

Lecture 2: Deep Learning Regressions

What you may not know?

At the Higgs discovery

ATLAS rv, 41 updated with
$\sim 6 \mathrm{fb}^{-1}$ of 8 TeV data

Largest local excess: 5σ at $m_{H}=126.5 \mathrm{GeV}$

CMS

All channels updated with $\sim 5 \mathrm{fb}^{-1}$ of 8 TeV data

Largest local excess:

4.9σ around $m_{H}=125 \mathrm{GeV}$
(using $\mathrm{H} \rightarrow y \gamma$ and $\mathrm{H} \rightarrow 4$ I: 5.0б)

A big difference was present

ATLAS
rv, 4l updated with
$\sim 6 \mathrm{fb}^{-1}$ of 8 TeV data

Largest local excess: 5σ at $m_{H}=126.5 \mathrm{GeV}$

CMS
All channels updated with $\sim 5 \mathrm{fb}^{-1}$ of 8 TeV data

Largest local excess:

4.9σ around $m_{H}=125 \mathrm{GeV}$
(using $\mathrm{H} \rightarrow \gamma y$ and $\mathrm{H} \rightarrow 4$ I: 5.0б)

What caused the difference?

- A few things, but the big one was deep learning
- In particular, two novel deep learning approaches
- These approaches involved deep learning regression

- In this lecture we are going to talk about
- Deep Learning Regression
- Regression uses all the usual deep learning tools
- Tries to solve a different problem than other DL lecture
- Additionally it combines many of the concepts in fitting
- Lets review previous lectures to understand

Deep Learning

- In the past lectures we focused on :
- Deep learning based classification

How do I separate to classes of points?

Deep Learning

- In the past lectures we focused on :
- Deep learning based classification

How do I separate to classes of points?
Minimize Loss:
$\mathscr{L}=B_{\text {true }} \log \left(p(A)+A_{\text {true }} \log (p(B))\right.$
$\mathscr{L}=\left(1-A_{\text {true }}\right) \log \left(p(A)+A_{\text {true }} \log (1-p(A))\right.$

Interpolation

- How do I take a continuous set of points and connect them?
- We have considered two separate approaches
- Fitting a range of polynomials
- Spline Interpolation and Gaussian Processes

Notebook

- https://colab.research.google.com/drive/ 1jmBNDxG2ILoYv2 WLawQbo2CGiJX91Oo?usp=sharing

Fitting Any Distribution

- Between minimizing the likelihood and statistics we know what to do to get a fit that describes the data well. With interpolation and gaussian processes, we can connect the dots. However there are limitations what if we want to do something more complicated!
- Challenge: Fit the points below without guessing a function.

How do we do w/NN?

- With an NN all we are doing is a minimizing a loss
- This loss can be any loss in the end
- Really Whatever we want!
- A common loss is so-called Mean Squared Error
- $M S E=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(y_{i}\right)}{}-f\left(\frac{\sqrt{x}}{x}\right)^{2}$

This is our input to our Neural Neftwork it can be a vector of arbitrary size This our target data in the training it can also be a vector of arbitrary size

To the Notebook

Activation Functions

Sigmoid

Softmax
(multiclass)
$\frac{e^{x_{i}}}{\sum_{j=1}^{J} e^{x_{j}}}$

Linear

ReLU

Tanh

LeakyReLU

Parameter Extraction

- Despite being able to fit such a distribution
- There is a limit to how much we can do
- The functional form for this distribution is complicated
- To get a mean and a resolution, requires reverse engineering Regression Analysis

Lets Solve A Real Problem

- Let's look at the tau lepton

The Tau is the heaviest of the leptons (electron-like) What makes it so special?

Higgs Decays

Higgs decays at $\mathbf{m}_{\mathrm{H}}=125 \mathrm{GeV}$

- Higgs probability of decay to quarks and leptons is proportional the mass of the particle. Taus are very heavy particles. Higgs decays to them 6\% of the time. That's great. It was the first channel we could actually probe the proportionality to mass.

Tau Decays

Neutrino Decays: The probability of a neutrino interaction is too small to see at the LHC. These particles are invisible

Single Particle decays:These events just give us one particle e or μ Minijet: Decays to quarks give us a shower of particles in small jet

Problem

Take a jet
And Sum all the particles
Can we go from Jet $p \rightarrow$ Tau p

Can we guess direction of the neutrinos and reconstruct the original tau energy?

How does a Tau decay

$m_{\tau}=1.76 \mathrm{MeV}$

Taus have a small mass, which means they can be found within a small cone

How does a Tau decay

We are looking for collection of 1-5 particles Neutrino will fall in the same cone

What we did for that result

What we did for that result

Neutrinos

Conservation of transverse energy'

What we did for that result

Neutrinos

Conservation of transverse energy

Some Correlation

- In this case, we want to try to use the tau momentum
- Goal here is to rely on the fact that there is some correlation
- The tau momentum can predict the total tau energy

NN Problem

Can we guess direction of the neutrinos and reconstruct the original tau energy?

Fake Particle

- simple: $p_{T} \tau=N N\left(p_{T}^{j e t}\right)$

Particle should be removed

Particle is Missing

- reduced scale: $\frac{p_{T} \tau}{p_{T}^{j e t}}=N N\left(p_{T}^{j e t}\right)$
- Complex: $\frac{p_{T} \tau}{p_{T}^{j e t}}=N N\left(\overrightarrow{p_{1}}, \overrightarrow{p_{2}}, \overrightarrow{p_{3}}, \overrightarrow{p_{4}}, \overrightarrow{p_{5}}\right)$

Why this?

- Finding the Higgs boson is hard we need to separate
- Higgs boson mass peak from the Z boson mass
- When Higgs discovered didn't have the NN tech to add neutrinos

The Full Challenge

Plot is a composite of 70 separate fits

There were > 2000 Floated parameters

Fit took 24 h to run

Higgs to Tau Tau Bound

- Best fit

What we did for that result MFT Variables (Inputs to a new Algo)

All of these separate MET calculations were put into 1 single regression

- We did end up a using an NN regression for that plot

Impact of Regression

Photon energy regression

- Regression ended improving the Higgs sensitivity by 30%
- Both in the diphoton channel and Higgs to tau leptons
- This is teh difference between 2σ and 3σ

When are different NN geometries useful?

- Recall form Dylan's talk

Using an RNN

- Recusive neural network takes input one by tone
one to one

many to many

e.g. Sentiment Classification
sequence of words -> sentiment

Using an RNN

Re-use the same weight matrix at every time-step

Using an RNN

RNN: Computational Graph: Many to Many

Using an RNN

A Point

That Plot has a photon energy NN regression

Summary

- This class we showed the flexibility of the NN
- The real insight here is that we modified the loss
- We tried to solve a problem different than classification
- You can solve many more

Bonus

Are you Hungry?

- Lets do something fun:
- Online there is a recipe list of about 100 k recipes
- Challenge:
- Lets try to generate our own recipes
- Any ideas of how you can do this?

