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● Lecture 1 (1.5h)
○ What this is not (and is) about 
○ Complexity of modern detectors 
○ How do we design and optimize detectors?
○ Examples
○ Toy example 1

●  Lecture 2 (1.5h)
○ Multiple competing objectives 
○ The ECCE example
○ Examples
○ Toy example 2

●  Lecture 3 (1.5 h)
○ MOO in HEP/NP
○ Improving the workflow 

■ Learning interactions of simulated particles with matter
■ Learning event reconstruction, pattern recognition 

○ End-to-end optimization pipelines 
○ Conclusions
○ Toy example 3

Outline
Useful References
[1] AI4NP Winter School, 2020 https://github.org/cfteach 

[3] AI-optimized detector design for the future 
Electron-Ion Collider: the dual-radiator RICH case 
https://arxiv.org/abs/1911.05797

[4] AI-assisted Optimization of the ECCE Tracking 
System at the Electron Ion Collider 
https://arxiv.org/abs/2205.09185

[5] MODE: White Paper, 
https://arxiv.org/pdf/2203.13818.pdf 

[6] Machine Learning in Nuclear Physics, 
https://arxiv.org/abs/2112.02309 

https://arxiv.org/abs/1911.05797
https://arxiv.org/abs/2205.09185
https://arxiv.org/pdf/2203.13818.pdf
https://arxiv.org/abs/2112.02309
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What this is (and is not) about
✅  What you will learn:
These lectures provide an overview of SOTA approaches for detector design with AI in NP/HEP. 
I will discuss what the challenges are and which techniques are used in this emerging area of 
research and why all this is beneficial for modern complex detector design. 
Given the multidisciplinarity, it may be also of inspiration for other applications (actually 
embraces a wealth of use cases) 

❌ What you will not learn: 
○ These are not lectures on Particle Detectors per se

■ For that, a great classic is Particle Detectors, C. Grupen and B. Schwartz 

○ These are not lectures on simulation toolkit like Geant to simulate detectors
■ https://geant4.web.cern.ch/ 

○ These lectures in general assume some knowledge of MC event generators, detector 
simulation, event reconstruction and particle identification

■ I will only explain how they contribute but I won’t go into details  

○ These lectures are definitely more focused on AI/ML but you won’t learn AI/ML in 4.5h 
■ I will try to provide some concrete examples and leave code snippets for optimization!

https://geant4.web.cern.ch/
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Complexity o  
Modern Detectors 
in Nuclear Physics
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Detector Design with AI
● Do we need AI to design detectors?

○ Naively, no. We have done this in the past without AI. 
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Detector Design with AI
● Do we need AI to design detectors?

○ Naively, no. We have done this in the past without AI. 

The design of measuring instruments can be quite complex, still the optimization can be tractable, 
i.e. a parametrized model can allow to define a likelihood L =p(x|θ), where θ are the modeling 
parameters and x the simulated data. [1]

For instrument whose functionality is based on quantum phenomena — interaction of radiation 
with matter — the optimization problem is intractable. Access to the generating function of 
observed data through forward simulation (setting referred to as likelihood-free or simulation-based 
inference [2])

Over the course of the past eighty eighty years, the intractability of the design optimization 
problems commonly encountered in particle physics has not prevented physicists from 
successfully conceiving, commissioning, and operating detectors of huge complexity. [1]
=> Long-standing “paradigms”

 
[1] A. Baydin,, et al. "Toward machine learning optimization of experimental design." Nuclear Physics News 31.1 (2021): 25-28.
[2] K. Cranmer, J. Brehme, G. Louppe, The frontier of simulation-based inference, PNAS Vol 117, No. 48
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Detector Design with AI
● Why these lectures then?

○ Accurate simulations are computationally expensive

○ Given the increasing complexity of modern experiments we seek to decrease the 
computational burden to optimally design detectors   

○ Improving the detector design involves often optimizing simultaneous “tasks” in a 
multidimensional design space 

○ Unprecedented opportunity to rethink the design strategy in terms of geometry, 
material, performance, costs… 

■ still leveraging on existing paradigms (e.g., validation); 

○ (bonus: are complex detectors designed in the past sub-optimal?)

