimization of a muon-electron scattering detector. Physics Open, 4:100022, 2020.

F. Ratnikov. Using machine learning to speed up and improve calorimeter R&D. Journal of Instrumentation, 15(05):C05032, 2020.

E. Cisbani et al. Al-optimized detector design for the future Electron lon Collider: the dual-radiator RICH case. JINST 15(05):P05009, 2020.

A. Edelen et al. Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Physical Review
Accelerators and Beams, 23(4):044601, April 2020. Publisher: American Physical Society. doi:10.1103/PhysRevAccelBeams.23.044601.

D. Koser et al. Input beam matching and beam dynamics design optimization of the IsoDAR RFQ using statistical and machine learning techniques.
arXiv:2112.02579 [physics], 2021. (Submitted to Frontiers in Physics). arXiv:2112.02579. [61] F. Van Der Veken et al. Machine learning in accelerator
physics: applications at the CERN Large Hadron Collider. In Proceedings of Artificial Intelligence for Science, Industry and Society PoS(AISIS2019),
volume 372, page 044. SISSA Medialab, July 2020.

S. Meyer et al. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. Phys. Med. Biol., 65(15):155008, 2020.
doi:10.1088/1361-6560/ab8afc.

C. Fanelli et al., Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider arXiv:2205.09185, 2022



Full Optimization of Detectors/Accelerators

When it comes to designing detectors and accelerators with Al this is a frontier topic
with few examples in the literature.

o What follows uses “detector” as example but applies to both detector and
accelerator.

Typically full detector design is studied once the subsystem prototypes are ready
(phase constraints from the full detector or outer layers are taken into consideration).

Need to use advanced simulations which are computationally expensive (Geant).
Many parameters (and multiple objective functions): curse of dimensionality [1].

Entails establishing a procedural body of instructions [2]. The choice of a suitable
algorithm is a challenge itself (no free lunch theorem [3]) and always requires some
degree of customization.

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.

[2] CF et al. JINST 15.05 (2020): P0O5009.
[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67-82



Characterizing the Detector Design Problem

The detector design problem in NP physics (either collider or fixed target) experiments is typically
characterized by:

1. A number of sub-detectors layers starting from the interaction point;

2. A relational ‘hierarchy’ (or coupling) among different components/sub-detectors (e.g., the presence of
material in front of a sub-detector; calorimetry after tracking; etc);

3. Symmetry (e.g., hermetic detectors with large acceptance like EIC have a ‘cylindrical’ geometry);
4. Modularity (e.q., repeated sub-elements within a sub-detector);
5. Constraints (e.q., volumes cannot overlap);

6. "Heterogeneous” parts (e.q., certain processes like developing showers in calorimeters take longer than
others to simulate; point 6 actually encompasses different aspects in the pipeline, see later).

7. The detector response is typically noisy and detailed simulations can be compute expensive.

[}

]



The Typical Workflow

° Al can assist in designing more o
efficiently detectors (performance, customization ._.t I _.'
costs).

° It helps steering the design (and Design parameters ._L ’—'
eventually fine-tune it).

-9
° It can capture hidden correlations among

I 1
design parameters. ..'J 1 ()

Detector
Simulation

compute intensive (Geant4)

(AI/ML can also speed-up the simulation/reconstruction stack; cf. Amdahl’s law)

See invited talk at IAEA
Technical Meeting on Al

)

IAEA

International Atomic Energy Agency


https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx

Design Optimization

e Al-assisted “Optimization” is not necessarily
fine-tuning, this is a common misconception

e These techniques can be utilized in different
phases of design and R&D

e Alcan assist in designing more o E.g., detector modeling can be done with
ety ¥ detectors (performance. optimization on a reduced set of
_ | parameters keeping frozen all the others,
" eventaly e ene before a global optimization
e  ltcan capture hidden correlations among o Even the glOba| optimization may be
design parameters. approximate but still steer the design

towards the most interesting regions

o Different technology choice/change can
be made during the design phase and as
part of the decision making, informed by
Al — see later discussion on EIC tracking



Bayesian Optimization

e Objective fis a black-box function and can be noisy. i
e Evaluations are expensive making grid or exhaustive | posterior
search impractical. ’l P(F ID)-
e flacks of special structure (e.g. convex), and it has no |
gradient information.
\

i
|
!

