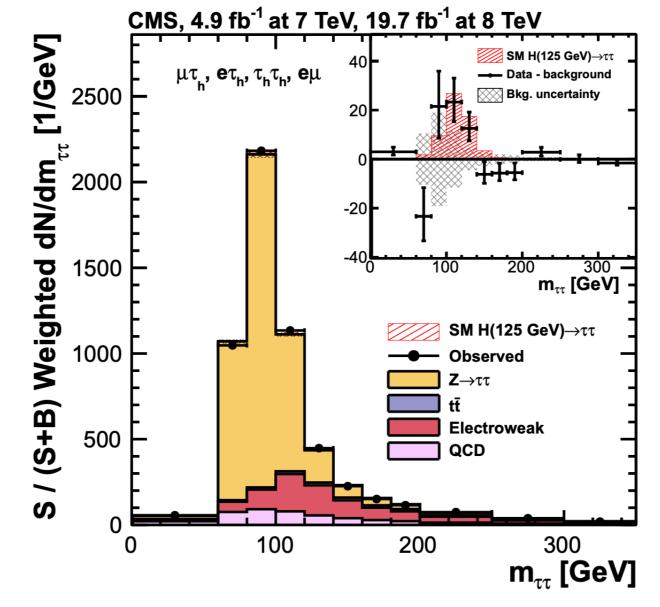
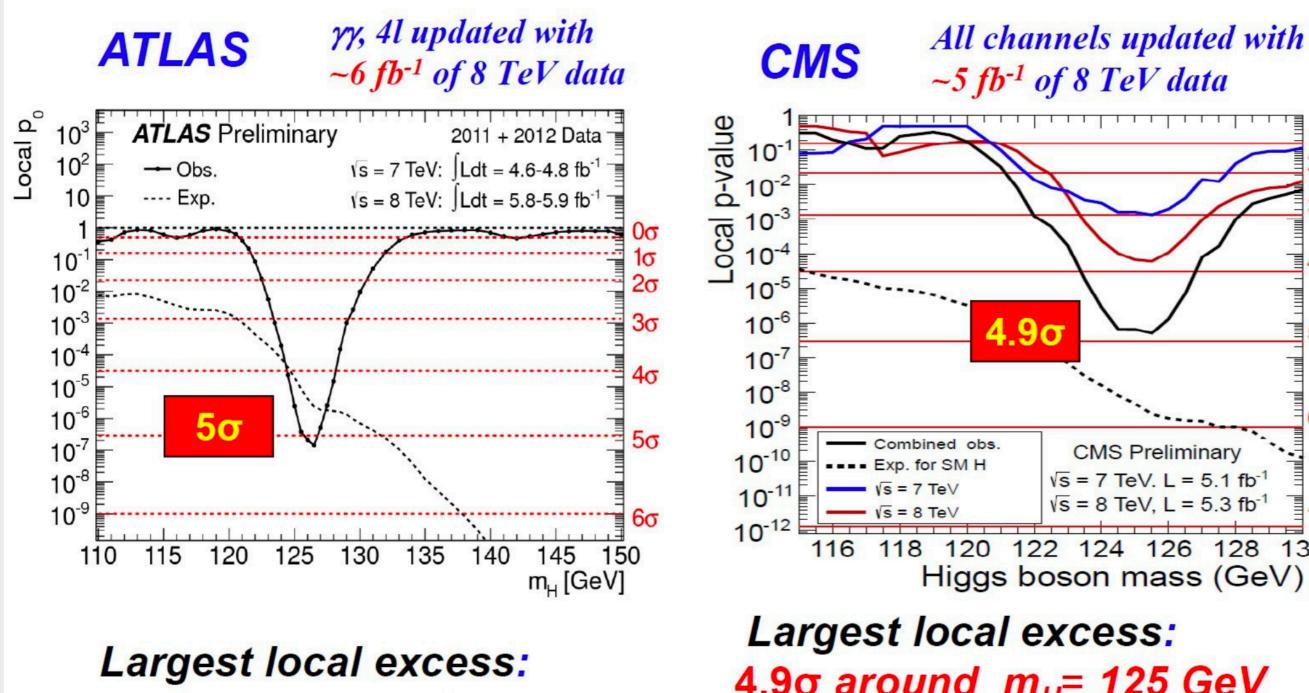
Lecture 2: Deep Learning Regressions



What you may not know?

At the Higgs discovery



5σ at m_H= 126.5 GeV

4.9 σ around m_{H} = 125 GeV (using $H \rightarrow \gamma \gamma$ and $H \rightarrow 4I$: 5.0 σ)

A big difference was present

1σ

2σ

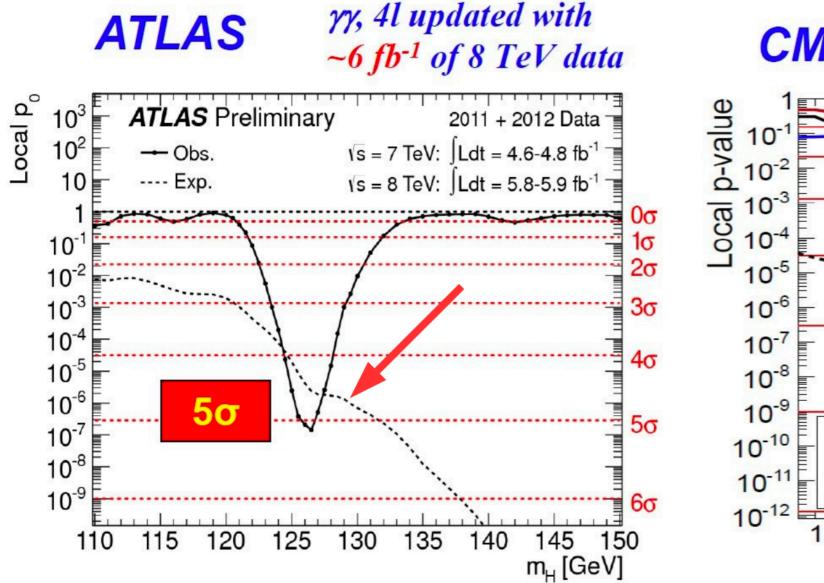
3σ

4σ

5σ

6σ

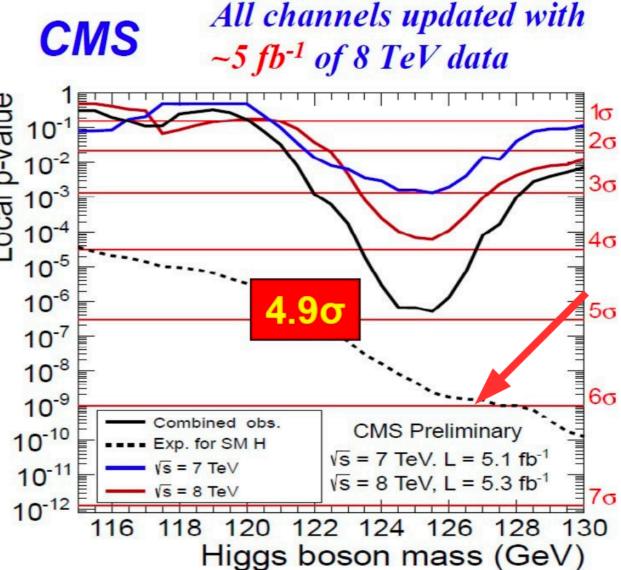
130



Largest local excess: $5\sigma at m_{H} = 126.5 \text{ GeV}$

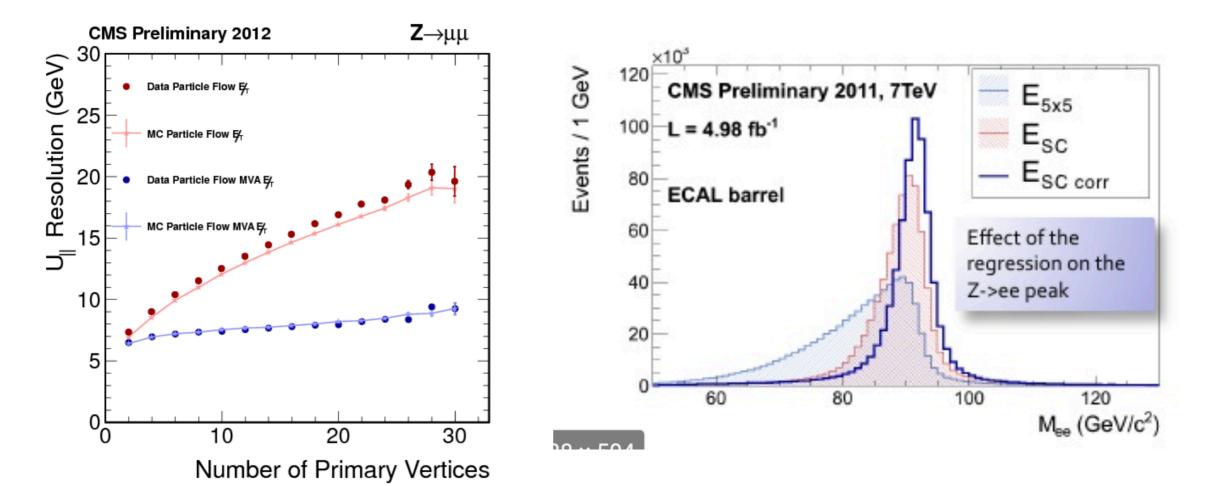
Largest local excess: 4.9 σ around m_{H} = 125 GeV (using H $\rightarrow\gamma\gamma$ and H \rightarrow 4I: 5.0 σ)

CMS was nearly 30% more sensitive Despite an excess of same size



What caused the difference?

