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Lecture 2: The many-body problem and Quantum Monte Carlo 
methods

‣The nuclear many-body problem
‣Nuclear quantum Monte Carlo

‣Variational Monte Carlo
‣Green’s function Monte Carlo

‣Auxiliary Field diffusion Monte Carlo



The nuclear many-body problem
Many-body Schrödinger equation:

H Ψ(r1, r2, . . . rA; s1, s2, . . . , sA; t1, t2, . . . , tA)

= E Ψ(r1, r2, . . . rA; s1, s2, . . . , sA; t1, t2, . . . , tA)

where , , and  are the nucleon coordinates, spins, and isospins , respectively ri si ti
This corresponds to solve 


              coupled second-order differential equations in 3A dimensions.2A × (A
Z)

THE NUCLEAR MANY-BODY PROBLEM
Many-Body Schrödinger Equation (MBSE) for bound states:

HΨ(r1, r2, ..., rA; s1, s2, ..., sA; t1, t2, ..., tA)

= EΨ(r1, r2, ..., rA; s1, s2, ..., sA; t1, t2, ..., tA)

where
ri are the nucleon coordinates in r-space
si are the nucleon spins (= ± 1

2 )
ti are the nucleon isospins (p or n = ± 1

2 )

This corresponds to

2A
× (A

Z) coupled second-order differential equations equations in 3A dimensions!

which is
96 for 4He

17,920 for 8Be

3,784,704 for 12C
This is a challenging many-body problem!

This is a challenging many-body problem!

Erwin Schrödinger 



Benchmarks between the 
different methods is very 
important!

UNEDF SciDAC Collaboration: http://unedf.org/

Definition: the ab-initio methods seek to describe atomic nucleus from the ground up by solving the non-
relativistic Schrödinger equation for all constituent nucleons and the forces between them

The nuclear landscape 

https://en.wikipedia.org/wiki/Atomic_nucleus
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Nucleon


• Quantum Monte Carlo (QMC) methods: a large family of computational methods whose common aim is the study of 
complex quantum systems—J. Carlson et al., RMP. 87, 1067 (2015); J.E. Lynn et al., Ann. Rev. Nucl. Part. Sci 279, 69 
(2019); S. Gandolfi, MP et. al., Front.in Phys. 8 (2020) 117

Nuclear quantum Monte Carlo methods

• Work with bare interactions but local r-space representation of the Hamiltonian

• Stochastic method: based on recursive sampling of a probability density, statistical errors quantifiable and 
systematically improvable

p

p0

V3NV
k = p0 � p

K = (p0 + p)/2

Local 

Non-Local 

Computational resources awarded by the DOE ALCC and INCITE programs 



Variational Monte Carlo

 is the antisymmetric Jastrow wave function depends on the nuclear state under investigation


For s-shell nuclei:      


 and   are central two- and three-body correlations induced by the NN potential


, where  and  are variational parameters 

(reduce the two body correlations when a third particle comes between the correlated pairs)

Single particle wf (no spatial dependence for s-shell nuclei)    ex. 

|ΦJ⟩

|ΦJ⟩ = [ ∏
i<j<k

f c
ijk(rik, rjk)∏

i<j

fc(rij)] |ΦA(JMTT3)⟩

fc(rij) f c
ijk(rik, rjk)

f c
ijk = 1 − qc

1(rij ⋅ rik)(rij ⋅ rjk)(rik ⋅ rjk)e−qc
2(rij+rik+rjk) qc

1 qc
2

|Φα(0000)⟩ = 𝒜 | ↑ p ↓ p ↑ n ↓ n⟩

• One assumes a suitable form for the trial wave function: |ΨT⟩ = (1 − ∑
i<j<k

Fijk)(𝒮∏
i<j

Fij) |ΦJ⟩

• In variational Monte Carlo, one minimize the expectation value of H: 
⟨ΨT |H |ΨT⟩

⟨ΨT |ΨT⟩
= ET ≥ E0

R.B. Wiringa, PRC 43, 1585 (1991)

• Trial wave function involves variational parameters  and minimization algorithms are used to 
search the parameter space: 12-50 parameters

{α}



 are spin-isospin dependent pair correlations induced by the NN: 


  with  and  being variational parameters


 denotes a symmetrized product over nucleon pairs since, in general, the  do not commute


  are three-body correlations induced by the NNN potential 


Functions    and    obtained from coupled differential equations with .

Fij Fij = ∑
i=2,6

[ ∏
i<j<k

f p
ijk(rik, rjk)]up(rij)Op

ij

f p
ijk(rij, rik) = 1 − qp

1 (1 − ̂rik ⋅ ̂rjk)e−qp
2(rij+rik+rjk) qp

1 qp
2

SΠi<j Fij

Fijk Fijk = ∑
q

ϵqV
q
ijk(yqrij, yqrik, yqrjk)

fc(rij) up(rij) vij

Variational Monte Carlo

• One assumes a suitable form for the trial wave function: |ΨT⟩ = (1 − ∑
i<j<k

Fijk)(𝒮∏
i<j

Fij) |ΦJ⟩

• In variational Monte Carlo, one minimize the expectation value of H: 
⟨ΨT |H |ΨT⟩

⟨ΨT |ΨT⟩
= ET ≥ E0

R.B. Wiringa, PRC 43, 1585 (1991)



• The operator  indicates an antisymmetric sum over all possible partitions of the A particles into 4 s-
shell and (A − 4) p-shell ones.


• The central correlation  comes from the structure of an α particle (it is the  from the  
wave function). 


• The  is similar to the  at short range, but with a long-range tail going to unity; this helps the 

wave function factorize to a cluster structure like α + d in  or α + t in  at large cluster separations. 