If you don’t have the above constraints, s
do not use Bayesian Optimization = e

e \We want to determine the optimum of 7, no need to improve estimates of regions where fis not
optimal. The idea is to build a surrogate function:

o  With a Prior over the space of objective functions, to model our black-box function.
o Likelihood ~ probability of observing the data given the function .

o The Posterior probability is the surrogate objective function. It captures the updated

beliefs about the unknown obijective.
https://machinelearningmastery.com/what-is-bayesian-optimization/

http://krasserm.qgithub.io/2018/03/21/bayesian-optimization/

http://krasserm.qithub.io/2018/03/19/gaussian-processes/

1"l

|



https://machinelearningmastery.com/what-is-bayesian-optimization/
http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/

BO in a nutshell

e BO is a sequential strategy
developed for global
optimization.

e After gathering evaluations we
builds a posterior distribution
used to construct an acquisition
function.

e This cheap function determines
what is next query point.

Posterior

Posterior

Acquisition function

t=3 $=4

observation

Next
point

Acquisition function

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.

3. Update the Data and, in turn, the Surrogate Function.

4. Go To 1.

Extension to multiple objectives



sition Functions

Iteration: 0
£=0.01
Predicted (u)
Ground Truth (f)
uxo
Training Points
Query Point

Acquisition function
Maxima

Exploitation Exploration

(ui(z) — f(z7) — €)8(2) + 04(2)$(2), ifox(z) >0
N =0

Best found so far

We are sampling x

Exploitation: search where p is high
Exploration: search where g is high

Gold content

©

IS
L

Iteration: 1
£=0.01

Predicted (u)
Ground Truth (f)
uxto

Training Points
Query Point

Acquisition function
Maxima

Iteration: 2
£=0.01

Predicted (u)
Ground Truth (f)
uxto

Training Points
Query Point

Acquisition function
Maxima

Iteration: 3
£=0.01

+

Predicted (u)
Ground Truth (f)
uHxtOo

Training Points
Query Point

Acquisition function
Maxima




Acquisition Functions

= Predicted (u)
= Ground Truth (f)
uxo
® Training Points
@® QueryPoint

e Many acquisition functions, e.g.,
Probability of Improvement, Expected -
Improvement, Upper (Lower) | L hcauiition function
confidence bound, etc

QRandom

Comparison of different Acquisition Functions on Gold Mining task

«— Random ‘ - N r——————— e et

e In most cases, acquisition functions gt A El

provide knobs for controlling the s~ Tompn A
exploration-exploitation tradeoff & RS

e When optimization is more complex
(more dimensions), then a random
acquisition might perform poorly

‘N calls °

° https://distill.pub/2020/bayesian-optimization/
https://distill.pub/2019/visual-exploration-gaussian-proce
E. Brochu, Eric, V. M. Cora, and N. De Freitas. "A tutorial on Bayesian optimization of expensive cost functions ¢ ssgs/ oy HISH XD on-gaussian-p

‘ “ with application to active user modeling and hierarchical reinforcement learning." arXiv:1012.2599 (2010). ° hitps-//www.borealisai.com/en/bloa/tutorial-8-bayesian-o
B I ptimization/



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.6052&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.6052&rep=rep1&type=pdf
https://distill.pub/2020/bayesian-optimization/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://www.borealisai.com/en/blog/tutorial-8-bayesian-optimization/
https://www.borealisai.com/en/blog/tutorial-8-bayesian-optimization/

Dual RICH: case StUdy aerogel (4 cm, n(400 nm): 1.02)

+ 3 mm acrylic filter
E. Cisbani, A. Del Dotto, CF*, M. Williams et al. *+gas (1.6m, n(CZFB): 1.0008)

"Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case." PhotoSensor
Journal of Instrumentation 15.05 (2020): P05009. T

. K
Aerogel + Filter,

0[Gev] 5

charged
particle

0
]
|
|
|
|
E
|

mRICH DIRC dRICH g dRICH STOF(20ps)  dE/dx

aerogel gas STOF(10ps) ~looem

Sector Side View
e  Continuous momentum coverage. /|
e Simple geometry and optics, cost effective. ‘ | Gasvolume
e Legacy design from INFN, see EICUG2017

e 6 Identical open sectors (petals)
e  Optical sensor elements:

8500 cm?/sector, 3 mm pixel
e Large focusing mirror

1

"\ PhotoSensor

—_ Aerogel + Filter !