● In this context, AI-assisted approaches able to outperform manual, brute-force, approaches.

○ Designing detectors with AI is a multidisciplinary effort that combines multiple domains 
of expertise    
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Detector Design with AI

● Fundamental nuclear and particle physics research often requires realizing expensive large-scale 
experiments combining multiple sub-detectors to investigate the building blocks of nature. 

○ “AI techniques that can optimize the design of complex, large-scale experiments have the potential 
to revolutionize the way experimental nuclear and particle physics is currently done”. [1]

● More than 50 years have passed since Charpak (Nobel Prize in 1992) revolutionised particle detectors 
with the construction of a MWPC. Nowadays we can 3D print scintillation detectors and complex 
detection elements with thin layers of AC-coupled resistive silicon sensors. [2,3] 

● Thanks to the fast progress in CS in the past two decades, along with optimization software and the 
development of DNN, we now have the unique opportunity to integrate these new tools during the design 
of complex detection systems.

● Using AI will allow to optimize large detectors in NP experiments like the Electron Ion Collider. EIC will 
be a flagship nuclear physics facility in the US that will be constructed over the next 10 years and it is 
currently at its design phase. Its R&D program can be one of the first to systematically leverage on AI.

● In the following I will often utilize the Electron Ion Collider detector as a reference for our discussion.   
[1] R. Stevens et al.,  AI for Science: Report on the Department of Energy (DOE) Town Halls on Artificial Intelligence (AI) for Science 
[2] Y. Mishnayot et al., 3-dimensional printing of scintillating materials, Rev. Sci. Instrum., 85:085102, 2014
[3] G. Giacomini et al., Fabrication and performance of AC-coupled LGADs.

https://www.osti.gov/biblio/1604756


9

The Electron-Ion Collider
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EIC Science

 A machine or delvin  deeper than ever be ore into the buildin  blocks o  matter

electron beam  
protons or heavier atomic nuclei beam 
CoM energy √s

e-p
 ~ (20-140) GeV

● Finding 2: These three high-priority science questions can 
be answered by an EIC with highly polarized beams of 
electrons and ions, with sufficiently high luminosity and 
variable center of mass energy.

● Finding 3: An EIC would be a unique facility in the world 
and would maintain U.S. leadership in nuclear physics 

● Finding 4: An EIC would maintain U.S. leadership in the 
accelerator science and technology colliders and help to 
maintain scientific leadership more broadly. 

National Academy of Sciences 
● Finding 1: An EIC can uniquely address 

three profound questions about nucleons — 
neutrons and protons — and how they are 
assembled to form the nuclei of atoms:

○ How does the mass of the nucleon arise? 

○ How does the spin of the nucleon arise? 

○ What are the emergent properties of dense systems of gluons? 
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EIC Science

EIC Yellow Report (2021)
arXiv:2103.05419

World-wide interest
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Typical EIC experimental measurements 
Inclusive Reactions in ep/eA 

● Structure Functions: g1, F2, FL

Semi-Inclusive Reactions in ep/eA

● TMDs, Helicity PDFs, FFs; di-hadron correlations; 
kaon asymmetries, cross-sections, … 

Exclusive Reactions in ep/eA

● DVCS, exclusive VM production (GPDs; parton 
imaging)
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EIC Schedule and Milestones

*EIC Schedule, J. Yeck, Mar 2022

Snapshot from Mar 2022*
some details being adjusted

Deadline for submission was 
December 1, 2021

proto-collaborations

Process completed on March 21, 2022
Panel Report 

Tow
ards 

C
ollaboration 

ECCE Reference Detector

https://indico.bnl.gov/event/15297/contributions/61816/attachments/40383/67420/EIC%20Project%20Update%20March%202022.pdf
https://www.bnl.gov/eic/cfc.php
https://www.bnl.gov/eic/cfc.php
https://www.bnl.gov/dpapanelmeeting/
https://www.bnl.gov/dpapanelmeeting/files/pdf/dpap_report_3-21-2022_final.pdf
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EIC Comprehensive Chromodynamics Experiment
● Proto-collaboration that comprised scientists from 98 institutions 

● Develop low-risk, cost-effective, flexible and optimized EIC detector

● Detector concept based on a 1.5 T solenoidal magnet https://www.ecce-eic.org

https://www.ecce-eic.org
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Reference Detector
PID with Cherenkov 
detectors 

● dual radiator ring-imaging 
Cherenkov detector (RICH) in the 
hadron direction 

● DIRC (detection of internally 
reflected Cherenkov light) in the 
barrel 

● modular RICH in the electron 
direction.