- A few things, but the big one was deep learning
- In particular, two novel deep learning approaches
 - These approaches involved deep learning regression



Overview

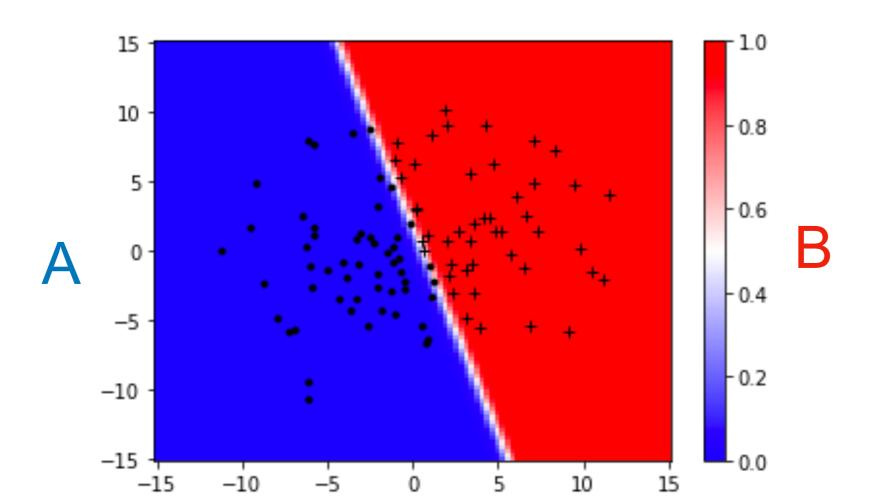
- In this lecture we are going to talk about
 - Deep Learning Regression
- Regression uses all the usual deep learning tools
 - Tries to solve a different problem than other DL lecture
 - Additionally it combines many of the concepts in fitting
- Lets review previous lectures to understand

Deep Learning

7

- In the past lectures we focused on :
 - Deep learning based classification

How do I separate to classes of points?

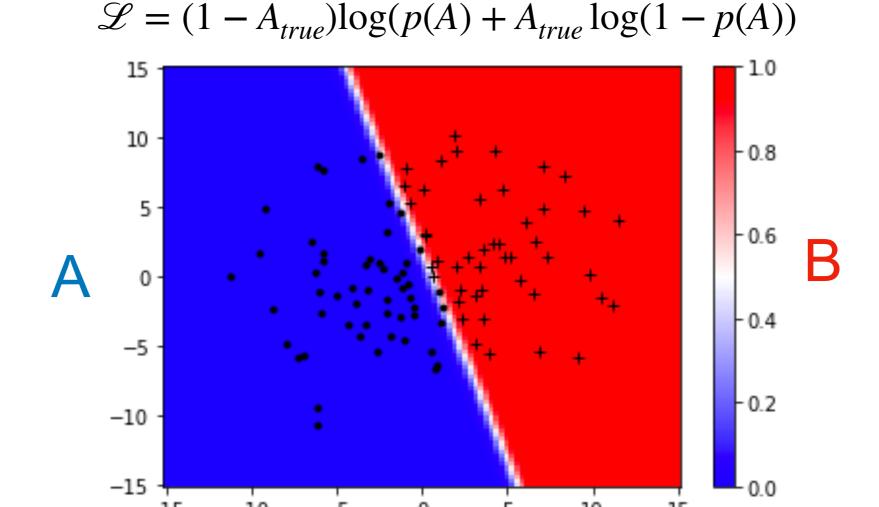


Deep Learning

- In the past lectures we focused on :
 - Deep learning based classification

How do I separate to classes of points? Minimize Loss: $\mathscr{G} = B = \log(p(A) \pm A) = \log(p(B))$

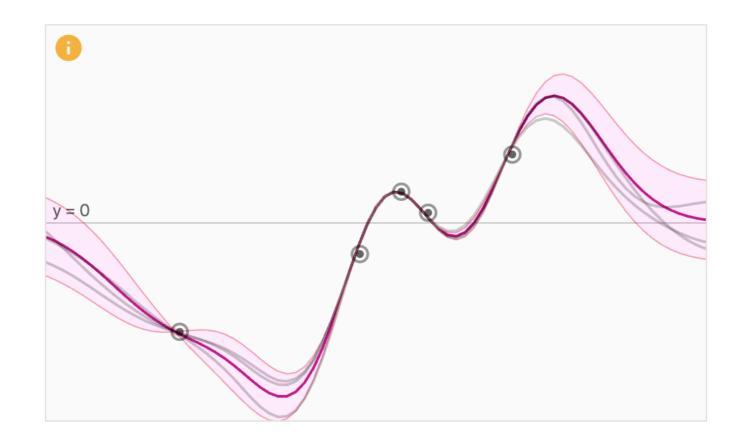
 $\mathcal{L} = B_{true} \log(p(A) + A_{true} \log(p(B)))$



8

Interpolation

- How do I take a continuous set of points and connect them?
 - We have considered two separate approaches
 - Fitting a range of polynomials
 - Spline Interpolation and Gaussian Processes



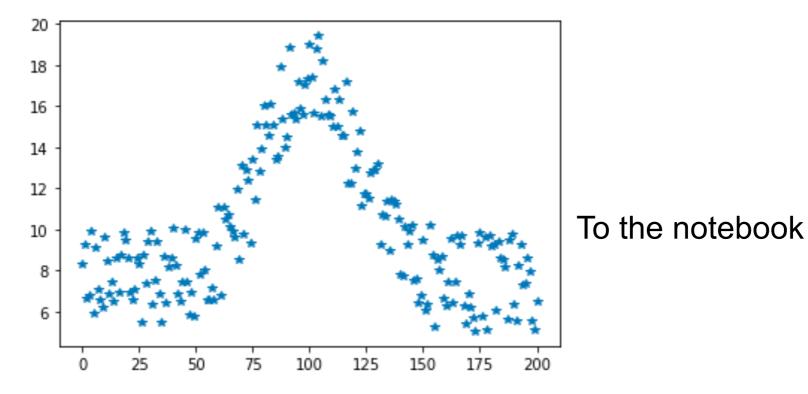
Notebook

<u>https://colab.research.google.com/drive/</u>
 <u>1jmBNDxG2ILoYv2_WLawQbo2CGiJX91Oo?usp=sharing</u>

Fitting Any Distribution

11

- Between minimizing the likelihood and statistics we know what to do to get a fit that describes the data well. With interpolation and gaussian processes, we can connect the dots. However there are limitations what if we want to do something more complicated!
- **Challenge:** Fit the points below without guessing a function.



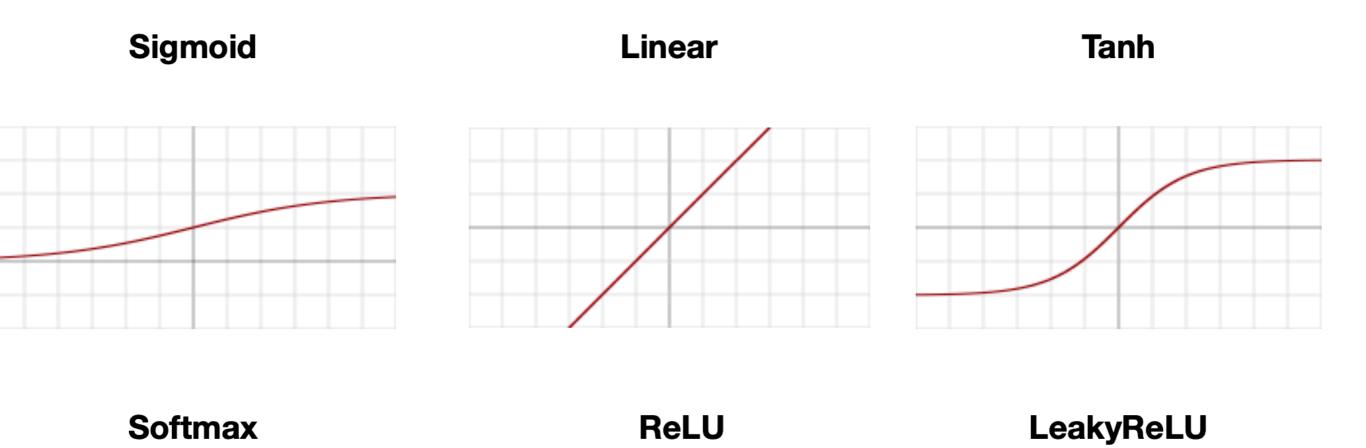
How do we do w/NN?

- With an NN all we are doing is a minimizing a loss
 - This loss can be any loss in the end
 - Really Whatever we want!
- A common loss is so-called Mean Squared Error

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x))^2$$

This is our input to our Neural Network it can be a vector of arbitrary size
This our target data in the training it can also be a vector of arbitrary size
To the Notebook

