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• The LHC has long kept up with trends from ML


• In the era of BDTs, many big advancements came 


• Many were critical for the observation of the Higgs boson
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Power of ML



• Deep Learning has heavily push progression to other arch


• Why was this case? 


• New DL frameworks dramatically changed flexibility


• We can now train for arbitrary loss functions


• DL frameworks are very effective with GPUs


• GPUs allow us to have many inputs > 100! (BDTs capped at 40-50)
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A Change in Past 5 years

TMVA Loss
Pytorch/Keras Loss

+Custom Loss

Powerful

Gradient 

Tools


Native GPU

support

Regression(MSE)

Classier(CCE)



• Jets have the chance to benefit greatly from Deep Learning


• There is a large variety of variables that we can construct
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For Jets



• If you select a jet in data and look at the mass


• There is an enormous amount of background 


• But, you can potentially find a W boson or a Higgs boson
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Selecting a Jet in data

vs



• Large backgrounds and many particles good ML problem


• To see anything we need to reduce bkg by x10-100 
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Jets have 100s of particles



• Already with jet substructure we can start to see resonances


• But these analyses set the stage for a great deep learning 
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Without Deep Learning



• For b-quark tagging Deep Learning brought a lot of gains


• Part of these gains was from the fact that things were not tuned

9Where Deep Learning 
really started to help

≈
ç

≈ç

B-tagging has lots of handles

Also there is lots of background

Discrimination is key!



• For b-quark tagging Deep Learning brought a lot of gains


• Part of these gains was from the fact that things were not tuned

10Where Deep Learning 
really started to help
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• Encoders capture much of the physics to all for standard DL tools


• Responsible for much of the big gains over the past few years 
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• Big gains in deep learning have come from embedded data


• How can we take a complex object like a jet and process it
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So what has happened?

W Boson

When we first tried this

Convolutional Neural Networks

for Imag Id

were the new big thing!

Jet Image

Take a jet  and do an energy

weighted sum of the particles

centered about the jet axis



• Big gains in deep learning have come from embedded data


• How can we take a complex object like a jet and process it
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So what has happened?

Jet Image

Take a jet  and do an energy

weighted sum of the particles

centered about the jet axis

W Boson

Problem! Image Not Lorentz Invariant

Jet pT will change the overall position!
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Improving the idea

Particles Part 1 Part 2 Part 3.      Part N

Take’s a single Particle in at a time

Popular in 2018 when Recurrent Neural Networks were the crazy

• Instead we can consider sending in 4 vectors


• Utilizing 4-vectors gives us a notion of lorentz invariance

Same Network But Many Times!



• Instead we can consider sending in 4 vectors


• Utilizing 4-vectors gives us a notion of lorentz invariance
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Improving the idea

Lack or particle correlations limits Jet Identification abillity

Particles Part 1 Part 2 Part 3.      Part N

However it lacks particle correlations

Same Network But Many Times!



• Instead we can consider sending in 4 vectors


• Utilizing 4-vectors gives us a notion of lorentz invariance
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Improving the idea

Gain from DeepCSV to DeepFlavor is from the Architecture choice

Particles Part 1 Part 2 Part 3.      Part N

Does not take into account particle 

Correlations

Same Network But Many Times!



• We can take the same 4-vectors and features


• Instead construct an NN that takes particles and correlations
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Current State of the Art

Hinges on 

constructing a

Graph by building

an adjacency matrix


This is a Graph NN

Part 1

Part 2

Part3

…



• For a Higgs boson at high energy


- We have to rely on deep learning 

18

Observing Big gains

2016 ML(BDT)

2019 M
L(RNN)

2020 M
L(G

raphNN)

• Deep learning is quickly leading to a major transformation


- We can measure processes that we didn’t think possible
arxiv:1909.12285

2020 DL Arch
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Encoder Progression

Images 

(not lorentz invariant)

Particles and SVs

with 4-vectors+features

Particles 

(limited correlations)


Graphs 

(Particles+correlations)


2016 20202018

Progressively moving towards use of more info

Current collaboration results Expected Results Soon!



• There are many ways to make encoders better
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Extensions of these Ideas

DeepSets: Network that is 

IR and Collinear safe Encoder

arxiv/2006.04780

arxiv/1810.05165

Lorentz  Group

Equivariant Network



• To find a resonance, we don’t just need a good DNN


• We also need a way to extract it

21

Finding a resonance

Selecting on a well trained

Neural Network 


Network will reconstruct mass



• You can’t find a bump on a bump!


• Being able to control background is essential in data 
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Finding a resonance

Cutting on a 
network that 
doesn’t 
reconstruct mass

No Mass Mass

Cutting on 
a network 
that figured

out mass



• Adding a penalty can force the network to go the other way


• This requires a bit of tuning 


• However there is lots of literature doing this 
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One Method To Control
Invent a way to penalize the NN 
so that it can’t reconstruct mass

New Loss = Loss + Penalty term



• Modifying Matrix elements so signal and background are the same


• This solution turns out to be very powerful, but “Old School”
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A More Robust Approach
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A More Robust Approach

Jet Mass (Gev) Jet Mass (Gev)

No Variation with the cut!
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Boosted Higgs Result

??

H

Can we build a new Higgs boson result with deep learning? 