𝒜

fss(rij) fc(rij) 4He

fsp(rkl) fc(rij)
6Li 7Li

• The LS coupling scheme is used to obtain the desired JM value of a given state, as suggested by the shell-
model studies of light p-shell nuclei. Different possible LS combinations lead to multiple components in 
the Jastrow wave function.

p-shell nuclei:

|ΦJ⟩ = 𝒜 ∏
i<j<k

f c
ijk ∏

i<j≤4

fss(rij) ∑
LS[n]

βLS[n] ∏
k≤4<l≤A

fsp(rkl) ∏
4<l<m≤A

f [n]
pp (rlm){

Trial function (p-shell nuclei)

|ΨJ 〉 = A

8

<

:

Y

i<j≤4

fss(rij)
X

LS[n]

βLS[n]

Y

k≤4<l≤A

fsp(rkl)
Y

4<l<m≤A

fpp(rlm)

˛

˛

˛Φα(0000)1234
Y

4<l≤A

φLS[n]
p (Rαl)

˘

[Y ml
1 (Ωαl)]LML

⊗ [χl(
1
2ms)]SMS

¯

JM
[νl(

1
2 t3)]T T3

E

9

=

;

Diagonalization
in βLS[n] basis to produce energy spectra E(Jπ

x ) and orthogonal excited states ΨV (Jπ
x )

Expectation values

ΨV (R) represented by vector with 2A × (A
Z) spin-isospin components (or a little less assuming

isospin conservation) for each space configuration R = (r1, r2, ..., rA); expectation values are
evaluated in a Metropolis Monte Carlo random walk, i.e., by a summation over samples drawn
from probability distributionW (R) = |ΨP (R)|2:

〈ΨV |O|ΨV 〉
〈ΨV |ΨV 〉

=
X Ψ†

V (R)OΨV (R)

W (R)
/

X Ψ†
V (R)ΨV (R)

W (R)

Ψ†Ψ is a dot product and Ψ†OΨ a sparse matrix operation.

}|ΦA(LS[n]JJzTz)1234:5…A⟩

Pudliner at al., Phys. Rev. Lett. 74 (1995) 4396-4399



• The  is set to give the appropriate cluster structure outside the α particle core, for example is 

similar to the deuteron (triton)   in the case of  ( ).


•  are p-wave solutions of a particle in an effective α + N Woods-Saxon  potential and are 
functions of the distance between the center of mass of the α core and nucleon l; they may be different 
for different LS[n] components.


• Except for closed-shell nuclei, the complete trial wave function is constructed by taking a linear set of 
states with the same total angular momentum and parity. Typically these correspond to the lowest 
shell-model states of the system.

fpp(rlm)

fc(rij) 6Li 7Li

ϕLS[n]
p (Rαl)

βLS[n]

• The LS coupling scheme is used to obtain the desired JM value of a given state, as suggested by the shell-
model studies of light p-shell nuclei. Different possible LS combinations lead to multiple components in 
the Jastrow wave function.

p-shell nuclei:

|ΦJ⟩ = 𝒜 ∏
i<j<k

f c
ijk ∏

i<j≤4

fss(rij) ∑
LS[n]

βLS[n] ∏
k≤4<l≤A

fsp(rkl) ∏
4<l<m≤A

f [n]
pp (rlm){

Trial function (p-shell nuclei)

|ΨJ 〉 = A

8

<

:

Y

i<j≤4

fss(rij)
X

LS[n]

βLS[n]

Y

k≤4<l≤A

fsp(rkl)
Y

4<l<m≤A

fpp(rlm)

˛

˛

˛Φα(0000)1234
Y

4<l≤A

φLS[n]
p (Rαl)

˘

[Y ml
1 (Ωαl)]LML

⊗ [χl(
1
2ms)]SMS

¯

JM
[νl(

1
2 t3)]T T3

E

9

=

;

Diagonalization
in βLS[n] basis to produce energy spectra E(Jπ

x ) and orthogonal excited states ΨV (Jπ
x )

Expectation values

ΨV (R) represented by vector with 2A × (A
Z) spin-isospin components (or a little less assuming

isospin conservation) for each space configuration R = (r1, r2, ..., rA); expectation values are
evaluated in a Metropolis Monte Carlo random walk, i.e., by a summation over samples drawn
from probability distributionW (R) = |ΨP (R)|2:

〈ΨV |O|ΨV 〉
〈ΨV |ΨV 〉

=
X Ψ†

V (R)OΨV (R)

W (R)
/

X Ψ†
V (R)ΨV (R)

W (R)

Ψ†Ψ is a dot product and Ψ†OΨ a sparse matrix operation.

}|ΦA(LS[n]JJzTz)1234:5…A⟩

Pudliner at al., Phys. Rev. Lett. 74 (1995) 4396-4399



Correlation functions
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• The  is small at short distances, to 
reduce the contribution of the 
repulsive core of  , and peaks at an 
intermediate distance corresponding 
to the maximum attraction of  . 


• The noncentral  are all relatively 
small; the most important is the long-
range tensor-isospin part , 
induced by the OPEP  


• The , shown in Fig. for  nuclei, 

is similar to the  at short range, 
but with a long-range tail going to 
unity; this helps the wave function 
factorize to a cluster structure like α + 
d in  at large cluster separations.

fc(r)

vij

vij

up(r)

utτ(r)

fsp(r) 6Li
fc(r)

6Li

Correlation functions in light nuclei:



• Since the nuclear interaction is spin-isospin dependent, the trial state is a sum of complex amplitudes 

for each spin-isospin state of the system:   |ΨT⟩ = ∑
is≤ns,it≤nt

a(is, it; R) |χis νit⟩ .

• The  many-body spin states can be written as 
 and the isospin 

ones can be recovered by replacing  with n and  with p.

ns = 2A |χ1⟩ = | ↓1 , ↓2 , …, ↓A ⟩ ,
|χ2⟩ = | ↑1 , ↓2 , …, ↓A ⟩ , |χ3⟩ = | ↓1 , ↑2 , …, ↓A ⟩ , … , |χns

⟩ = | ↑1 , ↑2 , …, ↑A ⟩
↓ ↑

• To construct the trial state, one starts from the mean-field component . 
For fixed spatial coordinates , the spin-isospin independent correlations needed to retrieve  
are simple multiplicative factors, common to all spin amplitudes. The symmetrized product of pair 
correlation operators is evaluated by successive operations for each pair, sampling their ordering.

|ΦA(LS[n]JJzTz)1234:5…A⟩
R |ΦJ⟩

Computational implementation:

NOTE: sampling the order of the pairs help reducing the computational cost since the number of possible orders is , where 
 is the number of pairs. This introduces relatively little statistical variance, because the different orders contain 

the same linear terms and differ only at  and above.