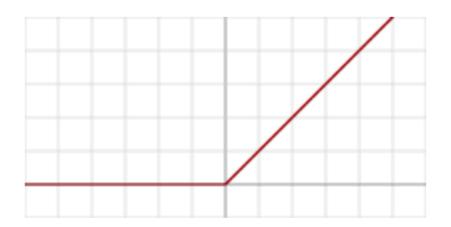
Activation Functions



(multiclass)

 e^{x_i}

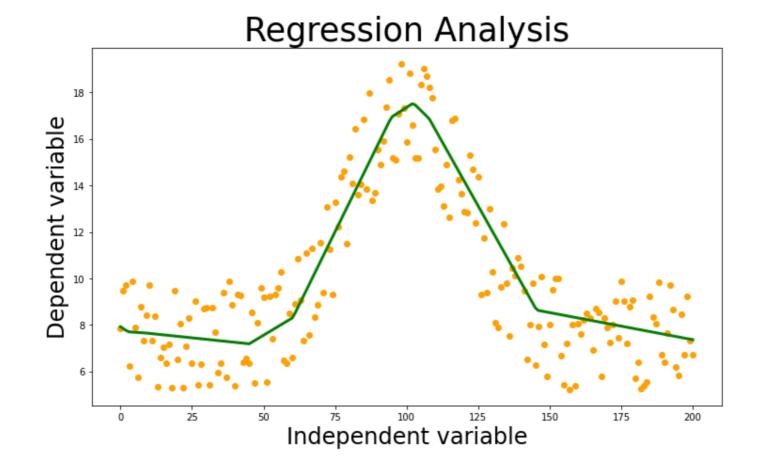
 $\sum_{j=1}^{J} e^{x_j}$



Parameter Extraction

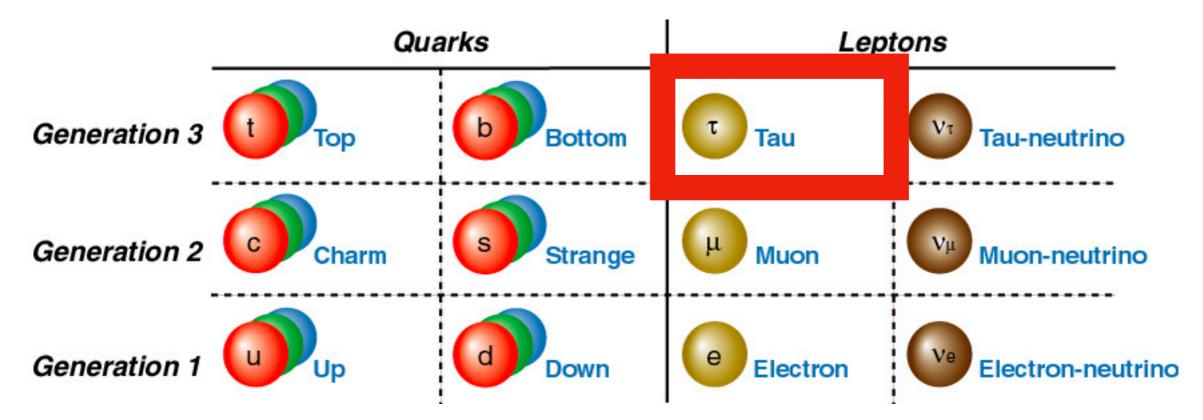
14

- Despite being able to fit such a distribution
 - There is a limit to how much we can do
 - The functional form for this distribution is complicated
 - To get a mean and a resolution, requires reverse engineering



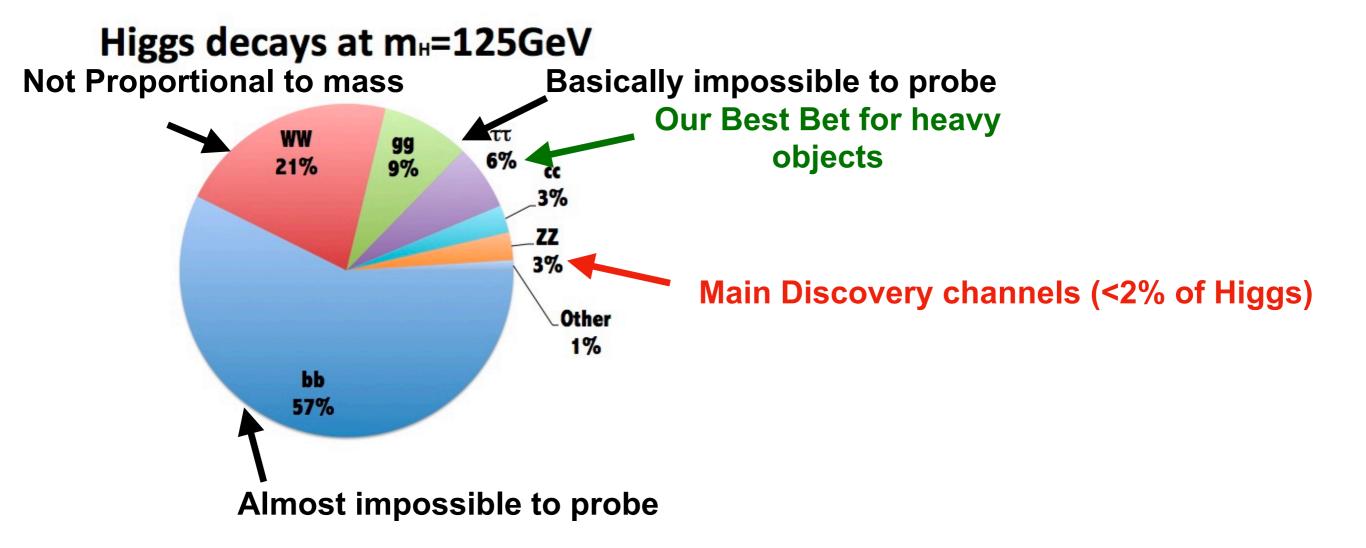
Lets Solve A Real Problem

Let's look at the tau lepton

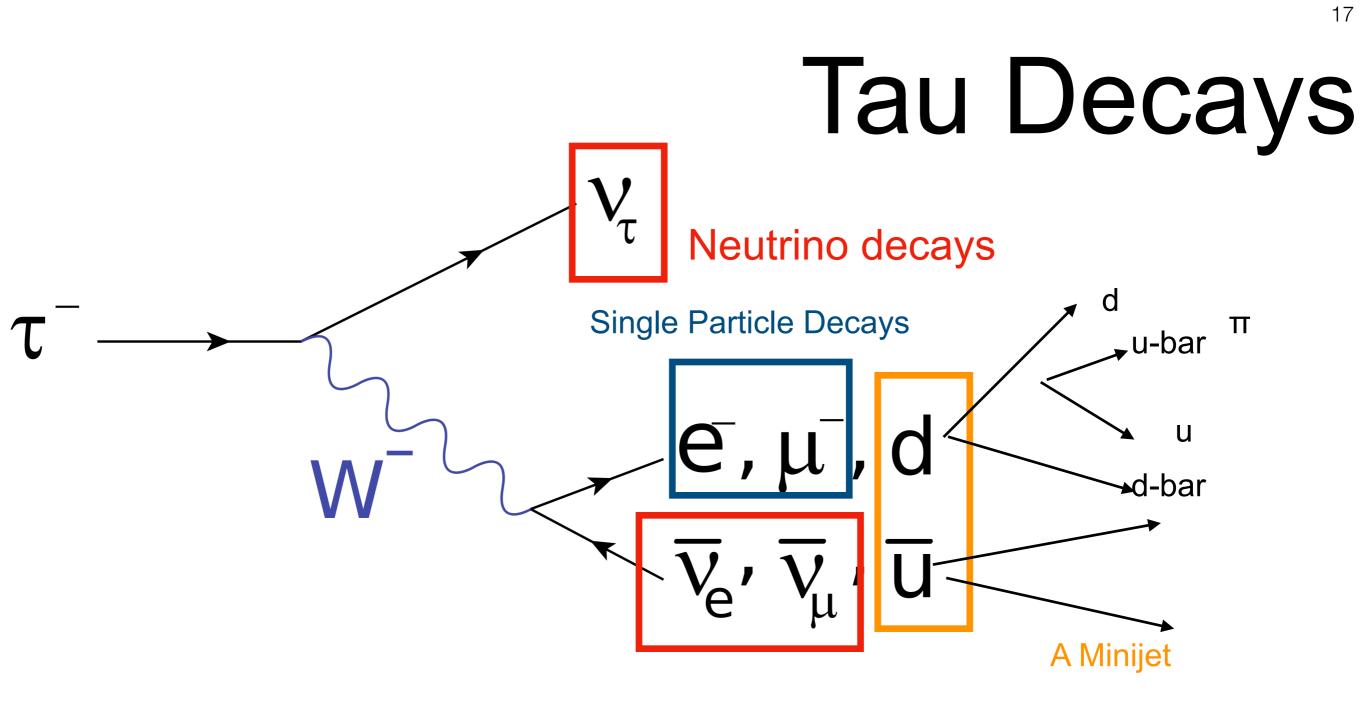


The Tau is the heaviest of the leptons (electron-like) What makes it so special?

Higgs Decays

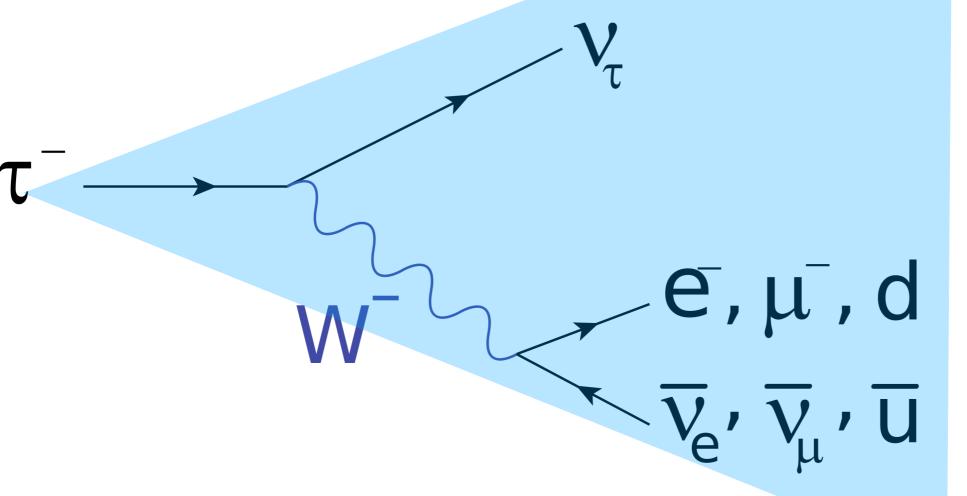


 Higgs probability of decay to quarks and leptons is proportional the mass of the particle. Taus are very heavy particles. Higgs decays to them 6% of the time. That's great. It was the first channel we could actually probe the proportionality to mass.