Deep learning is effective at isolating overlapping b-quarks

With deep learning we were able to reduce background by 2

Large

Deviation

Small

Deviation
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Only with an ML Algorithm 
can we see. Z bb→

With an NN peak is dramitically 

larger


Higgs at high pT

First Result

with a BDT Second 


Result RNN
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Only with an ML Algorithm 
can we see. Z bb→

With an NN peak is dramitically 

larger


Higgs at high pT

First Result

with a BDT Second 


Result RNN

And there are signs of a Higgs Peak




What LHC physicists 
have been doing during 

COVID
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Deep Learning Evolution
quark/gluom


aka Jet 

(cluster of particles)

Reconstruction flow
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Deep Learning Evolution
quark/gluom


aka Jet 

(cluster of particles)

Reconstruction flow

Deep Learning Migration
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Deep Learning Evolution
quark/gluom


aka Jet 

(cluster of particles)

Reconstruction flow

Challenge: 

Can you go from Raw inputs to reco? 



• Reconstructing a single calorimeter tower


- FACILE Algorithm: Reconstruct integral of in-time pulse


- Up to 5 overlapping pulse
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Simple Example

Simple NN

Can run fast


LeakyRelu 

Critical to regression



• Facile runs reconstruction on a single channel


- We can envision an algorithm that takes in all channels


- One way is to use a sparse CNN for graph-like inputs
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From Single to Collection

Cluster 1 

Cluster 2 

Sparse CNN

inference

Sparse CNN

inference

Calorimeter Energy Cluster

Calorimeter Energy Cluster

By taking the grid geometry of calorimeter can deploy Sparse CNN to Infer whole calo at once

η

φ



• A single algorithm is doing all of the clustering 
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Can compare to Reality

• Clustering algorithm produces very similar results to truth


• Single algorithm that takes in whole detector at once

TruthSparse CNN



• A single algorithm is doing all of the clustering 
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So what do we gain?

• Moreover this algorithm can now look at whole event to perform clustering


• Awarness of the event can allow for dynamic thresholds/interpretations


• Finally, this algorithm is highly parallelize  Can Run it Fast!→

TruthSparse CNN Depth

By embedding this in a 
neural network

we can extend algo to 
include more info


This is 1st algorithm to 
cluster with depth info
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A more Extreme Example

• Algorithm effective a reconstructing new complex topologies

TruthSparse CNN Depth



• Electron and Photon energy regression with an NN


- Raw inputs to make an NN gives significant improvements
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Another Example

Raw Inputs 

into an NN 

Previous  Version used pre-reconstructed variables based on raw inputs

eg.  ⟨Δϕ2⟩crystals, ⟨Δη2⟩crystals
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Success of Deep Learning

• First ideas of full particle based reconstruction are emerging


• Tools are emerging to do particle reconstructeion in one go
arxiv:2101.08578
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Success of Deep Learning

• First ideas of full particle based reconstruction are emerging


• LHC is a great place for DL because we have fantastic simulation
arxiv:2101.08578
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• Networks are emerging to do calorimeter clustering

• Additionally networks are emerging to identify all objects

Clustering: Graph NNs for HGCAL 

Dynamic reduction 
network for 
EGamma 
regression

S. Rothman

Success of Deep Learning

ML PUPPI
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Taking a Leap of Faith

Can we really trust AI to work from scratch well? always?



and Thinking Fast!

(NN Inference)



40 MHz
Spanning Frequencies

1 kHz
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Radiation 

Hard ASICs

FPGA

Boards Select 1 event in 400


The rest is thrown 
away Forever!

320 tb/s
Fast


40 MHz Collisions

10 µs window

L1Trigger

25ns 1ms



40 MHz
Spanning Frequencies

1 kHz
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Radiation 

Hard ASICs

FPGA

Boards

Local CPU 

Cluster

Select 1 in 100

1 tb/s320 tb/s
Fast


40 MHz Collisions

10 µs window

L1Trigger

Intermediate

100 kHz Collisions

<500 ms window

High Level Trigger

25ns 1ms



40 MHz
Spanning Frequencies

1 kHz

46

Radiation 

Hard ASICs

FPGA

Boards

Local CPU 

Cluster

CPU Grid

Fast

40 MHz Collisions

10 µs window

L1Trigger

Intermediate

100 kHz Collisions

<500 ms window

High Level Trigger

Slow

1 kHz Collisions

10 s window

Offline Cluster

10 Gb/s1 tb/s320 tb/s

25ns 1ms
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The Physicist View 

Keep KeepAll data

Fast Intermediate Slow
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The Physicist View 

We know that we are 

throwing away 

a lot of good data

Fast Intermediate Slow

!!!!!!!!!!!!!!!!!!



What is different 

w/Left and Right?



The Need for Subtlety
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Looking for small signals

Before SelectionAfter Selection

There is still a wealth of unexplored physics at the LHC 

Its just a bit harder to find
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Looking for small signals

Before SelectionAfter Selection

There is still a wealth of unexplored physics at the LHC 

Its just a bit harder to find



• There is a plethora of physics that we throw out
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Hidden  gems?

Higgs boson right on the 
cusp of being thrown out



• At the moment:


- We only get a full data of one in 40,000 collisions


- There is interesting physics that we have to throw away


• We would like to analyze every collision at the LHC


- To deal with this we need to increase our throughput


- Ultimately this means going to 100s of Tb/s
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The dream
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The Challenge

Today

After upgrade

Current

Tech

• To deal with the upgraded LHC intensity


• To preserve current physics we are upgrading the system


- Our event size will have to be 10x larger


- We will have to take data at 5 times the current rate

~T
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aF
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p*
Ye

ar
s

Results 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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The Crises
End of 

Dennard Scaling
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Processor Technology
Will we be able to handle the future upgrades? 



58
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Processing Tech
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Processing Tech



40 MHz 1 kHz
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Radiation 

Hard ASICs

FPGA

Boards

Local CPU 

Cluster

CPU Grid

10 Gb/s1 tb/s320 tb/s

Real-time AI on every LHC Collisions
To process this data we need Deep Neural 

Networks on FPGAs in Nanoseconds!