P!
P = 1/2 A(A − 1)

O(u2
p)



Gandolfi et al. Nuclei: QMC and �EFT Interactions

In standard VMC calculations, one usually takes Wpq(R) = |Re( †

T,p(R) T,q(R))|, even though
simpler choices might be used to reduce the computational cost. The Metropolis algorithm is used to
stochastically sample the probability distribution Wpq(R) and obtain a collection of uncorrelated or
independent configurations.

Since the nuclear interaction is spin-isospin dependent, the trial state is a sum of complex amplitudes
for each spin-isospin state of the system

| T i =
X

isns,itnt

a(is, it;R)|�is �iti . (23)

The ns = 2A many-body spin states can be written as

|�1i = | #1, #2, . . . , #Ai

|�2i = | "1, #2, . . . , #Ai

|�3i = | #1, "2, . . . , #Ai

. . .

|�nsi = | "1, "2, . . . , "Ai (24)

and the isospin ones can be recovered by replacing # with n and " with p. Note that, because of charge
conservation, the number of isospin states reduces to nt =

�A
Z

�
. To construct the trial state, one starts from

the mean-field component |�A(LS[n]JJzTz)1234:5...Ai. For fixed spatial coordinates R, the spin-isospin
independent correlations needed to retrieve |�Ji are simple multiplicative factors, common to all spin
amplitudes. The symmetrized product of pair correlation operators is evaluated by successive operations
for each pair, sampling their ordering as alluded to earlier. As an example, consider the application of the
operator �1 ·�2 on a three-body spin state (for simplicity we neglect the isospin components). Noting that
�i · �j = 2P�

ij � 1, where 2P�
ij exchanges the spin of particles i and j, we obtain:

�1 · �2

0

BBBBBBBBBBBBBBB@

a"""

a""#

a"#"

a"##

a#""

a#"#

a##"

a###

1

CCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBB@

a"""

a""#

2a#"" � a"#"

2a#"# � a"##

2a"#" � a#""

2a"## � a#"#

a##"

a###

1

CCCCCCCCCCCCCCCA

. (25)

Hence, the many-body spin-isospin basis is closed under the action of the operators contained in the
nuclear Hamiltonian.

Most of the computing time is spent on spin-isospin operations like the one just described. They amount
to an iterative sequence of large sparse complex matrix multiplications that are performed on-the-fly using
explicitly coded subroutines, which mainly rely on three useful matrices. The first matrix m(i, is) gives
the z-component of the spin of particle i associated to the many-body spin-state is. A second useful matrix

This is a provisional file, not the final typeset article 10

• Most of the computing time is spent on spin-isospin operations like the 
one just described. 


• They amount to an iterative sequence of large sparse complex matrix 
multiplications which mainly rely on three useful matrices:


- : -component of the spin of particle  associated to the many-
body spin-state .


- : number of the many-body spin state obtained by 

exchanging the spins of particles  and , belonging to the pair labeled 
 in the state 


- : the number of the spin state obtained by flipping the spin 

of particle  in the spin state

m(i, is) z i
is

nexch(kij, is)
i j

kij is
nflip(i, is)

i

• Consider the application of the operator  on a three-body spin state (for simplicity we neglect the 
isospin components). Noting that  exchanges the spin of particles i and j, we obtain:

σ1 ⋅ σ2
σi ⋅ σj = 2 𝒫σ

ij − 1



• The action of  can be expressed as:  σ1 ⋅ σ2

σ1 ⋅ σ2 ∑
is,it

a(is, it; R) |χis χit⟩ = ∑
is,it

[2a(is, it; R) − a(nexch(kij, is), it; R)] |χis χit⟩

• By utilizing this representation, we only need to evaluate  operations for each pair, instead of the 
 operations that are required using a simple matrix representation in spin space. 


• The tensor operator is slightly more complicated to evaluate and requires both matrices  and 
.

2A

2A × 2A

m(i, is)
nflip(i, is)

subroutine sigdotsig( cwvout,cwvin,i,j)
complex(kind=kind(0.d0)),dimension(0:nspin0m,ntau0) :: cwvout,cwvin
do is=0,nspin0m
iex=ispex(is,i,j) ! exchange spins i and j in is, store in iex
cwvout(is,:)= 2.d0*cwvin(iex,:)-cwvin(is,:)
enddo
end subroutine

subroutine for  σi ⋅ σj



• The expectation values contain multi-dimensional integrals over all particle positions,  ,R = (r1, r2, . . . , rA)

Expectation values:

• Stochastic integration methods are useful to calculate such integrals over many variables. They are based on the 
central limit theorem of Riemann integrals, which asserts that:

∫ ℐ(R)dR = ∫
ℐ(R)
𝒲(R)

𝒲(R)dR = [ 1
Nc

Nc

∑
I=1

ℐ(RI)
𝒲(RI) ]∫ 𝒲(R)dR for Nc → ∞

⟨𝒪⟩ =
∫ dRΨ†

T(R)𝒪ΨT(R)
∫ dRΨ†

T(R)ΨT(R)

‣  is the integrand,  is a suitably chosen, normalizable, positive, real function of  called weight function 
(representing a probability distribution)

‣  The  configurations  are distributed accordingly with the probability  


‣  We sample points  from  and evaluate  for each point


‣  The error typically goes like , and depends critically upon the choice of 

ℐ(R) 𝒲(R) R

Nc RI=1,Nc
𝒲(R)

RI 𝒲(R)
ℐ(RI)
𝒲(RI)

1/ Nc 𝒲(R)

 where for simplicity the sum over the spin and isospin states is implied. 



The Metropolis algorithm:

• The algorithm satisfies the detailed balance equation:
𝒲(Ri)T(Ri → Rj) = 𝒲(Rj)T(Rj → Ri)

•  A simple solution of the equation above is given by   T(Ri → Rj) = min[1,
𝒲(Rj)
𝒲(Ri) ]

‣  For instance if  then  and  and the detailed balanced equation is satisfied 𝒲(Ri) > 𝒲(Rj) T(Ri → Rj) =
𝒲(Rj)
𝒲(Ri)

T(Rj → Ri) = 1

• To obtain the configurations  distributed accordingly with the probability  . These configurations are called 

“samples of ” (see: Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E., ”Equations of state 
calculations by fast computing machines”, J. Chem. Phys. 2121(6) 1087 (1953)).