Neutrino Decays: The probability of a neutrino interaction is too small to see at the LHC. These particles are invisible

Single Particle decays: These events just give us one particle e or µ Minijet: Decays to quarks give us a shower of particles in small jet

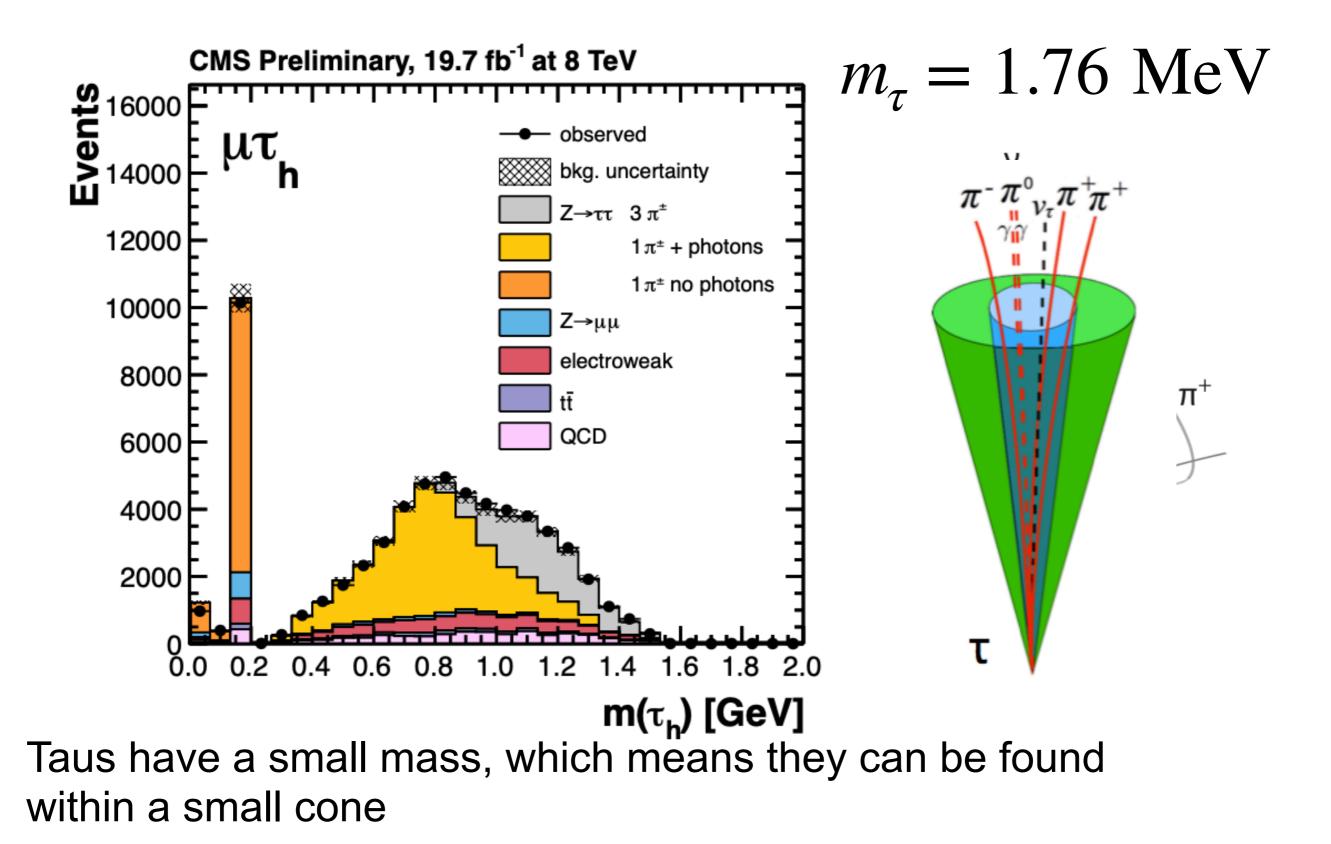


Take a jet And Sum all the particles

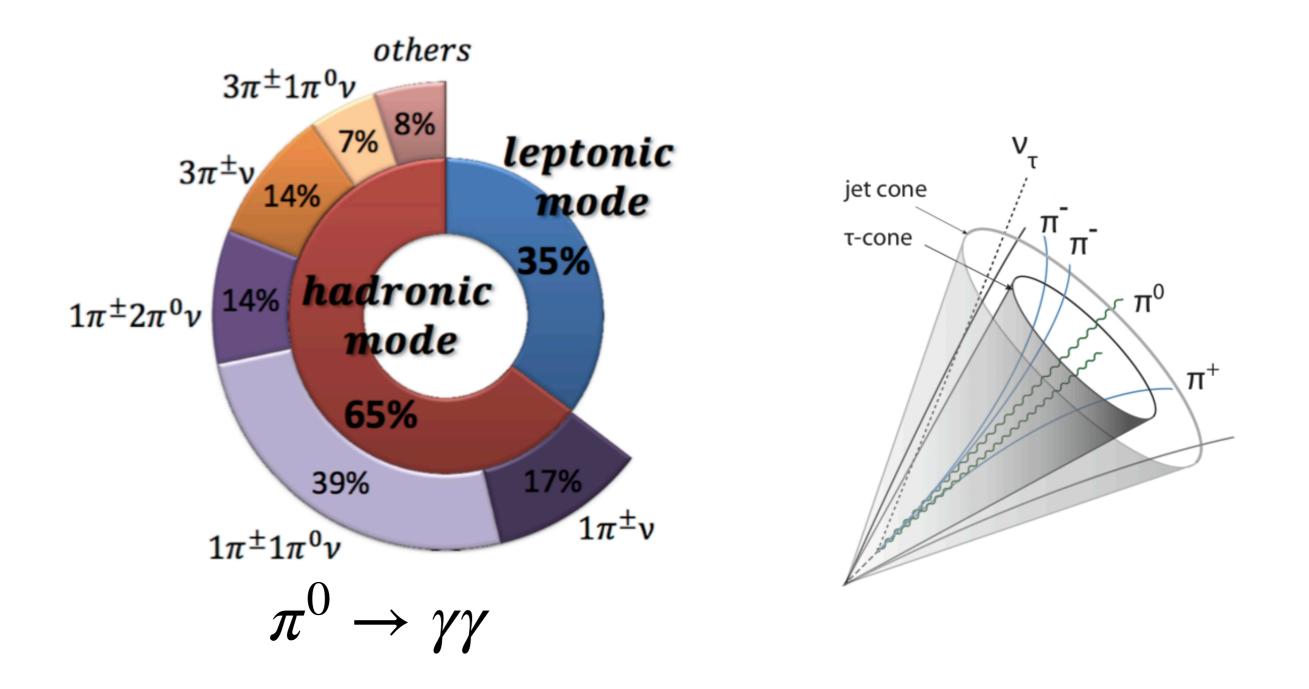
Can we go from Jet $p \rightarrow$ Tau p

Can we guess direction of the neutrinos and reconstruct the original tau energy?