25ns 1ms
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Current (Old) Tech

 Current System is roughly 100 Virtex7 FPGAs 

interconnected with Fibers

480 Gb/s Input

48x10Gb/s Fibers

…. ….

600 Gb/s Input

60x10Gb/s Fibers

1 µs

1 µs

FPGA

FPGA

FPGA FPGA FPGA
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Current Algos
Simultaneously scan 

over calorimeter region a 

very simple algorithm


FPGA is essential to 

parallelize & deal w/
enormous bandwidth 


Algorithms have traditionally been simple 

due to the size of the FPGAs + RTL code

Algo



• We only have 1µs or less for the inference time


- We need to run the networks at a rate > 40 MHz (II < 25ns)


- Forced us to re-think DNN hardware implementations


• This work led us to the project: 
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Real-Time Deep Learning

arxiv:1804.06913

S. Han
D. Rankin
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Matrix Mult in Math

A1

A2

O1

φ(A1W11+A2W21+B1)=O1

How can we parallelize this?

Activation function
Matrix Multiplication

Vector Addition

Vector

arxiv:1804.06913
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Matrix Mult in Math

A1

A2

O1

How can we parallelize this?

Vector
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Matrix Mult in an FPGA

A1W11

A2W21


B1

 =O1
Add Add

Mult

A1

A2
φ(     )

Clock #1 Clock #2 Clock #3

Multiplier Units 

  (DSP) LUTs/FF 
 Look up Table


A1

A2

Next vector of inputs 

  (1 clock later) 3 Clock algorithm

Results subject to precision outputs
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A full benchmark example
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tm
ax

This network has an II of 1 clock, being run constantly

It has 4.3k weights and 4.3k DSPs at II=1

75ns
Hadronic Jet Tagger
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A full benchmark example
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ax

This network has an II of 1 clock, being run constantly

It has 4.3k weights and 4.3k DSPs at II=1

75ns
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How can we reduce resources?
Focus on 3 ways to cut down resources

Is our algorithm 

overly complex?

Are we too 
precise?

Does it really need 
to be this fast?

arxiv:1804.06913
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Algorithm Compression
● Compression is a critical aspect to reduce ML

● A suprising amount of weights in an NN are irrelevant

arxiv:1804.06913

Model Mult(DSP) LUTs
Before 15% 13%
After 0% 1%

Same Performance 

Smaller Latency (50 40ns)

Dramatic Compression

→
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Quantization

 <Total bit width, integer bits above decimal>
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Algorithm Compression

arxiv:2103.05579

Fixed precision training

Weight pruning shrinks

networks
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A Compiler than can do it

https://fastmachinelearning.org/hls4ml/ 
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There are now a few tools

See Tae Min’s Talk for another tool!
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Specs for

an FPGA


Latency/

Resources/

Precision/

Configure 

The  Code

to Run it

https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/
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A Compiler than can do it

https://fastmachinelearning.org/hls4ml/ 

https://fastmachinelearning.org/hls4ml/
https://fastmachinelearning.org/hls4ml/


• Many different types of collisions are analyzed at LHC


- A diverse set of algorithms are required 


- There is no one size fits all NN that will solver our problems


• With HLS4ML we have continued to expand options


- HLS has allowed for quick development 
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Flexibility

MLPs

Algorithms

CNNs

Binary & Ternary NNs
RNNs(LSTM/GRU)

Graph NNs(MPNN/GravNet/GarNet)

BDTs

Backends
Xilinx Vitis HLS
Intel HLS Quertus

Intel OneAPI
Mentor Catapult HLS

Not yet in official releaseNot yet in official release

arxiv:2003.06308 

arxiv:2002.02534 

arxiv:2008.03601

arxiv:2006.10159 
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Example #1 Tau Tagging
Tau Leptons have complex final states

Neural Network has long been the 
algorithm of choice to identify Taus

π

γ
π from another 

decay

Tau Lepton can decay to as many as

10 different particles 

Background can decay to many more
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Example #1 Tau Tagging
Algorithm Takes 10 top particles in a cone and runs NN

π

γ
π from another 

decay

Whole Algorithm on Board

With HLS4ML we can run this algorithm in 70ns

VU9P DSP FF LUTs BRAM

NNTau 11% 12% 18% 16%
NN alone is <10% of the FPGA 

Whole Algorithm Resources

NN Algorithm
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Example #2  BTagging
π

γ
π from another 

decay

µ

π

ΒJet is 

displaced

In addition to taus 

B-tagging good ML candidate


Not obvious CMS Trigger 

vertex resolution is large
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Example #2  BTagging
π

γ
π from another 

decay

µ

π

ΒJet is 

displaced

In addition to taus 

B-tagging good ML candidate


Not obvious CMS Trigger 

vertex resolution is large

Hard

Resolution in Trigger is worse

+

Di Higgs Boson Production Higgs Self Coupling Term

Interference
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Example #2  BTagging
π

γ
π from another 

decay

µ

π

ΒJet is 

displaced

In addition to taus 

B-tagging good ML candidate


Not obvious CMS Trigger 

vertex resolution is large

Hard

Resolution in Trigger is worse

Critical  Region 

For Self Coupling



• HLS4ML is rapidly being adopted in our trigger system


- Will be used in the next running at the LHC


• We already see a number of substantial improvement
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Accomplishments

2-5 times More Higgs bosons with the same data rates



• HLS4ML differs from other ML models

83Other Deep Learning 
Models

Matrix Multiply

Layer #2

Layer #N

Layer #1

….