RI=1,Nc
𝒲(R)

𝒲(R)

• Based on a Markov Chain Monte Carlo algorithm where a Markov process is a random walk with a selected 
probability for making a move. The new move is independent of the previous history of the system.


• The reason for choosing a Markov process is that when it is run for a long enough time (steps) starting with a 
random state, we will eventually reach the most likely state of the system.



The Metropolis algorithm: Acceptance-Rejection method

• Practically generate a random number  uniformly distributed in the interval 0 and 1. If  then 

the step is accepted otherwise is rejected 

s w =
𝒲(R′￼)
𝒲(RI)

≥ s

• Consider  being the  configuration. To obtain the next move in the walk we make a random step 

 and accept it with probability  .

RI Ith

R′￼ = R + ΔR T(RI → R′￼) = min[1,
𝒲(R′￼)
𝒲(RI) ]

‣  If the step is accepted then , if rejected RI+1 = R′￼ RI+1 = RI

 coordinates of the A particles,  
random number uniformly distributed in the interval 0 and 1.
x′￼i = xi,I + (ϵi − 0.5)l for i = x, y, z ϵi

{
∫ ℐ(R)dR = ∫

ℐ(R)
𝒲(R)

𝒲(R)dR = [ 1
Nc

Nc

∑
I=1

ℐ(RI)
𝒲(RI) ]∫ 𝒲(R)dR for Nc → ∞

• In order to maximize the efficiency of the algorithm, you are shooting for an acceptance rate of 25-50%. The 
size step  is chosen to satisfy this condition.l

• The configurations generated by a Metropolis walk are strongly correlated: a number of substeps are often made 
to obtain the configuration  from . Note the initial configurations of the walk are dependent upon the initial 
value of  where the walk started; hence the first few hundred steps of the walk are generally discarded.

RI+1 RI
R



• In our case we need to stochastically evaluate:

• The subscripts p and q specify the order of operators in the left- and right-hand-side wave functions. 
Again a complete sum over all spin-isospin variables is implied.


• In VMC calculations, one usually takes . The Metropolis algorithm 

produces a set of configurations  whose density is proportional to .

Wpq(R) = |ℜ(Ψ†
T,p(R)ΨT,q(R)) |

[R, p, q] Wpq(R)

• Expectation values have a statistical error which can be estimated by the standard deviation : 

 where  is the number of statistically independent samples. Block averaging 

schemes can be used to estimate the autocorrelation times and determine the statistical error.

σ

σ = [⟨𝒪2⟩ − ⟨𝒪⟩2

Nc − 1 ]
1/2

Nc

Expectation values:

⟨𝒪⟩ =
∑p,q ∫ dR

Ψ†
T,p(R)𝒪ΨT,q(R)

Wpq(R) Wpq(R)

∑p,q ∫ dR
Ψ†

T,p(R)ΨT,q(R)

Wpq(R) Wpq(R)
=

∑p,q ∑Nc
I=1

Ψ†
T,p(RI)𝒪ΨT,q(RI)

Wpq(RI)

∑p,q ∑Nc
I=1

Ψ†
T,p(RI)ΨT,q(RI)

Wpq(RI)

for Nc → ∞



Expectation values:

• The expectation values are evaluated by having the operators act entirely on the right hand side of 
. The matrix machinery used to apply the spin-dependent correlation operators is also used to 

evaluate . A simple scalar product of this quantity with , provides the numerator of the 

local estimate .

ΨT(R)
𝒪 |ΨT,p⟩ ⟨ΨT,q |

Ψ†
T,q(R)𝒪ΨT,p(R)/Wpq(R)

• The first and second derivatives of the wave function are numerically computed by means of the 
two- and three-point stencil, respectively. To determine the kinetic energy,  6A evaluations of  
are needed.

∼ ΨT(R)

• Using some tricks, the action of the square of angular momentum terms in the potential can be 
evaluated on  an additional 3A(A-1)/2 times. ΨT(R)



A simplified VMC calculation:

1. Initialization: Fix the number of Monte Carlo steps and thermalization. Choose an initial  and variational 
parameters  and calculate the weight function . Define also the value of the stepsize to be used when 
moving from one value of  to a new one. 


2. Initialize the energy and the variance. 

3. Start the Monte Carlo calculation with a loop over a given number of Monte Carlo cycles 


(a) Calculate a trial position  where  depends on a random variable  ∈ [0, 1] and stepsize

(b) Use then the Metropolis algorithm to accept or reject this move by calculating the ratio 

. If , where s is a random number s ∈ [0, 1], the new position is accepted, else we 
stay at the same place. 


(c)  If the step is accepted, then we set . 

(d)  Update the local estimator and the variance.

R
{α} W(R)

R

R′￼ = R + ΔR ΔR ϵ

w = W(R′￼)/W(R) w ≥ s

R = R′￼

4. When the Monte Carlo sampling is finished, we calculate the mean and the standard deviation. 

5. Finally, we may print our results to a specified file.



Initialize , set  and R {α}
ΨT(R, {α})

Suggest a move

Compute acceptance ratio 
w

Is 
 

? 
w ≥ s

accept move: Rold = Rnew

Get local estimator

Last 
move?

Collect samples

Reject the move: 
Rnew = Rold

Last MC?

THE END

No

Is
?⟨E⟩min

No

Yes

No

Get a uniformly distributed 
variable s

Yes

Yes

optim
ization

Yes



SCALING OF VMC CALCULATION TIME WITH NUCLEUS

Scales with # particles (6A w.f. calculations for kinetic energy) ×
# pairs (operations to construct w.f.) × spin×isospin (size of w.f. vector):

A Pairs Spin×Isospin
Q

(/8Be)
4He 4 6 16×2 0.001
5He 5 10 32×5 0.010
6Li 6 15 64×5 0.036
7Li 7 21 128×14 0.33
8Be 8 28 256×14 1.
9Be 9 36 512×42 8.7

10Be 10 45 1024×90 52.
11B 11 55 2048×132 200.
12C 12 66 4096×132 530.
14C 14 91 16384×1001 26,000.
16O 16 120 65536×1430 220,000.

40Ca 40 780 1.1×1012 × 6.6×109 2.8×1020

8n 8 28 256×1 0.071
14n 14 91 16384×1 26.