How does a Tau decay

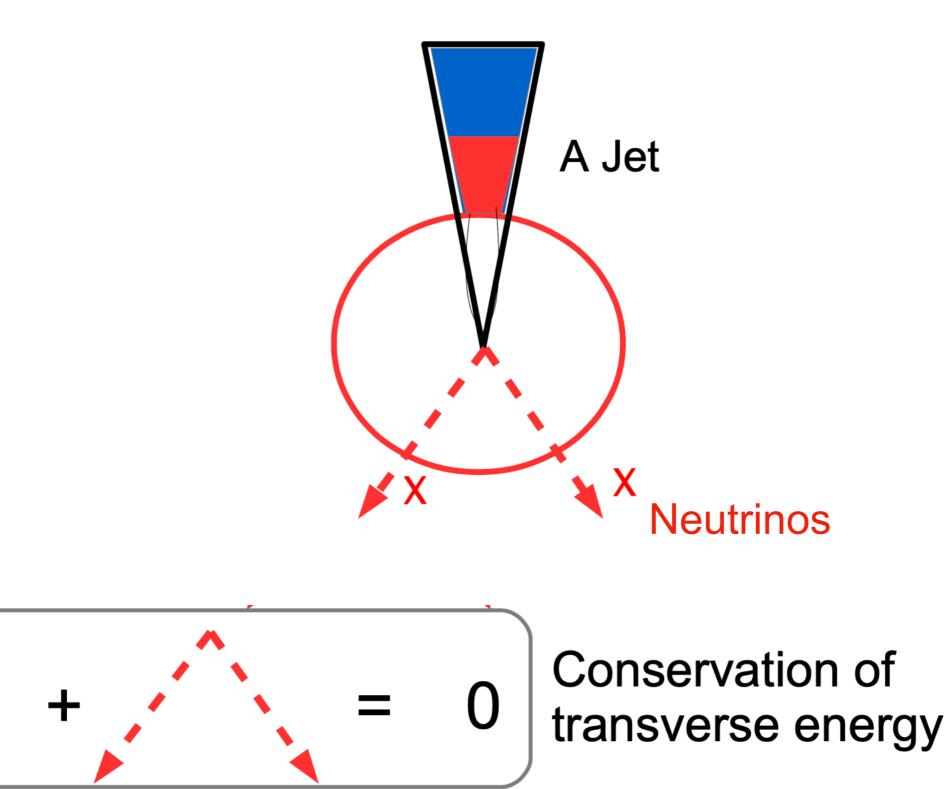


How does a Tau decay

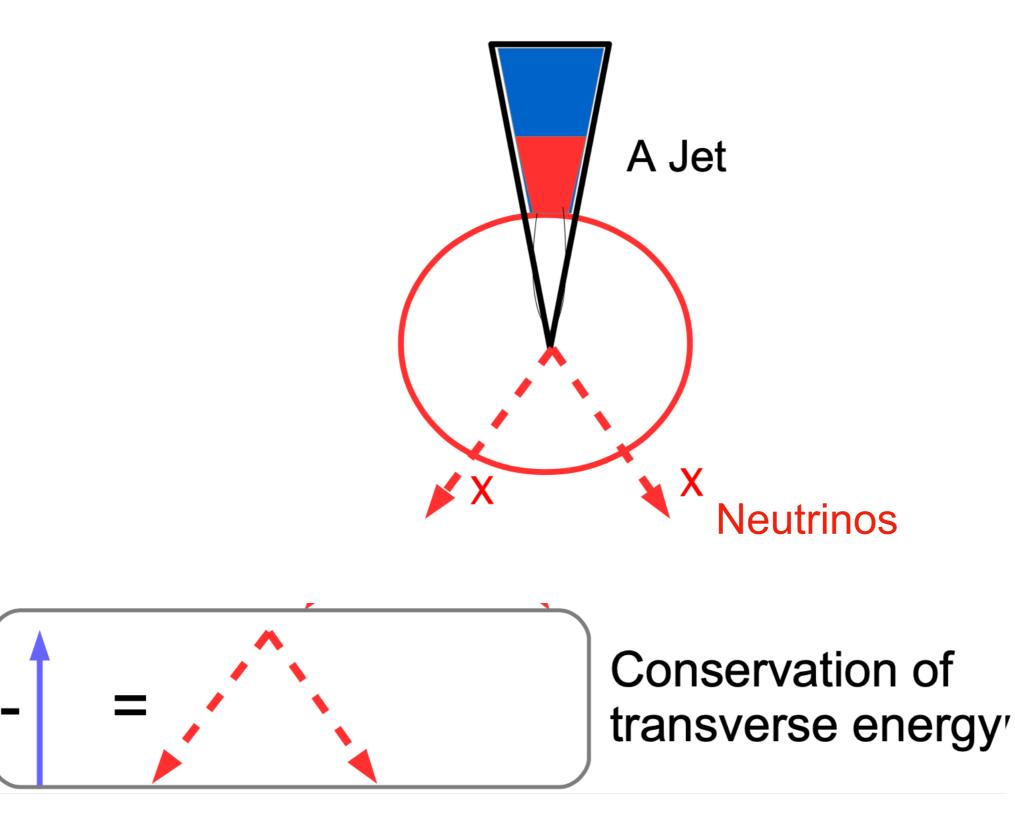


We are looking for collection of 1-5 particles Neutrino will fall in the same cone

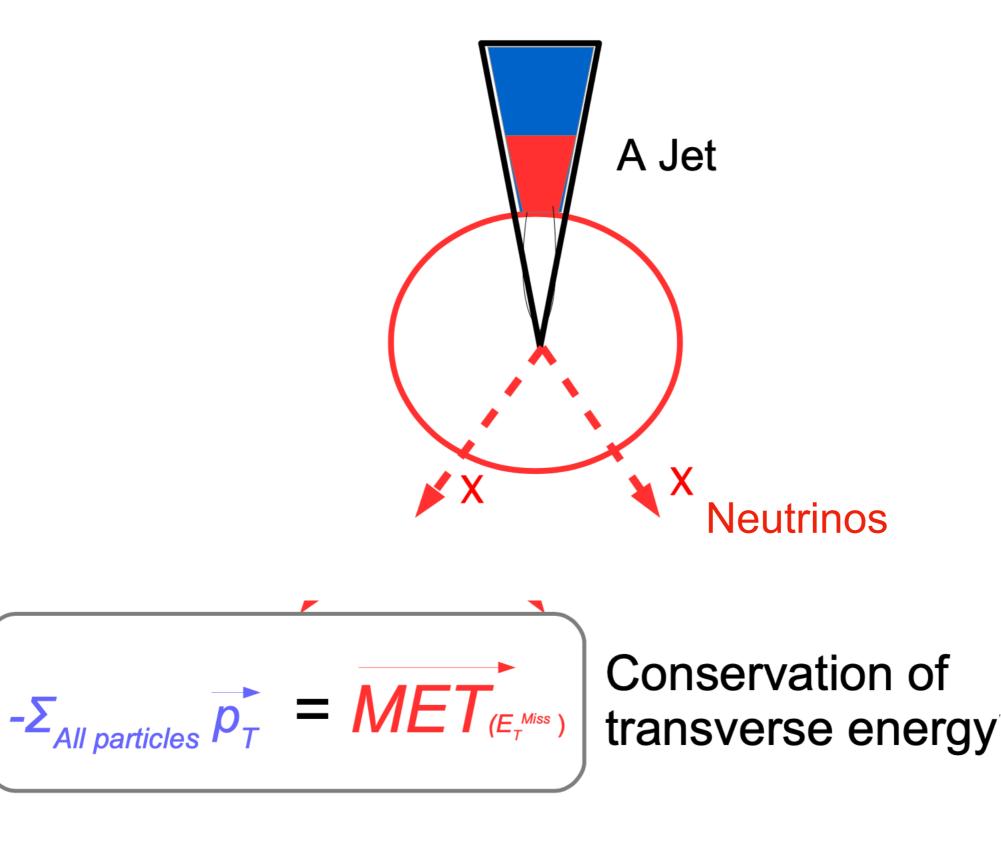
What we did for that result



What we did for that result

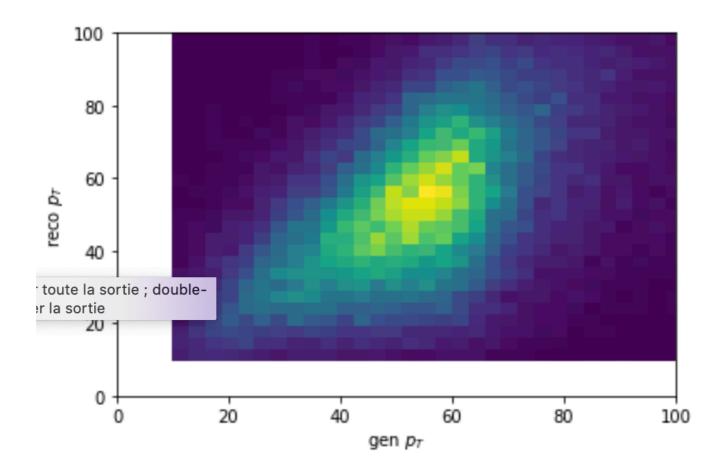


What we did for that result

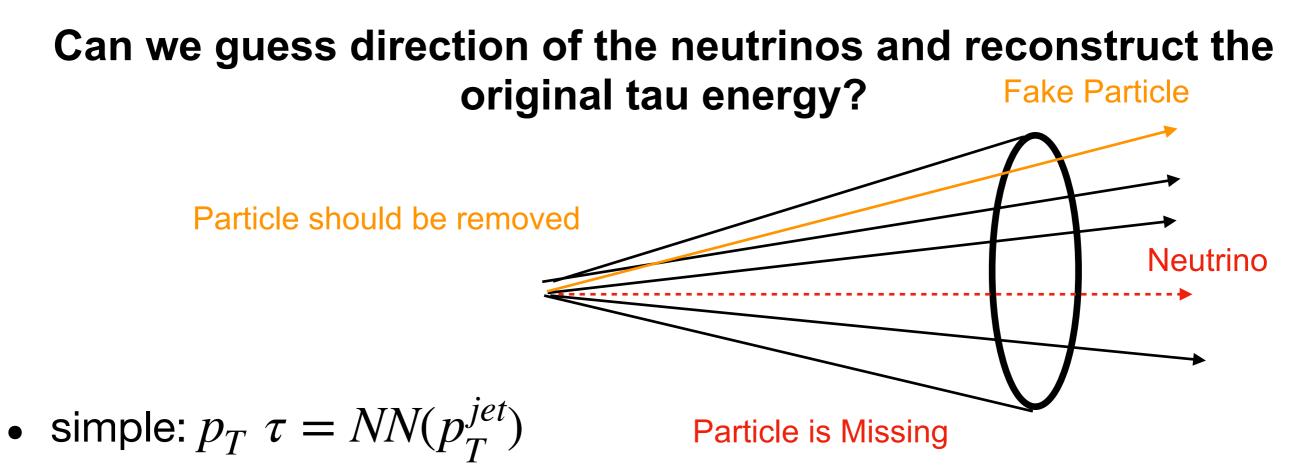


Some Correlation

- In this case, we want to try to use the tau momentum
 - Goal here is to rely on the fact that there is some correlation
 - The tau momentum can predict the total tau energy