One Processor

Big flexible layer

One Processor

Other approaches

(eg. Xilinx ML Suite)

Good for very large models 

where you can’t fit the whole


algorithm on the processor logic

Good for small models where 

you need ultra low latency

and ultra high throughput


HLS4ML/FINN/…



• GPU is about even more standardization
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How does a GPU do this?

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

Layer Code

One Processor

…..

…..

Great for many 

many 


evaluations

of a big network


Not Great for 

a small network



+

Running @

Longer latencies



40 MHz
HLT Trigger+Offline Reco

1 kHz
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Radiation 

Hard ASICs

FPGA

Boards

Local CPU 

Cluster

CPU Grid

Both Tiers are CPU

similar algos(different scales) 



Talking to GPUs

CPU 
Node

CPU 
Node

FACILE 
Server

ResNet 
Server

Tracking

Server

FPGA

FPGA

GPU

GPU

GPU

CPU 
Node

CPU 
Node

… as a service
# GPUs=?
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• Deep learning + GPUs or FPGAs can help to speed up systems


• Deep Learning’s regular arch makes GPU/FPGA speedups large


• There are a few ways to integrate these systems


• My preference is to the right (some connect GPUs directly)

Algo Per Event

CPU 1.75s

GPU Batch 1 7ms

GPU Batch 32 2ms

FPGA 1.7ms
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10% Reduction in total HLT

out of a 11% possible reduction in time

-10%

One GPU can handle  400 Cores (HLT is 25k)

GPU (V100)

arxiv:2007.10359

4 GPUs can reduce a 1000 CPUs systems time by 10% 
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-10%

One FPGA can handle  1600 Cores

In fact the limit here is not from the FPGA its network (25 Gbps)

10% Reduction in total HLT

out of a 11% possible reduction in time

FPGA (f1)

arxiv:2010.08556

1 FPGA can reduce a 1500 CPU systems time by 10% 



• In addition we have been able to run this work to scale

90

Running To Scale 

By Using Google Cloud
Sped up 3 algos 
currently in use gave 
15% reco speedup



• In addition we have been able to run this work to scale


- Ran a test with 10000 CPU cores and 150 GPUs


- Processes a realistic 150 TB sample 


- Demonstrated this paradigm works to scale!
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Running To Scale 



40 MHz 1 kHz
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Radiation 

Hard ASICs

FPGA

Boards

Local CPU 

Cluster

CPU Grid

10 Gb/s1 tb/s320 tb/s

A Broader Vision of DAQ

Accelerator
Accelerator
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A Broader Vision of DAQ
40 MHz 100 kHz

Radiation 

Hard ASICs

FPGA

Boards

Now Lets Zoom In 

on our system 
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A Broader Vision of DAQ
40 MHz 100 kHz

Radiation 

Hard ASICs

FPGA

Boards

We can actually envision merging 
these systems
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AIgean
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With AIgean we can stretch out networks across many FPGAs

100 Gb/s protocol between FPGAs ( can go to CPUs)

This allows us to run inference for very large networks

 


Very Fast

Tune our network to the resources we have

FPGA FPGA FPGA
BridgeBridge BridgeBridge BridgeBridge
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Example Autoencoder
Anomaly detection algorithm

80 µs latency

Pipeline Interval

2.8µs

Pipeline Interval

>5.6µs

260 µs latency

One

FPGA

One

GPU

2.5 ms latency
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A Broader Vision of DAQ
40 MHz 100 kHz

Radiation 

Hard ASICs

FPGA

Boards

There are new ideas for 40 MHz

(partial) processing of all data
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• We are pursuing the same idea in Neutrino physics
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Neutrino Physics

Michel Electron Id NN Large Factor in speed up



• Aiming to identify Gravitatoinal waves fast to do MMA


• Correlating GW and Optical observations is powerful
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Gravitational Waves

Can we make the GW reconstruction fast enough to be real-time?

See a Gravitational Wave Alert a Telescope



• Aiming to identify Gravitatoinal waves fast to do MMA

100

Gravitational Waves
Raw

Cleaned

Signal

A
I S

ys
te

m DeepClean

BBHNet

Current Non-AI Chain 

Takes a long time

This Whole chain in < 1s
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Arsenal of telescopes

Once you have found the GW event  

have to send the coordinates to a huge network



• An institute to unite real-time AI


- Quickly looking for people to be part of extended team

102

A3D3



• We make AI run fast : 


- Our goal is to use AI to speed up processing of experiments


- Additionally we are developing new ways to speed up AI
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Fast ML and now A3D3 

Photo from our first Fast ML workshop!

fastmachinelearning.org 

IAIFI Colloquium FPGA Keynote Talk 

Deep Learning

Compiler for


FPGAs/ASICs

http://fastmachinelearning.org
http://fastmachinelearning.org
https://www.youtube.com/channel/UCueoFcGm_15kSB-wDd4CBZA
https://www.youtube.com/channel/UCueoFcGm_15kSB-wDd4CBZA
https://dl.acm.org/doi/10.1145/3431920.3437119
https://dl.acm.org/doi/10.1145/3431920.3437119


• We have been awarded a new institute to explore real-time AI


- Accelerated AI Algorithms for Data Driven Discovery (A3D3)
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LIGO

N
ew
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om

pu
tin

g
A New Institute: A3D3

LHC 

Physics

NeuroScience
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Overview Venn Diagram

IAIFI 


Fast Machine Learning Lab

Proto

DUNE

Real-Time 

Heavy Flavor


Tagging @ sPHENIX

AI based compression

For Silicon calorimeter

Readout (DOE ASCR)

Real-time Multi-messenger

Alert

Exploring Clouds

to Accelerate Science

AI Algorithms

(AI2)
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Preparing for the future



Anomaly Detection



Anomaly Detection
Another Fun thing to do during COVID



• Data analyses at the LHC are changing


- Analyses are becoming much more complex


‣ Many categories and many final states 


• General trend towards more complicated analyses

109

Ageing Analyses @LHC

103 Categories

Higgs @

Discovery

1 Category
Higgs 

Now



• The power of computing


- Complex many parameter fits run much faster these days


- Newer optimization strategies that are proven to be robust


- Along with the ease of use of complex fitting tools


‣ Many tools now auto build likelihood and minimize


• A better understanding of our simulation


- Many processes are understood 


- Steps to making categories has become progressively simpler


• Encroaching on a general philosophy to do more at the same time
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What has caused trend?