Scales with # particles (6A w.f. calculations for kinetic energy) × # pairs (operations to construct w.f.) × spin×isospin 
(size of w.f. vector):

Scaling of VMC calculation time with the nucleus



Green’s Function Monte Carlo
• The Green’s function Monte Carlo (GFMC) overcomes the limitations of VMC by using a projection technique to 

determine the true ground-state: 

-  is the imaginary time, and  is a parameter used to control the normalization of the evolved state

- excited states can be computed within GFMC since imaginary-time diffusion yields to the lowest-energy 

eigenstate with the same quantum numbers as

|Ψ0⟩ ≡ limτ→∞ |Ψ(τ)⟩ = limτ→∞e−(H−ET)τ |ΨT⟩
τ ET

|ΨT⟩

• The method relies on the observation that the trial wave function can be expanded in the complete set of 

eigenstates of H,  with eigenvalues :  with .


-  since . 


- When  than the norm of  is  independent of 

|Ψn⟩ En |ΨT⟩ = ∑
n

cn |Ψn⟩ H |Ψn⟩ = En |Ψn⟩

lim
τ→∞

e−(H−ET)τ |ΨT⟩ = lim
τ→∞ (∑

n

cne(ET−En)τ |Ψn⟩) = c0e(ET−E0)τ |Ψ0⟩ ET − E0 > ET − Ei>0

ET = E0 Ψ(τ → ∞) c2
0 τ

• Except for some specific cases, the direct computation of the propagator  for arbitrary values of  is 
typically not possible.

e−Hτ τ



Imaginary short-time propagation

• For small imaginary times  with  large, the calculation is tractable, and the full propagation to 
large imaginary times  can be recovered through the following path integral (neglecting spin-isospin 
indices)


• We defined the short-time propagator, or Green's function,


•

δτ = τ/N N
τ

<latexit sha1_base64="ubFw65m7ER8mDVdXix3KYh04awk="></latexit>

G�⌧ (Ri+1,Ri) = hRi+1|e�H�⌧ |Rii .

<latexit sha1_base64="CfOjfMvlYn6VFWtACoKYL6UA3l0="></latexit>

 (⌧,RN ) =

Z N�1Y

i=0

dRi hRN |e�(H�ET )�⌧ |RN�1i · · · hR1|e�(H�ET )�⌧ |R0ihR0| T i .

<latexit sha1_base64="XW8pst1/W5Y0mu2bZuFo/aDjanA="></latexit>

 (⌧,RN ) =

Z
dRN�1 . . . dR2dR1dR0G�⌧ (RN ,RN�1) . . . G�⌧ (R2,R1)G�⌧ (R1,R0) V (R0)

• The short-time propagator should allow as large a time step  as possible, because the total 
computational time for propagation is proportional to 

δτ
1/δτ

• The wave function at imaginary time  can be written in an integral form  τ + δτ

Ψ(τ + δτ, Ri+1) = ∫ dRiGδτ(Ri+1, Ri)Ψ(τ, Ri)



Imaginary short-time propagation: Trotter-Suzuki expansion

• A common approximation for the short-time propagator is based upon the Trotter-Suzuki expansion: 

-   is the kinetic energy giving rise to the free-particle propagator; for non-relativistic systems, it can be 
expressed as a simple Gaussian in configuration space (this is easy to see it in 1D)

 with 


-  The exponentials of the two-body potentials (difficult to calculate directly in nuclei since the interactions do 
not commute) can be approximated to first order by turning the sums over pairs (remember that 

  and we are neglecting three nucleon potential for now) in the exponent 

into a symmetrized product of exponentials of the individual pair potentials 

 where  indicates a symmetrization over orders of pairs.

T

⟨Ri+1 |e−Tδτ |Ri⟩ = G0
δτ(Ri+1, Ri) = [ 1

λ3π3/2 ]
A

e−(Ri+1−Ri)2/λ2 λ2 = 4 ℏ2

2m δτ

V(R) ≡ ∑
i<j

vij = ∑
i<j

∑
p

vp(rij)Op
ij

⟨R |e−Vδτ/2 |R⟩ ∼ 𝒮∏
i<j

exp( −
δτ
2 ∑

p=1,6

vp(rij)Op
ij) 𝒮

Gδτ(Ri+1, Ri) = e−V(Ri+1)δτ/2⟨Ri+1 |e−Tδτ |Ri⟩e−V(Ri)δτ/2 + o(δτ3)



- The first six terms of the potential can be easily exponentiated since they are diagonal in coordinate space.

- Momentum dependent terms cannot be treated this way: a way is to expand the exponential of the 
momentum terms to first order in  and use integration by parts to let the derivatives act on the free-
particle Green's function. This is applied to the terms in the potential that are linear in momentum, such as 

 and 

- Terms that are quadratic in the momentum cannot be evaluated to first order in this manner.

δτ

L ⋅ S (L ⋅ S) τi ⋅ τj

Comments about the Trotter-Suzuki expansion:

• The main error in this Trotter-Suzuki expansion approximation comes from terms in  having multiple  —like 

— where T is the kinetic energy, which can become large when particles  and  are very close due to 

the large repulsive core in  . This requires a rather small .

e−Hτ vi,j

vi,jTvi,j(δτ)3 i j
vij δτ

NOTE: 

• We use approximations to the full NN potentials, such as the AV8’ interaction, projection on the first eight 
operators (reproduce phase shifts in , , , and ) . (Note: The error due to this approximation is 
estimated by direct comparison with Faddeev calculations with AV8’ and AV18. It seems to be less than 0.3%).


• The isoscalar part of the Coulomb interaction can also be easily included in the propagator; however the small 
isospin breaking terms of the electromagnetic and strong interactions are treated perturbatively.

1S0
1P1

3PJ
3S1 −3 D1



• The most common one (the Schmidt-Lee many-body Green’s function) consists in building the Green's 
function operator as a product of exact two-body propagators 

Imaginary short-time propagation: exact two-body propagator

• It has been shown that that including the exact two-body propagator allows much larger time steps (a 
factor of 5-10 larger time steps ) than the simple approximation, so the computational time will be 
reduced.