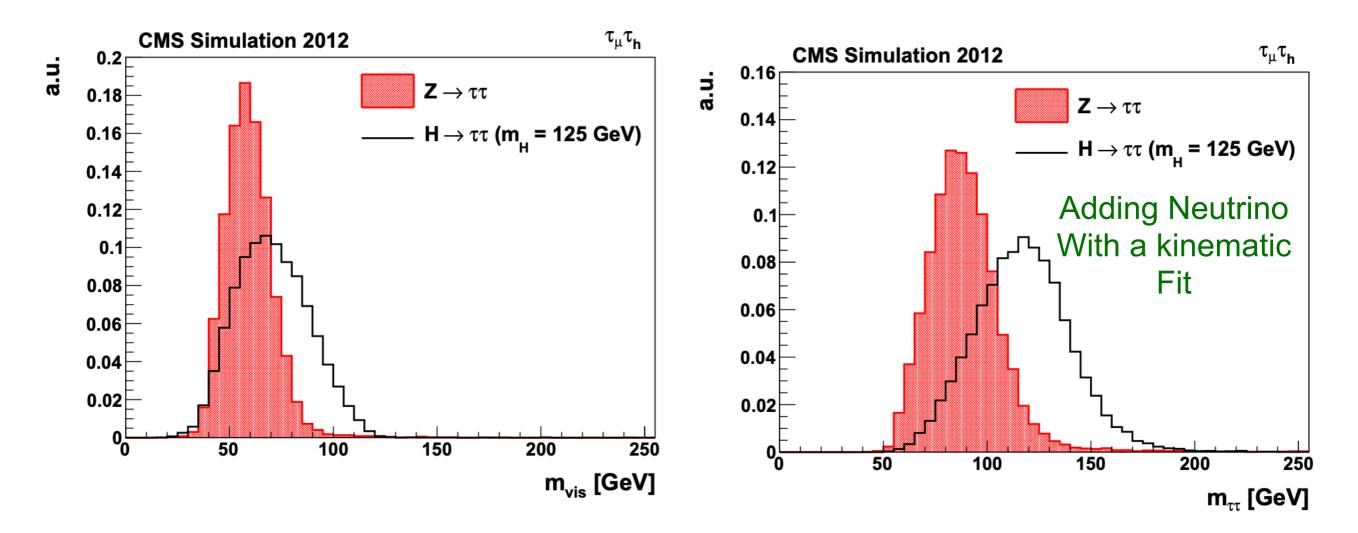
NN Problem



• reduced scale:
$$\frac{p_T \tau}{p_T^{jet}} = NN(p_T^{jet})$$

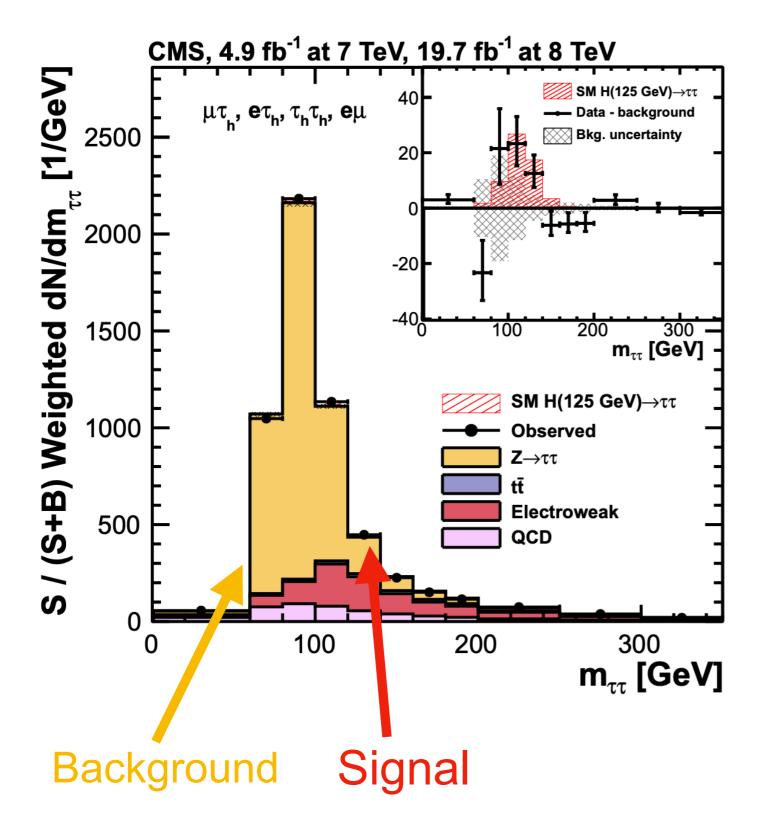
• Complex:
$$\frac{p_T \tau}{p_T^{jet}} = NN(\overrightarrow{p_1}, \overrightarrow{p_2}, \overrightarrow{p_3}, \overrightarrow{p_4}, \overrightarrow{p_5})$$

Why this?



- Finding the Higgs boson is hard we need to separate
 - Higgs boson mass peak from the Z boson mass
- When Higgs discovered didn't have the NN tech to add neutrinos