• Some old ideas are starting to be taken more seriously


- Can we perform analyses on a broad range of data at once

111

From this trend

Giant Many category

Fits Likelihood for SM

Accumulation of dists

compared to SM
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Two Anomaly Challenges

David Shih, Ben Nachman, Gregor Kasieczka

LHC Olympics 2020

arxiv/2101.08320

Dark Machines

arxiv/2105.14027

Challenge: Hide signal(s) in a lot of data

See if the community can find it 
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Anomaly Data

LHC Olympics

Dark Machines
Complicated

Signals

Many final 

states

XY

Single Signal 

With a Dijet (or trijet) topology

Black Box #1



• Anomaly Strategies at LHC fall into two categories

114

Anomaly Strategies@LHC

I know regions where new 
physics does not exist

I want to leverage those 
regions against other 

parts of the data to find 
differences

I know how to predict all 
collisions 

Are there any collisions 
that I cannot predict?



• Anomaly Strategies at LHC fall into two categories
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Anomaly Strategies@LHC

I know regions where new 
physics does not exist

I want to leverage those 
regions against other 

parts of the data to find 
differences

I know how to predict all 
collisions 

Are there any collisions 
that I cannot predict?

AutoencodersWeakly-Supervised
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Anomaly Data

LHC Olympics

Dark Machines

XY

Weak-Supervision and other

Signal assumptions were put in

Due to dijet topology

Black Box #1

General emphasis was on 

Signal Prior free approaches


Many different types of 

Autoencoders



• Aim was to emulate a real search as much as as possible 


• Simulation and Toy Data are released  (Sim and Data different)

117

Simulation
Samples

W’

g g

gg

Simulation Samples

g g

gg

+

Toy Black Box

Drastically Different 

Simulation Parameters

Data and simulation shower 

parameters had differences



What are people thinking 
about to find anomalies?
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Autoencoders

Strategy is to create a space in the middle that embodies all features of physics
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Autoencoders

Dot product the input and output

Large Value : Good

Small Value : Anomaly

(        )



• Deep learning algos tend to focus on the latent space


• What is the latent space? 


• Its whatever you want it to be 

121

The Latent Space

What comes out of latent 

space can be a mystery
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Encoder Progression

Images 

(not lorentz invariant)

Particles and SVs

with 4-vectors+features

Particles 

(limited correlations)


Graphs 

(Particles+correlations)


2016 20202018

Progressively moving towards use of more info

Current collaboration results



• Autoencoders are gaining popularity in HEP just now
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Autoencoder Progression

Autoencoder

Not smooth

Normalizing Flow

   Non-Gaussian VAE


Dawn of Time 20172015

Variational AE/GAN

Smooth AE

Small latent space

that encodes physics

Inputs smeared w/gaussian

before latent space

Inputs transformed before 

entering latent space



• Try to repeat the inputs with the outputs
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We started with AEs

Anomaly Defined by how well reproduced the input is

An anomaly will not reconstruct the input well 
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VAE makes latent space continuous which improves performance


Found to be very effective (dark machines)

    Particularly when adding tight constraints on µ and σ

LHC Olympics

Based on

VAE

We updated with VAEs
• Try to repeat the inputs with the outputs


• but Smear with gaussians before you repeat outputs 
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added Normalizing Flows

NF transforms the latent space so it has a lot more fexibiity

Gaussian smearing and motion in space can capture physics

These tend to perform the best in terms of anomaly detection


• Try to repeat the inputs with the outputs


• But transform (and smear) outputs

LHC Olympics

Built on Normalizing Flow

+ Other stuff



• Autoencoders are gaining popularity in HEP just now
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Autoencoder Progression

Autoencoder

Not smooth

Normalizing Flow

   Non-Gaussian VAE


Dawn of Time 20172015

Variational AE/GAN

Smooth AE

Small latent space

that encodes physics

Inputs smeared w/gaussian

before latent space

Inputs transformed before 

entering latent space
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Combinations
High 

Level 

Inputs

Particle

RNNs

Particle+

Correlation

GraphNNs

Small

Latent

Space

Smeared

Latent

Space

Transformed

Latent

Space

Encoder Latent Space

High 

Level 

Inputs

Particle

RNNs

Particle+

Correlation

GraphNNs

Decoder
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Weak Supervision
Sample A Sample B

VS

How do we separate two samples (one with anomalies)

Difference: Strategy:  Train the data in A agains B 

Challenge:  Must all be same in 

A and B
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More realistic example

How do we train samples with variations of populations of an anomaly



• CWoLA approach aims to exploit differences in datasets


• Can play one region of data off the other 


• Provided you can separate out the two approaches

131

Classification w/o Labels
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Training Strategies

Topic Modeling/

Clustering

Classification

W/O Labels

Likelihood

Discrimination

p(x |x ∈ A) p(x |x ∈ B)

Separate out Sample 1 

from Sample 2 by 

hidden signal 

Split a histogram

into multiple distributions

by looking for separate

regions
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Performance Observations

Normalizing Flow approaches stood out

So did Observable based encoding(not sure why)

Autoencoder

W
eak Supervision



134Anomaly Searches 
Spectrum

Gain in sensitivity by assuming a mass peak

Adding assumptions about the signal
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Playing with Prior

Gain in sensitivity by assuming a mass peak

Adding assumptions about the signal


What if we decide to add more signal assumptions? 