Simulating these detectors is typically 
compute expensive, involving many 
photons that need to be tracked through 
complex surfaces. 

All three rely on pattern recognition of ring 
images in reconstruction, and the DIRC is 
the one having the more complex ring 
patterns! 

Tracker
Combines:

● ITS-3 Si technology
● Gaseous detectors
● AC-LGAD ToFs

Inner Tracker
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Reference Detector

η →∞

η ~0

We have a reference (ECCE) detector. 
Possible updates are currently being investigated (detector-1). Tracker System + PID

● The tracking system reconstructs charged particle tracks. It combines different technologies. 
● Imaging Cherenkov detectors are the backbone of PID in EIC. Compute intensive to simulate / reconstruct. 

In these lectures I will often refer to 
these subsystems 
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Ideal vs Real Detectors
Ideal Case:
● Given a process, 

○ detect all final state particles with 100% efficiency, 
○ determining the particles types with certainty and 
○ reconstructing their “true” 4-momenta 

Real Case:
● For most particle species we deal with 
● decay products, secondary vertices, invariant mass peaks; 
● one really never gets 100% acceptance (due to support system, beam pipe, 

sub-detector frames, cracks, …) 
● as well as a 100% detection efficiency (due to detector imperfections, the limitations 

of our reconstruction algorithms, DAQ, etc.) 
● PID is never 100% accurate and we deal with finite detector resolutions (detector 

size and technology limitations, costs…) 
● Background processes make the overall picture more complicated 

A. Kiselev, EIC Detector Design, CFNS SS, 2019
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How do we detect particles?

● Long-lived: through their 
interaction with the detector 
material

○ Tracking 

○ Calorimetry 

○ PID detectors  

● Short-lived: through measuring 
their decay products
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electrons

Particle Reconstruction

● The tracking system 
reconstructs charged 
particle tracks. It combines 
different technologies. 

● Calorimetry measurement 
is “destructive” 
→components belonging to 
the tracking system are the 
closest to the IP 

photons

muons

p/K/π

n, KL

Innermost Outermost

tracking em calo had calo muon syst
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Particle Identification with Cherenkov

● Cherenkov detectors form the backbone of PID at EIC 

○ Currently, all EIC detector designs use a dual radiator ring-imaging Cherenkov detector (RICH) in the hadron 
direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a modular RICH in the 
electron direction.

○ Simulating these detectors is typically compute expensive, involving many photons that need to be tracked 
through complex surfaces. 

○ All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one having the more 
complex ring patterns! 

electrons/photons π/K/p

eta Nomenclature PID Min E Photon P-range [GeV/c] Separation

-3.5 to -2.0 Backward π suppression up to 
1:1E-4

20 MeV

≤ 10 GeV/c

≤ 3σ

-2.0 to -1.0 Backward π suppression up to 
1:1E-3 - 1:1E-2

50 MeV

-1.0 to 1.0 Barrel π suppression up to 
1:1E-2

100 MeV ≤ 6 GeV/c

1.0 to 3.5 Forward 3σ e/π up to 15 
GeV/c

50 MeV ≤ 50 GeV/c
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Particle Identification: DIRC

3D (x,y,t) readout  allows to 
separate spatial overlaps. 

Patterns take up significant 
fractions of the PMT in x,y and are 
read out over 50-100 ns due to 
propagation time in bars.

H12700 PMTs have a time 
resolution of O(200 ps) and 
read-out electronics giving time 
information in 1 ns buckets. 