The Full Challenge

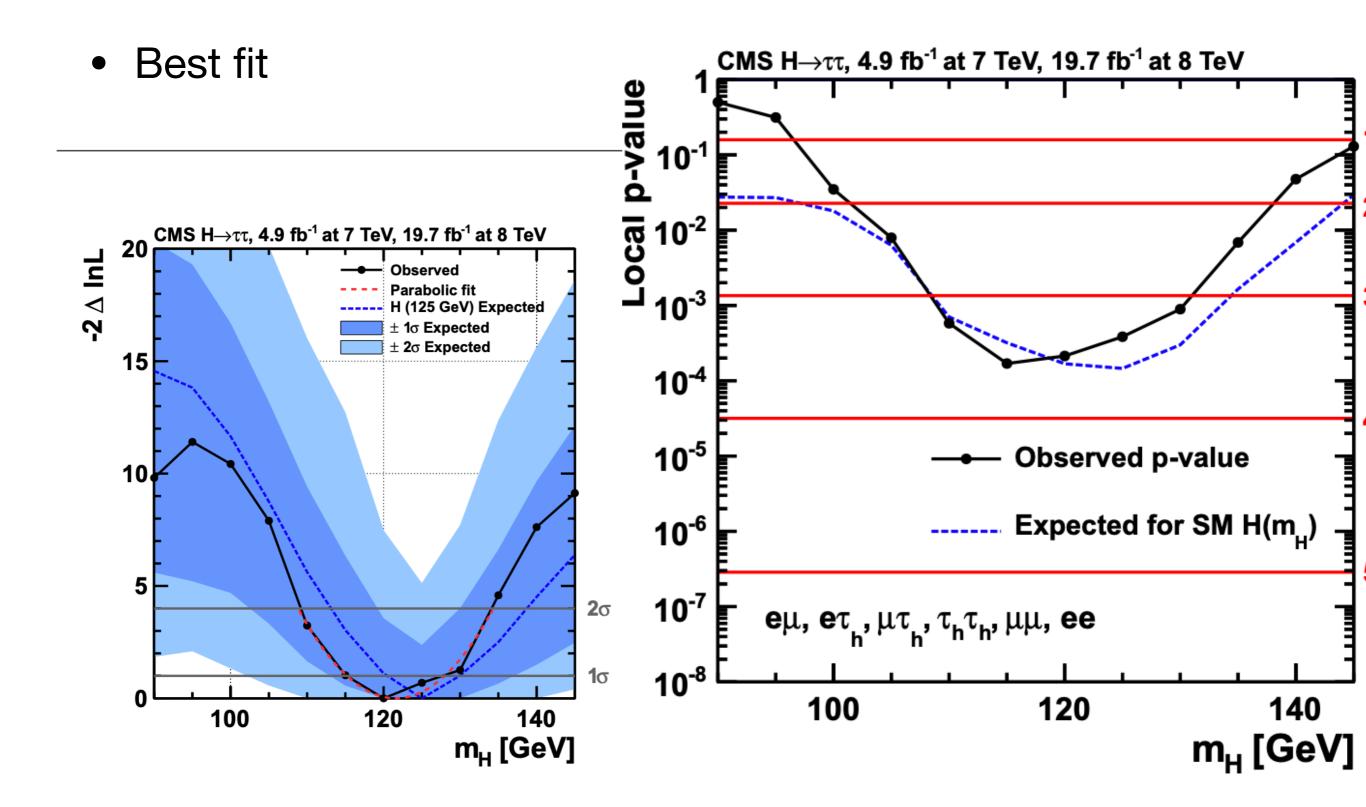


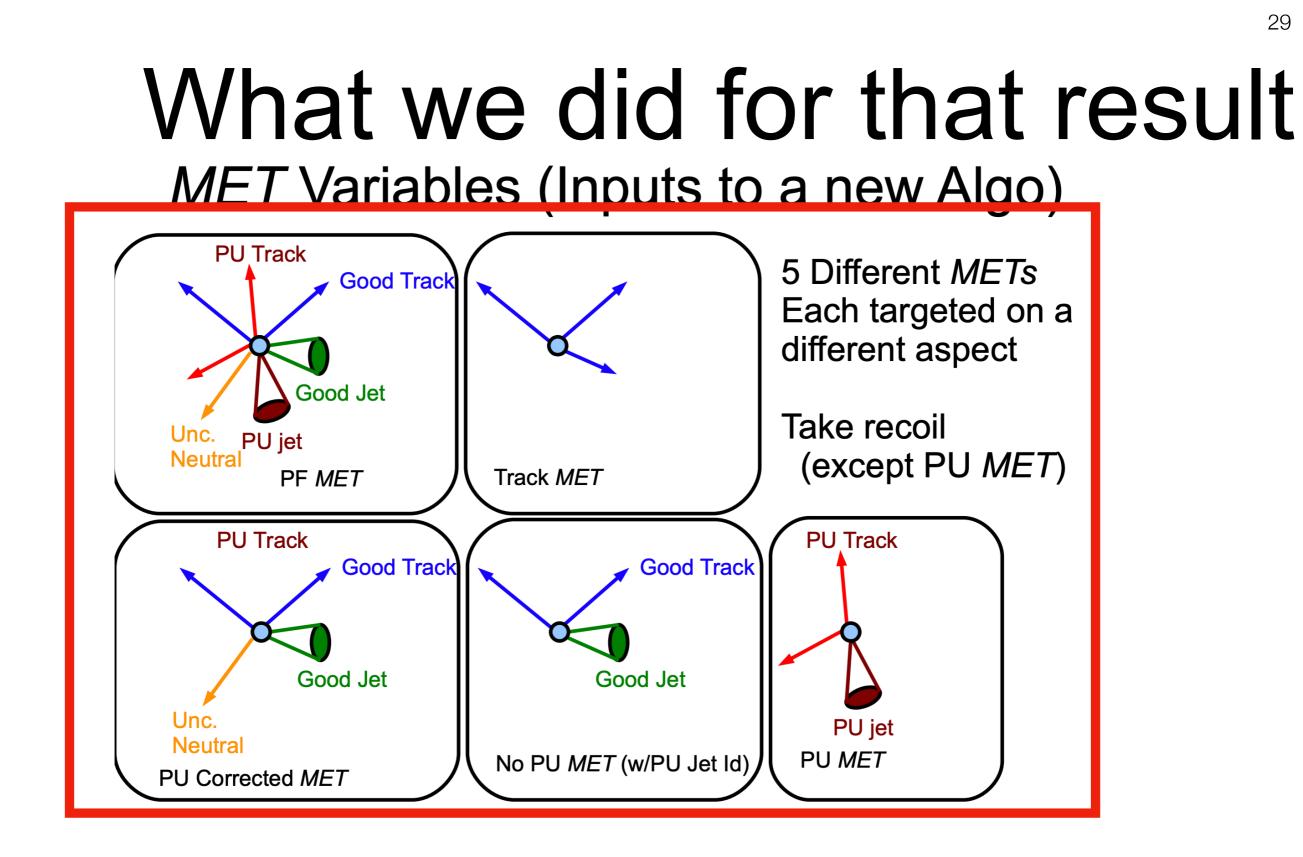
Plot is a composite of 70 separate fits

There were > 2000 Floated parameters

Fit took 24h to run

Higgs to Tau Tau Bound

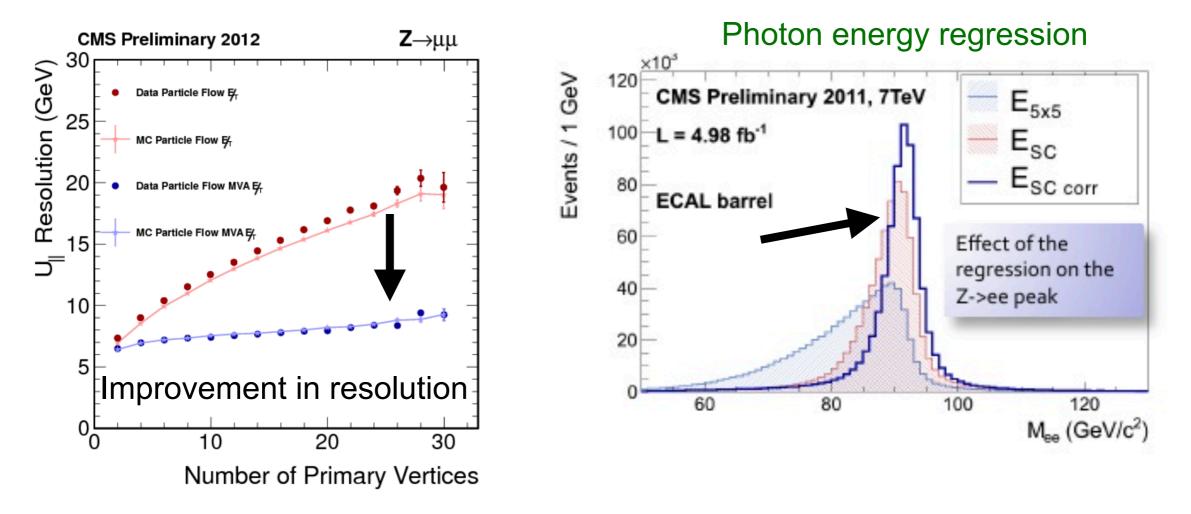




All of these separate MET calculations were put into 1 single regression

• We did end up a using an NN regression for that plot

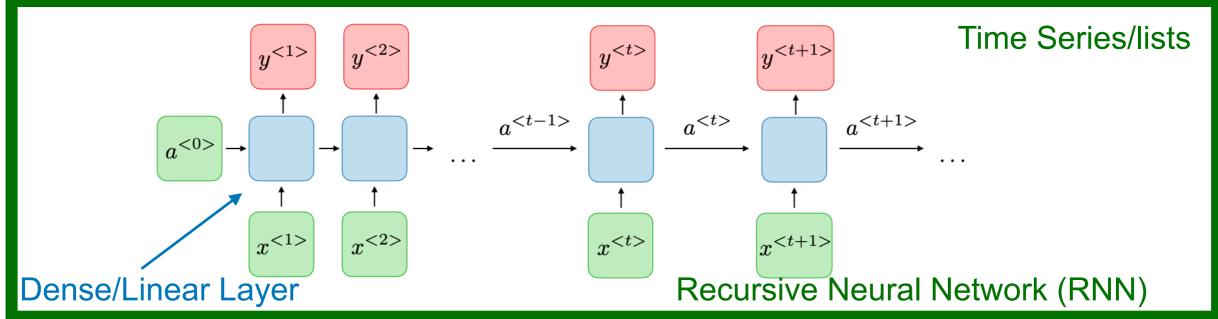
Impact of Regression

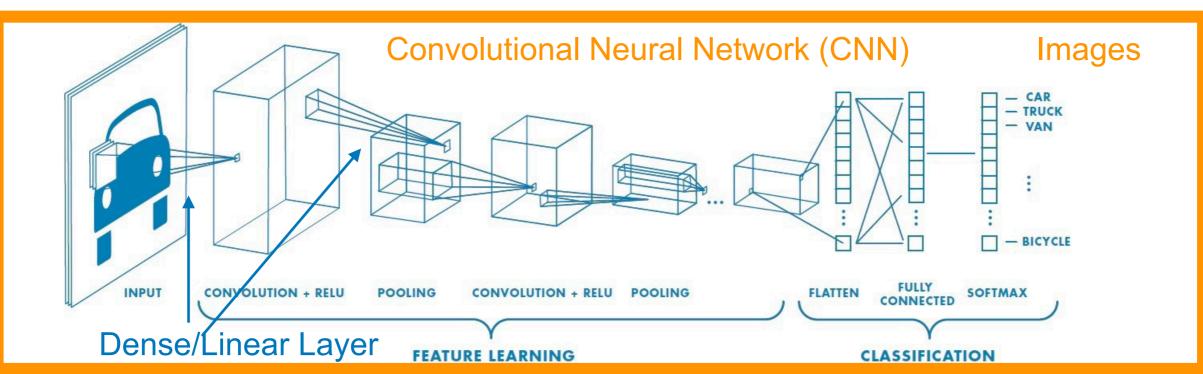


- Regression ended improving the Higgs sensitivity by 30%
 - Both in the diphoton channel and Higgs to tau leptons
 - This is teh difference between 2σ and 3σ

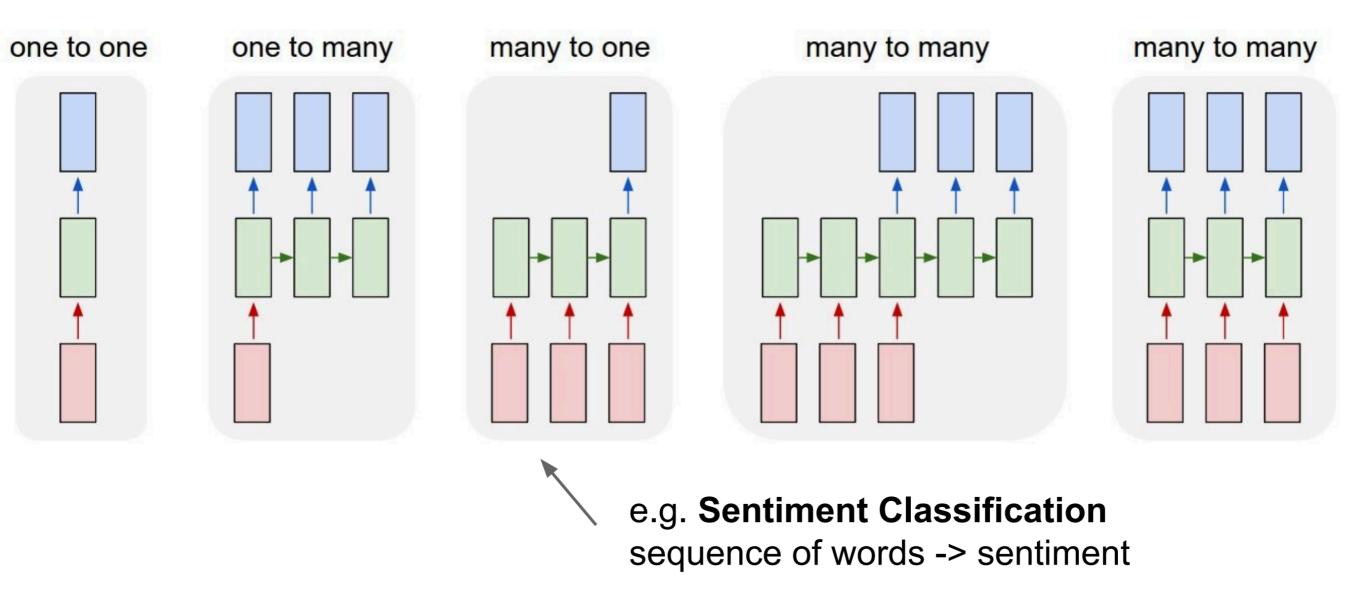
When are different NN geometries useful?