Can we make a robust construction?  



• Use supervised training to catch a               and not  

136Semi-Supervision

A small amount labeled data

A large amount of unlabelled data

Autoencoder Supervised Training

(i.e. Find anamalous tulips not anomalous something else in LHC a detector glitch)
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Training Strategies

Just do a 

supervised training

Use the latent space 
for autoencoder/


supervised 

Construct Space 

from autoencoders


on sig/bkg

Wrong

Signals Backgroundvs

Search for new physics

by using an incorrect signal

Wrong

SignalsBackground vs

Use classifier loss for 

search

Wrong Signals

Background

y-
ax

is
x-

ax
is

Use classifier to isolate
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One-Shot Learning

Normalizing 

Flow Similar

Our idea: 

Normalizing Flow to build

a latent space of physics objects

One-shot learning aims to build a space of similar objects



139QUasi-Anomalous 
Knowledge(QUAK)

Use Normalizing

Flow Autoencoders


Strategy: Train autoencoders on background and Signals


Choose a broad range of signals that capture physics of interest


Probe the result space for physics-like anomalies

arxiv/2011.03550
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Background Loss

S
ig

na
l L

os
s

Background

0,0

QUasi Anomalous Knowledge

Normalizing 
Flow 

Trained 

On signals

Normalizing Flow Trained On Backgrounds

arxiv/2011.03550
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Background Loss

S
ig

na
l L

os
s

Background

Hypothetical

Signal

Anomalous

Feature

2D QUAK

Space

0,0

QUasi Anomalous Knowledge

Normalizing 
Flow 

Trained 

On signals

Normalizing Flow Trained On Backgrounds

arxiv/2011.03550
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Background Loss

S
ig

na
l L

os
s

Background

Hypothetical

Signal

Anomalous

Feature

True 

Signal2D QUAK


Space

0,0

QUasi Anomalous Knowledge

Normalizing 
Flow 

Trained 

On signals

Normalizing Flow Trained On Backgrounds

Adding (incorrect) 

Signals splits 

anomalous signals

From other features


arxiv/2011.03550
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Background Loss

S
ig

na
l L

os
s

Background

Hypothetical

Signal

Anomalous

Feature

True 

Signal2D QUAK


Space

S
el

ec
tio

n

0,0

QUasi Anomalous Knowledge

Normalizing 
Flow 

Trained 

On signals

Normalizing Flow Trained On Backgrounds

Adding (incorrect) 

Signals splits 

anomalous signals

From other features


arxiv/2011.03550



Method 2

E
ve

nt
s

Duck Duck Goose!
Search all of the regions one big simultaneous fit 
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Seeing a Signal

BlackBox 1

Inclusive Selection



146

Seeing a Signal

Most Sensitive

Category
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Applying to  Anomaly
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How Close to Optimal?

Better

QUAK can outperform a supervised network

When signals are the same
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One QUAK Network 
One Supervised Network

How Close to Optimal?

Better

Relies on NN 
self-assembly 
to build a 
continuous 
space
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Performance Observations

Normalizing Flow approaches stood out

So did Observable based encoding(not sure why)
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Performance Observations

Semi-supervised?

+Region

Classification???

Normalizing Flow approaches stood out

So did Observable based encoding(not sure why)

Speculate line



• Deep learning is helping us to look at things in finer detail


- It lets us go deeper and make sense of things

152

What will the future be?

Did we find all the 

Higgs bosons in there?

What are all the hidden 

signals in there? 

Towards

The 

Future



• AI is helping us to look at things in finer detail


- It lets us go deeper and make sense of things

153Deep Learning can  help 
Elucidate

Did we find all the 

Higgs bosons in there?

What are all the hidden 

signals in there? 

Towards

The 

Future

Perhaps there is a hidden Discovery



Thanks to the organizers 
for inviting me!
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QUAK

https://arxiv.org/pdf/2011.03550.pdf 

QUAK approaches or beats supervised NNs when signal is similar


Has been observed in literature with similar type of constructions

Relies on NN self-assembly to build a continuous space

Space starts to classify regions of algorithms


https://arxiv.org/pdf/2011.03550.pdf
https://arxiv.org/pdf/2011.03550.pdf


• Strategy for this talk 


• I will do a broad overview of ideas about deep learnig


• The idea is to discuss various general trends


• Would like to tie this in to broad vision of AI 


• Mostly this will showcase work from my group


• Don’t consider this a full survey of methods


• Even though title says LHC I will go beyond at times
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Overview of this talk



• LHC Olympics focused on find a single di-jet resonant model


• DarkMachines focused on searching for a broad range of models 
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Two Anomaly Challenges

David Shih, Ben Nachman, Gregor Kasieczka

LHC Olympics 2020

arxiv/2101.08320

Dark Machines

arxiv/2105.14027



• Over the past year there were two competitions 


• In each setup a signal/signals wer hidden in pseudo data


• The challenge was to “Find the hidden signal” 


• Emulate a realistic analysis as much as possible


• Challenge : use deep learning to find an anomaly


• A number of different strategies are used for this approach


• We will review the core concepts of these strategies
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LHC Olympics 2020

hep-ph/2101.08320  

http://arxiv.org/pdf/2101.08320.pdf
http://arxiv.org/pdf/2101.08320.pdf


• With LHC: many different uses exist for boosted objects 
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Higgs with Quarks