1PMT made by 64 pixels, each 
pixel is 6mm x 6mm size

Displayed PDF. Patterns are 
sparse with variable photon yield 

T
im

e 
[n

s]

x [mm] y [m
m]

Hit pattern defined in (x,y,t)

Cherenkov 
photons

Image of expansion volume  taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054
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Particle Identification: DIRC

Cherenkov 
photons

Kaons @ 4 GeV/c for different polar and azimuthal angle

Dependence on charged particle 
kinematics 

(p,(θ,φ)*,X,Y)

A. Ali et al., The GlueX DIRC Program, 2020 JINST 15 C04054.

1

2

Image of expansion volume  taken from GlueX DIRC, Ali et al., JINST 15 (2020) 04, C04054
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Event Display and Reconstructed Features 

Reconstruction typically deals with 
relatively large feature space (low and 

high-level features) combining 
sub-detectors 

For illustrative purposes, showing 
example of calorimetry (outer layers)

image-like
       
scalar
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How do we desi n 
and optimize 
Detectors? 
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AI for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018): 360-365.

It is a relatively new but active area of research. 
Many applications in, e.g., industrial material, 
molecular and drug design. 

Z. Zhou et al., Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019
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Full Optimization of Detectors/Accelerators

S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin, and A.G. Baydin. Black-Box Optimization with Local Generative Surrogates, 2020. arXiv: 
2002.04632. 

T. Dorigo. Geometry optimization of a muon-electron scattering detector. Physics Open, 4:100022, 2020. 

F. Ratnikov. Using machine learning to speed up and improve calorimeter R&D. Journal of Instrumentation, 15(05):C05032, 2020.

E. Cisbani et al. AI-optimized detector design for the future Electron Ion Collider: the dual-radiator RICH case. JINST 15(05):P05009, 2020. 

A. Edelen et al. Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Physical Review 
Accelerators and Beams, 23(4):044601, April 2020. Publisher: American Physical Society. doi:10.1103/PhysRevAccelBeams.23.044601. 

D. Koser et al. Input beam matching and beam dynamics design optimization of the IsoDAR RFQ using statistical and machine learning techniques. 
arXiv:2112.02579 [physics], 2021. (Submitted to Frontiers in Physics). arXiv:2112.02579. [61] F. Van Der Veken et al. Machine learning in accelerator 
physics: applications at the CERN Large Hadron Collider. In Proceedings of Artificial Intelligence for Science, Industry and Society PoS(AISIS2019), 
volume 372, page 044. SISSA Medialab, July 2020. 

S. Meyer et al. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. Phys. Med. Biol., 65(15):155008, 2020. 
doi:10.1088/1361-6560/ab8afc.

C. Fanelli et al., AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider arXiv:2205.09185, 2022 

● When it comes to designing detectors and accelerators with AI this is a frontier topic 
with few examples in the literature. 
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● When it comes to designing detectors and accelerators with AI this is a frontier topic 
with few examples in the literature. 

○ What follows uses “detector” as example but applies to both detector and 
accelerator.

● Typically full detector design is studied once the subsystem prototypes are ready 
(phase constraints from the full detector or outer layers are taken into consideration).

● Need to use advanced simulations which are computationally expensive (Geant). 

● Many parameters (and multiple objective functions): curse of dimensionality [1].

● Entails establishing a procedural body of instructions [2]. The choice of a suitable 
algorithm is a challenge itself (no free lunch theorem [3]) and always requires some 
degree of customization. 

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009. 

[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67–82

Full Optimization of Detectors/Accelerators
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Characterizing the Detector Design Problem
The detector design problem in NP physics (either collider or fixed target) experiments is typically 
characterized by:

1. A number of sub-detectors layers starting from the interaction point;

2. A relational ‘hierarchy’ (or coupling) among different components/sub-detectors (e.g., the presence of 
material in front of a sub-detector; calorimetry after tracking; etc);

3. Symmetry (e.g., hermetic detectors with large acceptance like EIC have a ‘cylindrical’ geometry);

4. Modularity (e.g., repeated sub-elements within a sub-detector);

5. Constraints (e.g., volumes cannot overlap);

6. ”Heterogeneous” parts (e.g., certain processes like developing showers in calorimeters take longer than 
others to simulate; point 6 actually encompasses different aspects in the pipeline, see later). 