δτ

• The two-body interactions are replaced with the exact two-body Green’s function .gij

Gδτ(Ri+1, Ri) = 𝒮∏
j<k

gjk(rjk, i, rjk, i+1)
g0

jk(rjk, i, rjk, i+1)
G0

δτ(Ri+1, Ri)

-  is the exact two-body propagator where 


-  is the two-body free-particle propagator

gjk(rjk, i, rjk, i+1) = ⟨rjk, i |e−Hjkδτ |rjk, i+1⟩ Hjk = −
1
m

∇2
jk + vjk

g0
jk(rjk, i, rjk, i+1)



• Terms quadratic in the angular momentum can in principle be accounted for into the exact pair 
propagator. However, the Monte Carlo sampling can lead to large variance. Thus, simplified AV8’ 
potentials are also used in the pair propagator, even though in this case no approximations in 
treating  and  terms are necessary.


• The 3N interaction  is included symmetrically, and the full propagation for each step 

L ⋅ S (L ⋅ S) τi ⋅ τj

Vijk

Gδτ(Ri+1, Ri) = (1 − ∑
i<j<k

Vijk(Ri+1)) 𝒮∏
j<k

gjk(rjk, i, rjk, i+1)
g0

jk(rjk, i, rjk, i+1)
G0

δτ(Ri+1, Ri)(1 − ∑
i<j<k

Vijk(Ri))

Imaginary short-time propagation: exact two-body propagator



Mixed estimates:

• One we have defined the propagator, we will be interested to calculate expectation values of operators:

• The set of configurations   make a path in the 3A dimensional configuration space  
and the integrals over  are carried out using stochastic methods. 

PN = RN, …, R1, R0
PN

• These are difficult to calculate, so we will use mixed estimates 

   

where we are always considering 

⟨𝒪⟩M =
⟨ΨT |𝒪 |Ψ(τ)⟩

⟨ΨT |Ψ(τ)⟩
=

∫ dRNΨT(RN)𝒪Ψ(τ, RN)
∫ dRNΨT(RN)Ψ(τ, RN)

=
∫ dPNΨT(RN)𝒪Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)

∫ dPNΨT(RN)Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)
τ → ∞

⟨𝒪⟩ =
⟨Ψ(τ) |𝒪 |Ψ(τ)⟩

⟨Ψ(τ) |Ψ(τ)⟩
τ → ∞



Mixed estimates:

• In practice, a set of configurations, typically called walkers, are simultaneously evolved in imaginary 
time, and then used to calculate observables once convergence is reached. 


• In the GFMC method, each walker contains the nucleon positions and a complex amplitude for each 
spin/isospin state of the nucleus, implying an unfavorable exponential scaling with the number of 
nucleons.


• Since the Hamiltonian commutes with the imaginary time propagator, we can

 where  is the expectation of H in the 

state . It is therefore   and approaches  from above as .

⟨H⟩M =
⟨ΨT |H |Ψ(τ)⟩

⟨ΨT |Ψ(τ)⟩
=

⟨Ψ(τ/2) |H |Ψ(τ/2)⟩
⟨Ψ(τ/2) |Ψ(τ/2)⟩

= E(τ/2) E(τ/2)

Ψ(τ/2) ≥ E0 E0 τ → ∞



Mixed estimates: operators

• Let consider ; we can re-write the expectation value of  asδΨ = Ψ(τ) − ΨT ⟨𝒪⟩

• When  is small, therefore the difference between the mixed and the variational estimates is 
small, we can use this equation to calculate the ground-state expectation value neglecting  
term. 

δΨ
δΨ2

where the the second term is the variational matrix element.

⟨𝒪⟩ = 2
⟨ΨT |𝒪 |Ψ(τ)⟩

⟨ΨT |Ψ(τ)⟩
−

⟨ΨT |𝒪 |ΨT⟩
⟨ΨT |ΨT⟩

+ δΨ2

• If the  and  are significantly different so that the extrapolation may not be valid,  is 
clearly poor.

⟨𝒪⟩M ⟨𝒪⟩V ΨT



Sampling of the paths:

• The path integrals in  are evaluated stochastically. Consider an ensemble of paths denoted as , 
that contains  paths, be sampled by a normalized weight function .


• Each path consists of N steps, where each step contains a sample of 3A particle coordinates (and full 
spin-isospin state), as well as a sets of operators orders used to sample the symmetrized product for the 
pair operators in the 

⟨𝒪⟩M {P}
Np P(PN)

ΨT

• For a given path , consider:


 , 

PN

𝒩PN
=

ΨT(RN)𝒪Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)
P(PN)

𝒟PN
=

ΨT(RN)Gδτ(RN, RN−1)…Gδτ(R1, R0)ΨT(R0)
P(PN)

• The average value of  is given by:  with a statistical error being 

proportional to . Also in this case to improve the statistical error block averaging on  is 

performed.

⟨𝒪⟩M ⟨𝒪⟩M =
𝒩
𝒟

=
∑{P} 𝒩PN

∑{P} 𝒟PN

1/ Np {P}



Sampling of the paths:

• Most calculations use the weight function:

• The importance function  is used in sampling and hence should be positive definiteI(R)

• The idea is that the initial configurations are sampled from and the quantity in bracket 

is referred as the importance sampled Green’s function 

I(R0) |ΨT(R0) |

GI(Ri, Ri−1) = [I(Ri)G(Ri, Ri−1)
1

I(Ri−1) ]

• The probability of the path  depends implicitly upon all of the steps in the path, but is 
decomposed into an initial weight , times a product of weights for each step. 


P(P)
I(R0) |ΨT(R0) |

• For a given path , note that:  and PN 𝒩PN
=

ΨT(RN)𝒪ΨT(R0)
I(RN) |ΨT(R0) |

𝒟PN
=

ΨT(RN)ΨT(R0)
I(RN) |ΨT(R0) |

P(P) = ∏
i=1,N

[I(Ri)G(Ri, Ri−1)
1

I(Ri−1) ]I(R0) |ΨT(R0) | = I(RN) ∏
i=1,N

[G(Ri, Ri−1)] |ΨT(R0) |



Sampling of the paths:
• Implementing the algorithm to sample the paths is straightforward. For simplicity choosing 

, the initial ( ) configuration  for each path is obtained as in the VMC by sample 

 using Metropolis method.