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

Construction Constraints on Design Parameters

The idea is that we have a bunch of parameters to optimize that characterize the detector design.
We know from previous studies their ranges and the construction tolerances.

parameter description range [units] tolerance [units]
[ R 7 mirror radius | [290,300] [cm] " 100 [um]
pos r radial position of mirror center [125,140] [cm] 100 [pm]
pos 1 longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]
tiles x shift along x of tiles center [-5,5] [cm] 100 [um]

tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [pm]
Naerogel aerogel refractive index [1.015,1.030] 0.2%
tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm]

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.



Choice of Fiqure of Merit

Goal is improve the distinguishing power of pions/kaons,

hence: Main contributions to resolution
aerogel
i / === Chromatic === Magnetic === Chromatic === Magnetic
N — ||<9K> <97l'>|| ny Emission « == Track Emission «= = Track
o= 0.1P-e- ' Pixel
0

Ny, = (NJ + NJ5)/2

10 15 10 15 20

polar angle [deg] polar angle [deg]

1 T

=2 o T o

Remember that we do not have an explicit form of the FOM we
are trying to optimize as a function of the design parameters

@ p, = 14 GeVic (aerogel) and p, =60 GeV/c (gas) considering the two parts disentangled



Noise Studies

No

_ 1K6x) = <)llv/

1p.e.
o

Dedicated studies to characterize the
noise as this is an optimization of a
noisy function

We choose N tracks = 400 based on
the studies on noise to minimize as
much as possible computing time
during simulation.

500 1000 1500 2000 25000

Number of tracks

+ Aerogel

* Gas

500 1000 1500 2000 2500
Number of tracks

500 1000 1500 2000 25000
Number of tracks

500 1000 1500 2000 2500
Number of Tracks
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Convergence Criterila

S5 333 5 3 5
W N0 U A WNR

e Can in general be applied in the design space, in
the objective space, or looking at the behavior of
the acquisition function.

features
I

e \We defined a set of conditions to ensure
convergence:

o These correspond to the logic AND of
booleans on each feature and on the variation
of the figure of merit.

o They are built on standardized Z and Fisher
statistics.

3
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e Pre-processing of data required to remove outliers.




Comparison with Random Search

Each call:
400 tracks generated/core
20 cores

[
o
3]

1 design point ~ 10 mins/CPU

[
o
IS

Budget: 100 calls

0
)
—
o
o

o

~N

=

F=]
2

»
]
E

=

random search random search

—e— bayesian optimization (GP) —e— bayesian optimization (GP)

500 1000 1500 2000 20 40 60 80 100
number of observations number of calls

[
o
w

e BO with GP scales cubically with number of observations.

e Bayesian optimization methods are more promising because they offer principled approaches to weighting the
importance of each dimension.

e For this 8D problem - even with 50 cores, RS looks unfeasible due to the curse of dimensionality.

o Recall that the probability of finding the target with RS is 1-(1-v/V)T, where T is trials, v/V is the volume of
target relative to the unit hypercube

Bergstra, Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res.13 (Feb) (2012) 281-305.



dRICH Performance at the optimal design point

aerogel (optimal) |
gas (optimal) | e Statistically significant
aerogel (legacy) | Improvement in both parts.
. 995 (:Iega:cy): e In particular in the gas region
' where the 50 threshold shifted
from 43 to 50 GeV/c and the 3o
one extended up to

c
O
4
(©
| -
©
Q
Q
0
AV
S~
=

e Notice that before this study we
did not know “how well” the
legacy design was performing.

momentum [G eV/c ] E. Cisbani, A. Del Dotto, CF*, M. Williams et al.

JINST 15.05 (2020): P05009.




Tolerance Regions

e BO provides a model of how the FoM depends on the parameters, hence it is possible to use the posterior
to define a tolerance on the parameters (regions ensuring improved PID, see previous slide).

Her(x) == Hepl(x) == Hp(X)

128 132 134

F)UOS} [CJFATW]M.5 o - - ’ tl|eS X [cm]

Hgp(X)

Eiles y [cmi S R e tj(éer.l): [cr;i]

Larger than the construction tolerances on each parameter.
Notice a small lateral shift of the tiles has negligible impact on the PID capability.