Recall form Dylan's talk

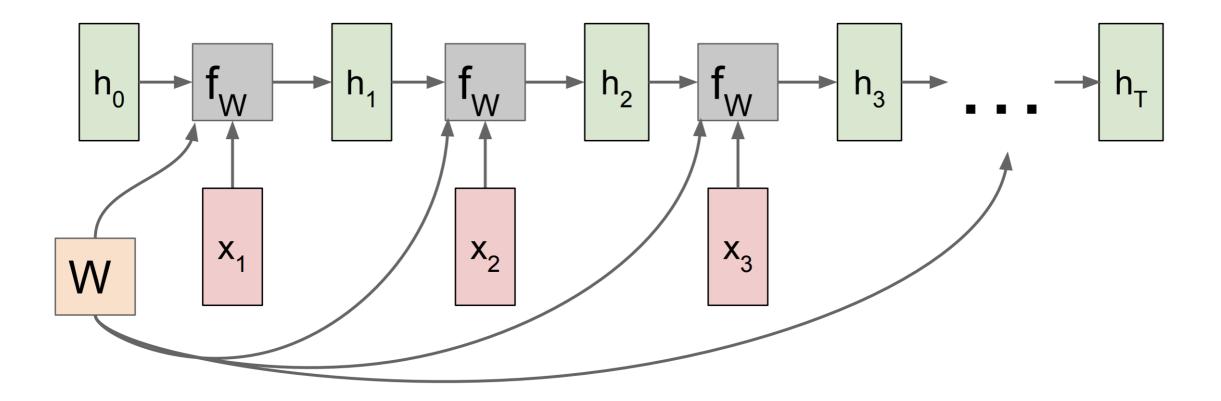




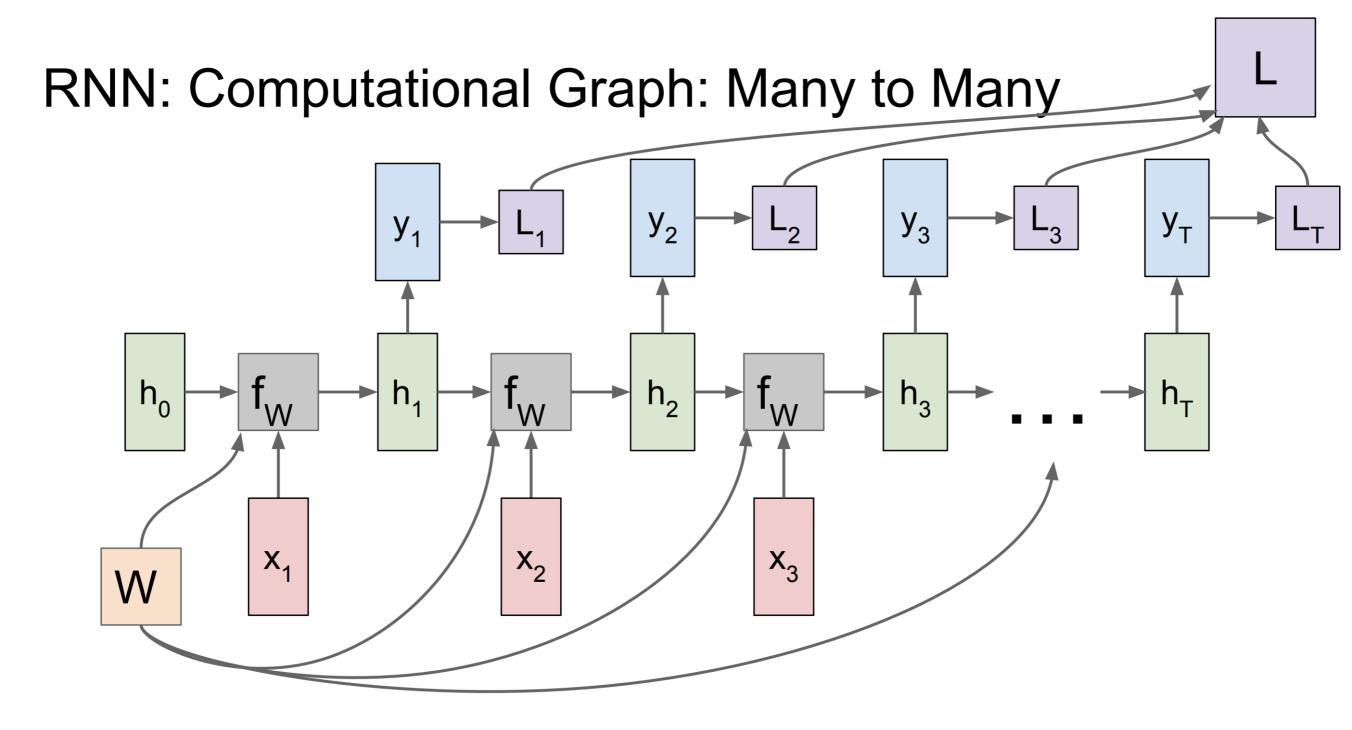
Recusive neural network takes input one by tone

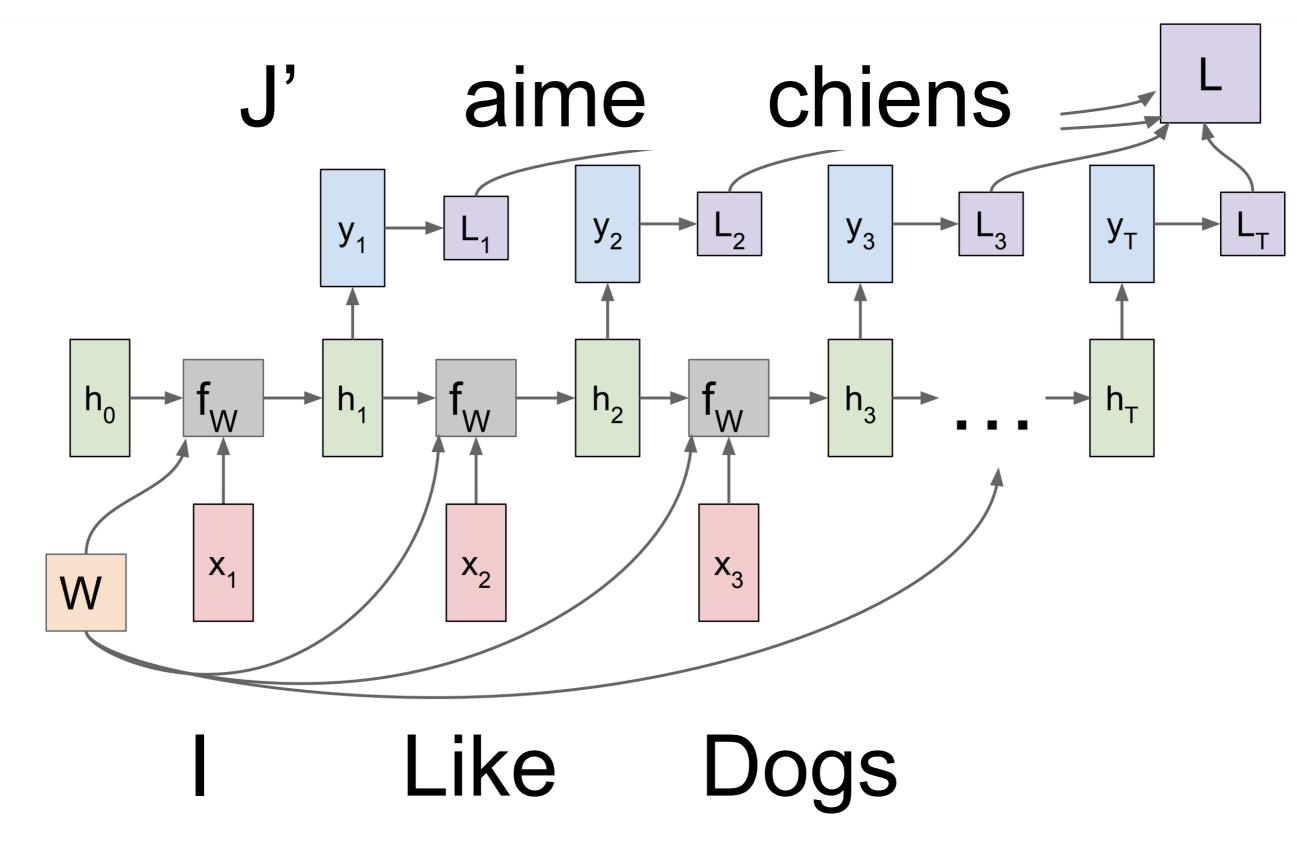


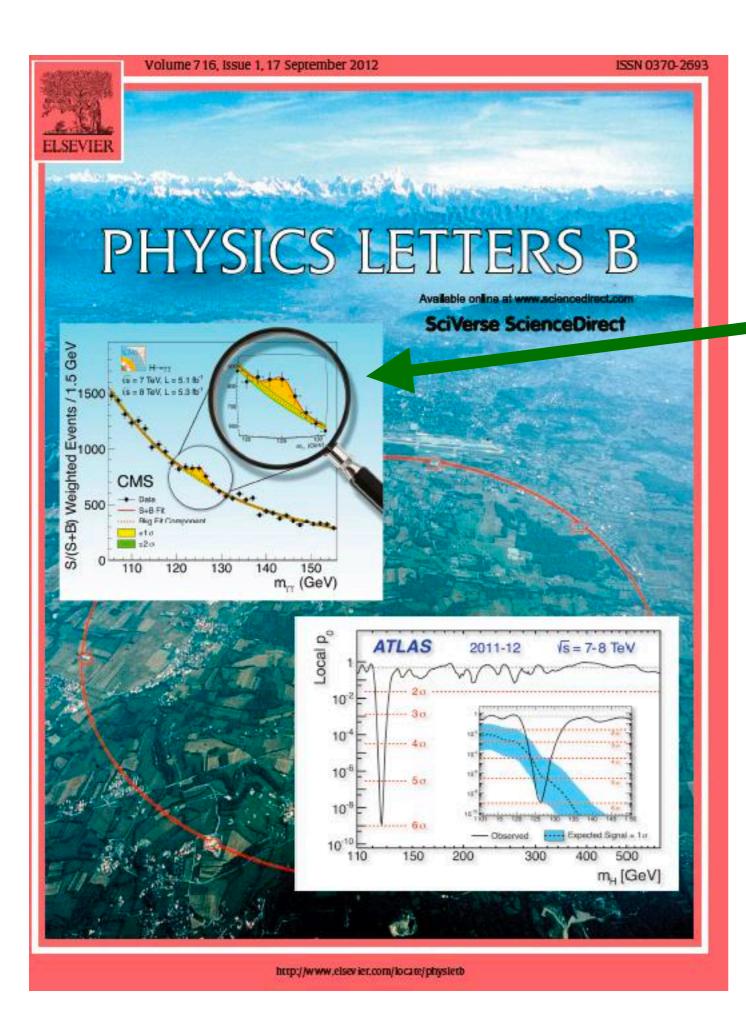
Re-use the same weight matrix at every time-step



34







A Point

36

That Plot has a photon energy NN regression

Summary

- This class we showed the flexibility of the NN
- The real insight here is that we modified the loss
- We tried to solve a problem different than classification
- You can solve many more

Bonus

Are you Hungry?

- Lets do something fun:
 - Online there is a recipe list of about 100k recipes
- Challenge:
 - Lets try to generate our own recipes
- Any ideas of how you can do this?