As Algorithm gets more complicated 

Scale factor also increases

Next generation of taggers would benefit from next generation of MC

More Sensitive Algorithms

Less Sensitive algorithms

D
at

a/
M

C
 



• Generally with anomaly approaches 


• There has been an emphasis to train on data


• Training on data simplifies our ability to process data


• No need to correct for simulation/data disagreements


• Regions where data/simulation don’t agree can be probed


• No fancy methods to probe these regions w/complicated fits


• Training on data throws away some interpretability of result


• Not clear what features may drive an access

161

Training on Data
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BuHuLaSpa 

Autoencoder with 1D latent space

Latent space forced to be decorrelated with mass

• Bump hunting in the latent space

Inputs: High Level Features (Nsubjettiness/Jet masses/…)

Signal Extraction : None

Take Away:Training is critical to ensure good performance

BB1 Dataset
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UCluster

Take Away: Hard with small signal

Inputs: Particle Objects

Signal Extraction : No signal 

R&D Dataset
Train a supervised network for 
jet classification


Cluster in the latent space

Scan clusters for anomaly


https://arxiv.org/abs/2010.07106 

https://arxiv.org/abs/2010.07106
https://arxiv.org/abs/2010.07106


• CWOLA modified from original paper


• Mass inputs dimensionless 
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CWOLA

mjj (GeV)

Take Away: Works but needed to correct dimension

BB1 Dataset
Inputs: High level features

Signal Extraction : Bump fit(5σ)
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GIS(CWOLA+NF)

p(x |x ∈ A) p(x |x ∈ B)

Mass Side bandSignal mass

GIS normalizing flows trained  

conditional on the mass distribution
Scan mass window (250 GeV)

Compute likelihood ratio (below)

Take Away: Normalizing Flow can help CWOLA style approach

Inputs: High level features

Signal Extraction : Note, but large signal

BB1 Dataset

Large and significant signal

https://arxiv.org/pdf/2001.04990.pdf 

https://arxiv.org/pdf/2001.04990.pdf
https://arxiv.org/pdf/2001.04990.pdf
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Tag N’Train

Would benefit more 
from mass 

decorrelation

4σ at BB1

resonance 

Take Away: Avoid mass windows by relying on the different jets
Signal Extraction : Bump Fit

BB1 Dataset
Inputs: High level features
Use dijet signature play one jet off the other 

Start with an autoencoder on jet to split sample

Run CWOLA on other jet with split sample

https://arxiv.org/abs/2002.12376 

https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2002.12376


• Build an auto encoder (AE)


• Add an GAN to help AE 


• Additionally decorrelate with mass
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GAN supported AE

Take away: Mass Decorrelation+Good Simulation needed

Latent space forced to be decorrelated with mass

Inputs: High Level Features (Nsubjettiness/Jet masses/…)

Signal Extraction : Bump Hunter (it Failed) 

BB1 Dataset



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Normalizing Flow

Take Away: single auto encoder even with NF is not enough

                    too many anomalies (no clear signal)

Signal Extraction : Νone (No signal)

Inputs: High Level Features (Nsubjettiness/Jet masses/…)

Cut is too loose (may actually work)

BB1 Dataset



• VAE using particle inputs (RNN)
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Particle VAE

Select on 

Anomalous


Events

Take Away: Works but preparation of inputs is critical

Inputs: Particle four vectors of the jet

Signal Extraction : None

BB1 Dataset



• Build a GraphNN Autoencoder


• Try with mean squared error loss 
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Particle Graph AE

Take Away: No good handle on loss

Inputs: Particle four vectors of the jet (Graph w/correlations)

Signal Extraction : Bump Hunter Algo

2.1σ

BB1 Dataset
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Just Training 

Use R&D dataset and do a fully 
supervised training 


Use the output discriminator


Try to see a signal from that

Take Away: Signal needs to be close to the hidden signal
Signal Extraction : None

BB1 Dataset
Inputs: High level features

Two submissions tried 

No Significant excess in either



What is different 

w/Left and Right?



The Need for Subtlety



• Strategy of the olympics: 


• Take a strange signal and hide it in toy data


• There were 3 black boxes split to emulate true data
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LHC Olympics Data

Black Box 1 Black Box 2 Black Box 3

Nothing!

mX=4.2 TeV

mX=4.2 TeV

mY=2.2 TeV
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Observation

Take Away: Works but needed to correct dimension

Inputs: High level features

Signal Extraction : Bump fit

CWOLA works really well 

for large signals


But for small signals 

Autoencoders tend to win


You need enough events 

in your data to separate them 
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Variation of Encoder
Varying the encoder architecture  

can allow for  a broad range of possibilities

Derived 

Inputs

Particle 

Inputs

Graphs
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Variation of Architecture
Varying the encoder architecture  

can allow for  a broad range of possibilities

Autoencoder

Variational

Autoencoder

Normalizing

Flow



• Running just a training got it to work 


• Was able to observe 5 standard deviations
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CWOLA style approach

mjj (GeV) Contrasting

with Autoencoders


CWOLA

Excess at 3500 instead of 3800



• Use R&D dataset and do a fully 
supervised training 


• Use the output discriminator


• Try to see a signal from that
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Method 12:Deep Ensemble

Observation:Low noise robust density estimation is key

• Try with both a CNN on jet images and BDT on observables




• Sample independence: each jet of a dijet can be treated as 
independent and for QCD its composition is the same for leading 
and subleading


• Factorization: jet mass distributions can be factorized


•

180

Method13:Factorized 
Topics



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Method 10: Salad+CWOLA

Observation:Works well on jets, some limiations from using jet images

Would benefit more from mass decorrelation



• Variational Autoencoder using particle inputs (RNN)
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Method1:VRNN 