7. The detector response is typically noisy and detailed simulations can be compute expensive. 
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The Typical Workflow 

Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Physics 
Events 

Design parameters

A.I.
gathers observations and 

suggests new points

customization

compute intensive (Geant4)

● AI can assist in designing more 
efficiently detectors (performance, 
costs). 

● It helps steering the design (and 
eventually fine-tune it). 

● It can capture hidden correlations among 
design parameters. 

(AI/ML can also speed-up the simulation/reconstruction stack; cf. Amdahl’s law)

See invited talk at IAEA 
Technical Meeting on AI

https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
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Design Optimization

● AI-assisted “Optimization” is not necessarily 
fine-tuning, this is a common misconception 

● These techniques can be utilized in different 
phases of design and R&D  
○ E.g., detector modeling can be done with 

optimization on a reduced set of 
parameters keeping frozen all the others, 
before a global optimization 

○ Even the global optimization may be 
approximate but still steer the design 
towards the most interesting regions

○ Different technology choice/change can 
be made during the design phase and as 
part of the decision making, informed by 
AI — see later discussion on EIC tracking

● AI can assist in designing more 
efficiently detectors (performance, 
costs). 

● It helps steering the design (and 
eventually fine-tune it). 

● It can capture hidden correlations among 
design parameters. 
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Bayesian Optimization
● Objective f is a black-box function and can be noisy. 
● Evaluations are expensive making grid or exhaustive 

search impractical. 
● f lacks of special structure (e.g. convex), and it has no 

gradient information.

posterior likelihood prior

If you don’t have the above constraints, 
do not use Bayesian Optimization

● We want to determine the optimum of f, no need to improve estimates of regions where f is not 
optimal. The idea is to build a surrogate function:

○ With a Prior over the space of objective functions, to model our black-box function. 

○ Likelihood ~ probability of observing the data given the function f. 

○ The Posterior probability is the surrogate objective function. It captures the updated 
beliefs about the unknown objective.  

https://machinelearningmastery.com/what-is-bayesian-optimization/
http://krasserm.github.io/2018/03/21/bayesian-optimization/

http://krasserm.github.io/2018/03/19/gaussian-processes/

https://machinelearningmastery.com/what-is-bayesian-optimization/
http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/


31

BO in a nutshell

● BO is a sequential strategy 
developed for global 
optimization.

● After gathering evaluations we 
builds a posterior distribution 
used to construct an acquisition 
function.
 

● This cheap function determines 
what is next query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

        Extension to multiple objectives
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Acquisition Functions

Best found so far

We are sampling x 

Exploitation Exploration

● Exploitation: search where μ is high 
● Exploration: search where σ is high

f

x
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Acquisition Functions

● Many acquisition functions, e.g., 
Probability of Improvement, Expected 
Improvement, Upper (Lower) 
confidence bound, etc 

● In most cases, acquisition functions 
provide knobs for controlling the 
exploration-exploitation tradeoff 

● When optimization is more complex 
(more dimensions), then a random 
acquisition might perform poorly

random

RS

EI

N calls

f
E. Brochu, Eric, V. M. Cora, and N. De Freitas. "A tutorial on Bayesian optimization of expensive cost functions, 

with application to active user modeling and hierarchical reinforcement learning." arXiv:1012.2599 (2010).

● https://distill.pub/2020/bayesian-optimization/
● https://distill.pub/2019/visual-exploration-gaussian-proce

sses/
● https://www.borealisai.com/en/blog/tutorial-8-bayesian-o

ptimization/ 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.6052&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.306.6052&rep=rep1&type=pdf
https://distill.pub/2020/bayesian-optimization/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://www.borealisai.com/en/blog/tutorial-8-bayesian-optimization/
https://www.borealisai.com/en/blog/tutorial-8-bayesian-optimization/
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Dual RICH: case study aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008)

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. 
"AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case." 

Journal of Instrumentation 15.05 (2020): P05009.