•

I(R) = |ΨT(R) | τ = 0 R0

|ΨT(R) |2

• The subsequent configurations , at , are obtained sequentially from , by iterating with 
the importance-sampled Green’s function , 

Ri τ = iδτ Ri−1
GI

• Describes the evolution of the density  with , hence the configurations are 
distributed with this density. 


•

I(Ri) |ΨT(Ri) | τ = iδτ Ri

• This implies that we can sample the points along the path directly from  but this is typically 

not possible. One must sample from an approximate  and then use weighting and branching 
techniques.

GI(Ri, Ri−1)
G̃I(Ri, Ri−1)

I(Ri)Ψ(Ri) = ∫ GI(Ri, Ri−1)I(Ri−1)Ψ(Ri−1)dRi−1



Sampling of the paths:

• If points are sampled from an approximate ,  it is convenient to define a weightG̃I(Ri, Ri−1)

w̃(Ri, Ri−1) =
GI(Ri, Ri−1)
G̃I(Ri, Ri−1)

• Choosing  will modify expressions for the the numerator and 

denominator, by multiplying the contribution of each path by the product of the product of 


•

P(PN) = ∏
i=1,N

G̃I(Ri, Ri−1)I(R0) |ΨT(R0) |

w̃(Ri, Ri−1)

𝒩PN
= W(PN)

ΨT(RN)𝒪ΨT(R0)
I(RN) |ΨT(R0) |

, 𝒟PN
= W(PN)

ΨT(RN)ΨT(R0)
I(RN) |ΨT(R0) |

 with W(PN) = ∏
i=1,N

w̃(Ri, Ri−1)



Sampling of the paths:
• What we really do is the following:

‣ We sample a number of points   for  from   R′￼j j = 1, nsamp G0(R′￼j, Ri−1)

‣  We define a scalar spin-independent importance sample Green’s function , positive and fast to 
calculate and approximate   

GS
I (Ri, Ri−1)

GI(Ri, Ri−1)

‣  This procedure implicitly defines a , and requires a weight: 
G̃I w̃(Ri, Ri−1) = [ 1
nsamp ∑

j=1,samp

GS
I (R′￼j, Ri−1)

G0(R′￼j, Ri−1) ] GI(Ri, Ri−1)
GS

I (Ri, Ri−1)

‣  For each of the  points we calculate  and the   is picked from the set  with 

probability proportional to   

nsamp GS
I (R′￼j, Ri−1) Ri R′￼j

GS
I (R′￼j, Ri−1)

G0(R′￼j, Ri−1)

•  contains approximations to the dominant physics in the propagator and the trial wave function                                                                  GS
I

GS
I (R, R′￼) = |ΨJ(R) |GS(R, R′￼)

1
|ΨJ(R′￼) |

 where  is spin-isospin independent interactions average central potential in the S-wave GS

• We use  I[ΨT(Ri, Ψi(Pi)] = |∑
α

Ψ†
T,α(Ri)Ψi,α(Pi) | + ϵ∑

α

|Ψ†
T,α(Ri)Ψi,α(Pi) |



Sign problem:
• As in standard Fermion diffusion Monte Carlo algorithms, the GFMC method suffers from the Fermion 
sign problem that arises from stochastically evaluating the mixed estimates.


• The imaginary-time propagator is a local operator, but antisymmetry is global property of the system. 
 can have bosonic components with lower energy than Fermionic ones, which are exponentially 

amplified during propagation.


• When the dot product with the antisymmetric  is taken, the desired Fermionic component is 
projected out in the expectation values, but the variance (the statistical error) grows exponentially with .


• Because the number of pairs that can be exchanged grows with , the sign problem also grows 
exponentially with the number of nucleons.

|Ψ(τ)⟩

ΨT
τ

A

15.2. THE FERMION SIGN PROBLEM 359

V
(R) < 0

R o

R o
R o

R o

R n

R n

R n

R n

V
(R) > 0

Nodal  Surface

Figure 15.1: Examples of GFMC paths which cross and do not cross nodal surfaces of the
real variational wave function of a simple many fermion system. The points labeled R0 and
Rn denote the beginning and final configuration, at τ = n∆τ , of each path.

When τ is small the paths are short, and few cross the nodal surface. All the DPn → +1
as τ → 0. However, we want the limit τ → ∞ in which Ψ(τ,R) → Ψ0(R). In this limit
there is equal probability for the paths to end in the region of their origin or the other, i.e.
the DPn are equally likely to be +1 or −1. In this limit both D and N → 0, and 〈O〉M is
dominated by statistical fluctuations. This problem is known as the fermion sign problem.

The problem occurs because of walkers originating in the ΨV > 0 region, denoted by
W+, diffusing in the region with ΨV < 0, and the W− walkers diffusing into the ΨV > 0
region. These walkers have DPn = −1, and reduce the magnitudes of N and D. Some of
the methods being studied to overcome this problem attempt to annihilate W± walker pairs
systematically as they cross nodal surfaces [219]. These methods are still being tested in
simple Fermi systems. We will not discuss them here, though they may provide insights to
the treat the sign problem in nuclear GFMC.

15.2.1 Transient Estimates

The 〈O〉M at τ = 0 equals the variational estimate 〈O〉V (Eq. 15.31). It does not suffer
from the fermion sign problem, and can generally be calculated with useful accuracy. In
particular the 〈H〉M(τ = 0) = 〈H〉V can be easily calculated with less than 1% standard
deviation, δ with decent variational wave functions. As τ increases the Ψ(τ) → Ψ0 and
〈H〉M(τ) decreases, however, the δ increases due to the fermion sign problem.

At small  , few paths are long enough to cross nodal surfaces and the 
variance is small. 

As  increases, many paths cross nodal surfaces, the variance 
increases and the average value of  decreases.

τ

τ
𝒟



''contrained-path'' method: to discard those configurations that, in future generations, will 
contribute only noise to expectation values. 

• If we knew the exact ground state, we could discard any walker for which  
where a sum over spin-isospin states is implied.


• The sum of these discarded configurations can be written as a state , which has zero overlap 
with the ground state.


• Disregarding  is justified because it only contains excited-states components and should decay 
away as .