Frameworks and Deployment in the Industry

scikit-optimize
sigopt
hyperopt

spearmint
MOE

BOTorch
GPFlowOpt

GPyOpt
DragonFly

Hyperband
Smac

etc

e Bayesian Optimization has been applied to Optimal
Sensor Set selection for predictive accuracy.

e Uber uses Bayesian Optimization for tuning
algorithms via backtesting.

e Facebook uses Bayesian Optimization for A/B testing.

e Netflix and Yelp use Metrics Optimization software like

Metrics Optimization Engine (MOE) which take

advantage of Parallel Bayesian Optimization.

.m@e



https://scikit-optimize.github.io/stable/
https://app.sigopt.com/docs/overview/python
http://hyperopt.github.io/hyperopt/
https://github.com/HIPS/Spearmint
https://github.com/Yelp/MOE
https://botorch.org/tutorials/
https://github.com/SheffieldML/GPyOpt
https://github.com/dragonfly/dragonfly
https://automl.github.io/HpBandSter/build/html/optimizers/bohb.html
https://github.com/automl/SMAC3
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.193&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.193&rep=rep1&type=pdf
https://www.youtube.com/watch?v=c4KKvyWW_Xk
https://www.youtube.com/watch?v=c4KKvyWW_Xk
https://engineeringblog.yelp.com/2014/10/using-moe-the-metric-optimization-engine-to-optimize-an-ab-testing-experiment-framework.html
http://github.com/Yelp/MOE
http://github.com/Yelp/MOE

Other Applications: DIRC Alignment

3D Readout

c
8
©
®
Q
o)
]
-
B

0,0.0,0.0)

supponin bracket

forward calorimeter
barrel  time-of

start  Calorimeter -flight

counter

Time [ns]

chambers

forward drift F

central drift
\ chamber
electron
beam

superconducting
magnet

Fused silica bars

Optical box

3D (x,y,t) readout allows to separate spatial overlaps.

Patterns take up significant fractions of the PMT in x,y and are read out over
50-100 ns due to propagation time in bars.

H12700 PMTs have a time resolution of O(200 ps) and read-out electronics
giving time information in 1 ns buckets.



Alignment

Main alignment
parameters

e Select high purity sample of particles at low P
(well identified by GlueX PID w/o DIRC)

e Model the PDF as a function of the offsets

e Take observed hits to build Likelihood

e Optimize FOM = logL
(normalized to a default alignment)

e Test DIRC PID on larger momentum P

True:

3-seg mirror:
0x,0y,0z=(0.25,0.50,0.15) deg,
y = 0.50 mm;

bar: z=2.00 mm;

PMT: (r,0)=(1.50 mm,1.00 deg)

BO-reversed engineered:
3-seg mirror:

0x,0y,0z=(0.25, 0.58, 0.12) deg,
y =0.59 mm;

bar: z=2.08 mm;

PMT: (r,8)=(1.87 mm, 1.35 deg)

Pion Rejection

Bayesian Optimization

" Eff. Reso: 1.572 mrad " Eff. Reso: 1.599 mrad

- Reso pery: 8.265 mrad - Reso pery: 8.411 mrad
os- AUC: 99.85% T AUC: 99.83%

08 1 i ) } 08 1
Kaon Efficiency Kaon Efficiency

Thrown &t

x 8
StdDevy 1.656

No Correction

Eff. Reso: 2.041 mrad
- Reso pery: 10.725 mrad
AUC: 98.9%

08 1
Kaon Efficiency



yperp eter Tuning
DeepRICH

injected

injected 1
reconstructed T

»

'

. VAE
X /'“'11/‘ . Encoder

¥

CNN/MLP
Classifier

L}
Classification
Output

latent space

t-SNE used for 3D visualization reconstructed

CF and

J. Pomponi

Machine Learning: Science and Technology 1.1 (2020): 015010

Hyperparameters

Table 2. List of hyperparameters tuned by the BO. The tuned values are shown in the outermost right column. The optimized test score

is about 92%.

symbol description

NLL Ar

range optimal value

[1074,10%] 0.784
CE A (1

0~4,10] 1.403

MMD X (1,10%] 1.009

LATENT_DIM

latent variables dimension [10,200] 16

var_MMD o inN(0,0) [0.01,2] 0.646

Learning Rate learning rate

DeepRICH Performance

‘Table 3. The area under curve (%), the signal efficiency to detect pions €5 and the background reje
the point of the ROC that maximizes the product & he corresponding momenta at

also reported. This table is obtained by integrating over all the other kinematic parameters (i.c
6,8,X, Y for each momentum).