● Continuous momentum coverage. 
● Simple geometry and optics, cost effective.
● Legacy design from INFN, see EICUG2017 

● 6 Identical open sectors (petals)
● Optical sensor elements: 

8500 cm2/sector, 3 mm pixel
● Large focusing mirror 

https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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Construction Constraints on Design Parameters
The idea is that we have a bunch of parameters to optimize that characterize the detector design. 
We know from previous studies their ranges and the construction tolerances. 
 

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.
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Choice of Figure of Merit

Goal is improve the distinguishing power of pions/kaons, 
hence: 

aerogel gas
Main contributions to resolution 

Remember that we do not have an explicit form of the FOM we 
are trying to optimize as a function of the design parameters

@ p1 = 14 GeV/c (aerogel) and p2  = 60 GeV/c (gas) considering the two parts disentangled
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Noise Studies

● Dedicated studies to characterize the 
noise as this is an optimization of a 
noisy function 

● We choose N tracks = 400 based on 
the studies on noise to minimize as 
much as possible computing time 
during simulation. 
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Convergence Criteria 

● Can in general be applied in the design space, in 
the objective space, or looking at the behavior of 
the acquisition function.  

● We defined a set of conditions to ensure 
convergence: 

○ These correspond to the logic AND of 
booleans on each feature and on the variation 
of the figure of merit. 

○ They are built on standardized Z and Fisher 
statistics. 

● Pre-processing of data required to remove outliers. 
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Comparison with Random Search

Each call:
400 tracks generated/core  
20 cores  

1 design point ~ 10 mins/CPU

Budget: 100 calls

● BO with GP scales cubically with number of observations. 

● Bayesian optimization methods are more promising because they offer principled approaches to weighting the 
importance of each dimension. 

● For this 8D problem - even with 50 cores, RS looks unfeasible due to the curse of dimensionality. 

○ Recall that the probability of finding the target with RS is 1-(1-v/V)T, where T is trials, v/V is the volume of 
target relative to the unit hypercube 
        Bergstra, Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res.13 (Feb) (2012) 281–305.
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dRICH Performance at the optimal design point

● Statistically significant 
Improvement in both parts.

● In particular in the gas region 
where the 5σ threshold shifted 
from 43 to 50 GeV/c and the 3σ 
one extended up to 

● Notice that before this study we 
did not know “how well” the 
legacy design was performing.

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.  
JINST 15.05 (2020): P05009.
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Tolerance Regions
● BO provides a model of how the FoM depends on the parameters, hence it is possible to use the posterior 

to define a tolerance on the parameters (regions ensuring improved PID, see previous slide).

● Larger than the construction tolerances on each parameter. 
Notice a small lateral shift of the tiles has negligible impact on the PID capability.
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Frameworks and Deployment in the Industry

● scikit-optimize 
● sigopt
● hyperopt
● spearmint
● MOE
● BOTorch
● GPFlowOpt
● GPyOpt
● DragonFly
● Hyperband
● Smac 
● etc

● Bayesian Optimization has been applied to Optimal 
Sensor Set selection for predictive accuracy.

● Uber uses Bayesian Optimization for tuning 
algorithms via backtesting.

● Facebook uses Bayesian Optimization for A/B testing.

● Netflix and Yelp use Metrics Optimization software like 
Metrics Optimization Engine (MOE) which take 
advantage of Parallel Bayesian Optimization.

https://scikit-optimize.github.io/stable/
https://app.sigopt.com/docs/overview/python
http://hyperopt.github.io/hyperopt/
https://github.com/HIPS/Spearmint
https://github.com/Yelp/MOE
https://botorch.org/tutorials/
https://github.com/SheffieldML/GPyOpt
https://github.com/dragonfly/dragonfly
https://automl.github.io/HpBandSter/build/html/optimizers/bohb.html
https://github.com/automl/SMAC3
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.193&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.353.193&rep=rep1&type=pdf
https://www.youtube.com/watch?v=c4KKvyWW_Xk
https://www.youtube.com/watch?v=c4KKvyWW_Xk
https://engineeringblog.yelp.com/2014/10/using-moe-the-metric-optimization-engine-to-optimize-an-ab-testing-experiment-framework.html
http://github.com/Yelp/MOE
http://github.com/Yelp/MOE
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Other Applications: DIRC Alignment

T
im

e 
[n

s]

x [mm] y [m
m]

3D Readout

Fused silica bars

Optical box

3D (x,y,t) readout  allows to separate spatial overlaps. 