• However, in general, the exact ground state is not known, and the constraint is approximately 
imposed using  in place of : 

Ψ†
0(Ri)Ψ(τ, Ri) = 0

|Ψd⟩

|Ψd⟩
τ → ∞

ΨT Ψ0 ⟨ΨT |Ψd⟩ = 0

• GFMC trial wave function is a vector in spin-isospin space, and there are no coordinates for which all 
the spin-isospin amplitudes will vanish: the overlap  is complex and depends on the 
particular sampled order .

Ψ†
T, p(Ri)Ψ(τ, Ri)

p



• To circumvent these difficulties, we define the overlap  and introduce 

a probability for discarding a configuration in terms of the ratio  where

OT, p = ℜ[Ψ†
T, p(Ri)Ψ(τ, Ri)]

OT, p/Ip

P [ †

T, p(Ri), (⌧,Ri)] =

8
>><

>>:

0 O/I > ↵c
↵C�O/I
↵c��c

↵c > O/I > �c

1 O/I < �c

• According to this algorithm configurations with  less than  are always discarded, configurations 
with  greater than  are never discarded, and there is a linear interpolation in between. 


• The constants  and  are adjusted such that the average of the overlap  is zero within 
statistical errors. 

O/I βc
O/I αc

αc βc OT, p/Ip

• In a few cases the constrained propagation converges to the wrong energy (either above or below the 
correct energy). Therefore, a small number,  to , of unconstrained steps are made before 
evaluating expectation values. These few unconstrained steps appear to be sufficient to remove the bias 
introduced by the constraint but do not greatly increase the statistical error.

nu = 10 80



Auxiliary field diffusion Monte Carlo

• Over the last two decades, the auxiliary field diffusion Monte Carlo method has become a mainstay for 
studying medium mass atomic nuclei and infinite neutron matter.

• The AFDMC overcomes the exponential scaling with the number of nucleons of the GFMC by:

• The GFMC method works very well for calculating the low lying states of nuclei up to . Its major 
limitation is that the computational costs scale exponentially with the number of particles, because of 
the full summations of the spin-isospin states.

12C

|χis χit⟩ → |S⟩ ≡ |s1⟩ ⊗ |s2⟩ ⊗ … ⊗ |sA⟩ , |si⟩ = ai,↑p | ↑ p⟩ + ai,↓p | ↓ p⟩ + ai,↑n | ↑ n⟩ + ai,↓n | ↓ n⟩

1. using a spin-isospin basis given by the outer product of single-nucleon spinors

 where the state vector is fully specified by a set of  complex coefficients.4A
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NOTE: Single-nucleon spinor:

Advantage: including the isospin  total number of entries for  is thus 12 (instead of 24 for the GFMC)

Issue: it is not closed with respect to the application of quadratic spin (isospin) operators 
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If using the standard DMC algorithm, the imaginary- time propagator generates a sum of single particles wave 
functions at each time step. The number of these functions will grows very quickly during the imaginary 
time evolution, destroying the gain in computational time obtained using a smaller multicomponent 
trial wave function. 




‣ The Jastrow component of  is also simpler: |ΨT⟩ |ΦJ⟩ = ∏
i<j

f c
ij ∏

i<j<k

f c
ijk |ΦA(Jπ, Jz, Tz)⟩ ,

‣ The mean-field component is modeled by a sum of Slater determinants,

⟨X |Φ(Jπ, Jz, Tz)⟩ = ∑
n

cn ∑
JJz

CJJz
𝒜[ ϕα1

(x1)…ϕαA
(xA) ]

JJz

-   with  representing both the position  and the spin-
isospin coordinates  of the  nucleons,


-  the determinants are coupled with Clebsch-Gordan coefficients  in order to reproduce the 
total angular momentum, total isospin, and parity,


-  the single-particle orbitals are given by 

X = {x1, …, xA} xi ≡ {ri, si} R = r1, …, rA
S = s1, …, sA A

CJJz

ϕα(xi) = Rnl(ri) Yllz( ̂ri) χssz
(σ) χttz(τ)

2. a simpler trial wave function contains a linearized version of spin/isospin-dependent two-body 

correlations |ΨT⟩ = (1 − ∑
i<j

Fij − ∑
i<j<k

Fijk) |ΦJ⟩

• The AFDMC overcomes the exponential scaling with the number of nucleons of the GFMC by:



Imaginary short-time propagation

• Small steps as in the GFMC but now the generalized coordinate  is used instead of  and the spin-
isospin degrees of freedom are also sampled.

X R

• The AFDMC wave function at imaginary time  can be written in an integral form analogous to the 
GFMC one

τ + δτ

• Using the Trotter decomposition of

• In order to preserve the single-particle representation, the short-time propagator is linearized utilizing 
the Hubbard-Stratonovich transformation

e−λ𝒪2δτ/2 =
1

2π ∫
∞

−∞
dx e−x2/2 ex −λδτ 𝒪 ,

where  are the auxiliary fields and and  can be any type of operator included in the propagator.x 𝒪

Ψ(τ + δτ, Xi+1) = ∑
Si

∫ dRiGδτ(Xi+1, Xi)Ψ(τ, Xi)

Gδτ(Xi+1, Xi) = G0
δτ(Ri+1, Ri)⟨Si+1 |e−(V(Ri+1)/2+V(Ri)/2−ET)δτ |Si⟩ + o(δτ3)



NOTE: Hubbard-Stratonovich transformation

• The first six terms defining the  potential can be conveniently separated in a spin/isospin-dependent 
 and spin/isospin-independent  contributions. If we consider  (neutron systems):

NN
VSD VSI τi ⋅ τj = 1

VSD =
1
2 ∑

iαjβ

Aiα,jβ σα
i σβ

j =
1
2

3A

∑
n=1

𝒪2
n λn ,

‣  are defined as  with  and   are the eigenvalues and eigenvectors of 

the matrix 

On 𝒪n = ∑
i,α

σα
i ψn

iα λn ψn
iα

A

• Applying the exponential of the spin-dependent terms of the  interaction amounts to rotating the 
spin-isospin states of nucleons

NN

e−V(Ri)δτ/2 |Si⟩ ∼ ∏
n

1

2π ∫ dxne−x2
n /2exn −λnδτ On |Si⟩

• The imaginary-time propagation is performed by sampling the auxiliary fields  from the Gaussian 
probability distribution 

x̄n

|Si+1⟩ ∼ ∏
n

ex̄n −λδτ On |Si⟩