DeepRICH
Kinematics JC s
4GeV/c

4.5 GeVic
5GeVic

[0.0001, 1] 6.6:10~*

are
tal of ~6k points with different

FastDIRC

£s

10° ot 102
Batch size

10°

Figure 9. After training, the inference time is almost constant as a function of the batch size, meaning that the effective inference
time—i.e., the reconstruction time per particle—can be lower than a jus, the architecture being able to handle 10 particles in
about 1.4 ms in the inference phase. Notice that the corresponding memory size in the inference phase is approximately equal to
the value reported in table 4.




Event generator tuning using BO

MC event generators contain large number of
parameters that must be determined by comparing
the output of generator with experimental data.

Generating enough events is extremely CPU
intensive, prohibits performing a simple brute-force
grid-based tuning of the parameters.

MC event generator parameters can be accurately
obtained using BO and minimal expert-level
physics knowledge.

A tune of the Pythia 8 event generator using e*e”
events, with 20 tunable parameters, can be run on
a modern laptop in just 2 days.

Combining the BO approach with expert
knowledge should enable faster tuning and
facilitate the study discrepancies between MC and
experimental data.

probStoUD

.
) 0.2 0. 0.6 0.8

BOEEEEENETT RSN RN

L ]
0 .2 0. 0. .8

probSQtoQQ —a
0.6 .3

° probQQ1toQQ0
0. 0.2

etaSup —o—
0.
etaPrimeSup
decupletSup
mesonUDvector
mesonSvector

mesonCvector

mesonBvector

Figure 8. (Black points) Block 3 parameters from our optimal tune compared to their (vertical cyan lines)

Monash values. The horizontal-axis ranges are the regions considered by SPEARMINT during tuning.

P. liten, M. Williams, Y, Yang JINST 12.04 (2017): P04028.



Toy Model

t detector

np.ra
rand_st = 131

Packager files 3 R=1.
pitch = 4.¢

ncalls = 1

tr = detector.Tracke y1, y2, y3, 21, 22, 23)
Z, Y = tr.crdat

detector.geometry 3 R, y_min=-10, y_max=10 S se,pause=5) .....INITIAL GEOMETRY

N_tracks = 15
t = detector.T )l b_max=100, alpha_mean=0, alpha_std=0.2)
tracks = t.

Convergence plot

—e— BO: GP
—e— BO: GBRT
random search

detector. ) R, y_min=-10, y_max=10,block , pause=-1)
detector. tr y(tracks, Z,block=False,pau )

score = detector. Y, tracks, R)

d: ",score)

minf(x) after n calls

20 30
Number of calls n




Toy Model

Convergence plot

—e— BO: GP
—&— BO: GBRT
random search

minf(x) after n calls

20 30
Number of calls n

Objective: Efficiency is defined as at

. . , least two wires are hit
2D-plots of objective function

and partial dependencies

'
Ll
&







Particle Identification with Cherenkov

e Cherenkov detectors form the backbone of PID at EIC

o  Currently, all EIC detector designs use a dual radiator ring-imaging Cherenkov detector (RICH) in the hadron
direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a modular RICH in the

electron direction.

o  Simulating these detectors is typically compute expensive, involving many photons that need to be tracked
through complex surfaces.

o  All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one having the more
w complex ring patterns!




Beam_qas induced baqu round Courtesy of Y. Furletova

Beam-gas interactions can cause hadronic showers, which produce high multiplicity events in the central
detector apparatus

MOLFLOW

e

Static vacuum ~5*10° mbar

The GEANT simulation shows that for 10° mbar vacuum the contribution of such events to the
\7 \I | data stream is relatively small compared to the physics collisions



SynCh rot ron radiation Courtesy of Y. Furletova

Even in a configuration with the crossing angle, incoming electron trajectory bending in the upstream dipole
and quadrupole magnetic fields produces substantial synchrotron radiation load

el

Y ul,ia,-uv‘.u
£ B bt
o e )

T4

| Testune Soakig N
Texture Scaling o

18 GeV electron beam 0.26 A

SynRad

T
.

The design of absorbers and masks must be modeled thoroughly



Nucleon Tomography

5D tomography:
Wigner distribution— the “mother distribution”

Belitsky, Ji, Yuan (2003);

o o Lorce, Pasquini (2011)
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