Patterns take up significant fractions of the PMT in x,y and are read out over 
50-100 ns due to propagation time in bars.

H12700 PMTs have a time resolution of O(200 ps) and read-out electronics 
giving time information in 1 ns buckets.

π/K separation with DIRC
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Alignment
● Select high purity sample of particles at low P

(well identified by GlueX PID w/o DIRC)
● Model the PDF as a function of the offsets
● Take observed hits to build Likelihood 
● Optimize FOM = logL 

(normalized to a default alignment) 
● Test DIRC PID on larger momentum P  

pions

 4

 2

 1

Main alignment 
parameters

PMT

3-seg mirror

3-seg mirror:
θx,θy,θz=(0.25,0.50,0.15) deg, 
y = 0.50 mm;
bar: z = 2.00 mm; 
PMT: (r,θ)=(1.50 mm,1.00 deg)

3-seg mirror:
θx,θy,θz=(0.25, 0.58, 0.12) deg, 
y = 0.59 mm;
bar: z = 2.08 mm; 
PMT: (r,θ)=(1.87 mm, 1.35 deg)

True: 

BO-reversed engineered:

  Pion rejection vs Kaon efficiency at large P 

Eff. Reso:  1.572 mrad 
Reso per γ:  8.265 mrad
AUC: 99.85%

Eff. Reso:  1.599 mrad 
Reso per γ:  8.411 mrad
AUC: 99.83%

Eff. Reso:  2.041 mrad 
Reso per γ:  10.725 mrad
AUC: 98.9%

True             Bayesian Optimization No Correction

Other Applications
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Hyperparameter Tuning
Hyperparameters

CF and J. Pomponi
Machine Learning: Science and Technology 1.1 (2020): 015010

DeepRICH Performance

latent space
t-SNE used for 3D visualization reconstructed

injected

injected π
reconstructed  π 

 

DeepRICH
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Event generator tuning using BO

P. Ilten, M. Williams, Y, Yang JINST 12.04 (2017): P04028.

● MC event generators contain large number of 
parameters that must be determined by comparing 
the output of generator with experimental data. 

● Generating enough events is extremely CPU 
intensive, prohibits performing a simple brute-force 
grid-based tuning of the parameters. 

● MC event generator parameters can be accurately 
obtained using BO and minimal expert-level 
physics knowledge. 

● A tune of the Pythia 8 event generator using e+e− 

events, with 20 tunable parameters, can be run on 
a modern laptop in just 2 days. 

● Combining the BO approach with expert 
knowledge should enable faster tuning and 
facilitate the study discrepancies between MC and 
experimental data.
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Toy Model GP
90%

GBRT

<85%

75%

85%

90%
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Toy Model

Objective: Efficiency is defined as at 
least two wires are hit

2D-plots of objective function 
and partial dependencies 



Backup
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Particle Identification with Cherenkov

● Cherenkov detectors form the backbone of PID at EIC 

○ Currently, all EIC detector designs use a dual radiator ring-imaging Cherenkov detector (RICH) in the hadron 
direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a modular RICH in the 
electron direction.

○ Simulating these detectors is typically compute expensive, involving many photons that need to be tracked 
through complex surfaces. 

○ All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one having the more 
complex ring patterns! 
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Beam-gas induced background

Beam-gas interactions can cause hadronic showers, which produce high multiplicity events in the central 
detector apparatus

The GEANT simulation shows that for 10-9 mbar vacuum the contribution of such events to the 
data stream is relatively small compared to the physics collisions

Courtesy of Y. Furletova
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Synchrotron radiation
Even in a configuration with the crossing angle, incoming electron trajectory bending in the upstream dipole 
and quadrupole magnetic fields produces substantial synchrotron radiation load

18 GeV electron beam 0.26 A

Courtesy of Y. Furletova

The design of absorbers and masks must be modeled thoroughly
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Nucleon Tomography