Select on 

Anomalous


Events

Observation: Works but preparation of inputs is critical



• Build an auto encoder (AE)


• Add an GAN to help AE 


• Additionally decorrelate with mass


• Compute a distance (ED) for anom
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Method 3:GAN-AE

Observation: Mass Decorrelation+Good Simulation needed

Autoencoder with 10D latent space

Latent space forced to be decorrelated with mass



• Latent Dirichlet Allocation (LDA)


• Decluster jet and use splitting info


• Construct 2 hypotheses in data


• Generated through LDA approach
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Method 4:LDA

Observation: LDA benefits from many observables

Compute likelihood of two hypoth to be consistent



• Build a GraphNN Autoencoder


• Try with mean squared error loss 


• Try with a permuation invariant loss (robust against physics)
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Method 5: Particle Graph AE

Observation: No good handle on loss



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass

186Method 6: Regularized 
Likelihood

Observation: A single auto encoder even with NF is not enough

too many anomalies (no clear signal)



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Method 8: CWoLa

Observation:Approach works for single jet resonances



• Use a normalizing flow


• Cut on high loss 


• Decorrelate loss with mass
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Method 9: Tag N’Train

Observation:Works well on jets, some limiations from using jet images

Would benefit more from mass decorrelation



• Guassian Iterative Slicing


• Cut on high loss 


• Decorrelate loss with mass
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Method 11:GIS

Observation:Low noise robust density estimation is key
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Method14:QUAK



• Data released in h5 format 


• Standard python format using h5py and pandas


• Easy to process tools that allow for quick turnaround
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Data Format

Particle #1 Particle #2 Particle #3



An Aside on Open Data



• To get from particles  to analysis follow standard tool flow
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Processing Data

Read 

Data

Cluster

Particles

Particles Jets

Compute

Features

Substructure

Perform 

Analysis

Anomalies

Read 

Data

Trigger

Selection

Particles Triggered

Parts

Compute

Features

Substructure

Perform 

Analysis

Anomalies

Cluster

Particles

Jets

Lepton

Vetoes

Cleaned

Events

Real Data : Minimum Workflow

Toy Data : Olympics Workflow



• Going to real data a number of effects need to be considered


• Data needs to pass a well defined/measured trigger


• Bias or inclusive selection can introduce peaks


•  Sample needs to be close to pure QCD to emulate toy data


• Processes like ttbar, W+jets will contribute significantly


• In reality, there are several more steps


• Above steps constitute a minimum to emulate olympics
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Why the extra steps?



• To get from particles  to analysis follow standard tool flow
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Processing Data

Read 

Data

Cluster

Particles

Particles Jets

Compute

Features

Substructure

Perform 

Analysis

Anomalies

Run

PU 


rejection

PUPPI/…

Particles

Compute

Features

Substructure

Perform 

Analysis

Anomalies

Cluster

Particles

Jets

Correct

Particles

Corrected

Jets

Real Data : Minimum Workflow

Toy Data : Olympics Workflow

Read 

Data

Particles

Tigger

Selection

Triggered

Particles

Lepton

Vetoes

Cleaned

Events



• Split is typically done to limit the amount of re-computing
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How is this usually done?

Run

PU 


rejection

PUPPI/…

Particles

Compute

Features

Substructure

Perform 

Analysis

Anomalies

Cluster

Particles

Jets

Correct

Particles

Corrected

Jets

Real Data : Minimum Workflow

Read 

Data

Particles

Tigger

Selection

Triggered

Particles

Lepton

Vetoes

Cleaned

Events

Standard re-processing Analysis specific processing

LHC Data Analysis 

Framework

Specific

Processing



• Frameworks take a long time to build


• Complicated steps to follow careful curation of the data


• Many iterations to avoid bugs in code


• Data formatting what to keep a complex decision


• When preparing data for open analysis worked to get flat ntuple


• Collaborations have taken steps to centralize this


• Newer data formats embed standard corrections


• These data formats starting to be avaible in open data
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Building an Analysis FWK



• Bigger biases/corrections eventually embedded in software


• In CMS: MiniAOD => NanoAOD 


• These are light smaller frameworks that lead to fast analysis


• Still don’t solve all problems
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Towards Regularization



• Certain aspects in the data requires insider knowledge


• Trigger preparation/Trigger biases


• Which detectors were misfired


• Details to address these issues are often complicated


• How do you deal with understanding inside knowledge?


• Talk to others doing data analysis


• Inside the collaboration many of these are well known
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Other things Lost



• Example sample approaching toy data


• Special MC simulation sample used for Higgs tagging here 


• Discussion on FAIRness of CMS open data here 


• Consensus is that this is close, but could be better


• Samples are are converted to h5 inputs
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Examples Approaching

http://opendata-dev.web.cern.ch/record/12102
https://indico.cern.ch/event/578992/contributions/2766144/
http://opendata-dev.web.cern.ch/record/12102
https://indico.cern.ch/event/578992/contributions/2766144/


• Findable


• Resources easy to find to by both humans+computers


• Metadata readily available; allows for the discovery of interesting data


• Accessible


• Resource and metadata can be easily accessed and downloaded


• Both locally by a human, but also machines using standard protocols 


• Interoperability


• Metadata should be ready to be exchanged, interepreted and combined in a 
semiautomated way with other datasets by humans and computers 


• Reuseability


• Data and metadata are sufficiently well described to allow data to be reused


• Proper citation must be facilitated and conditions should be valid to machines
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FAIRFuture of Datasets is the FAIR convention



• While I didn’t discuss it here 


• Nobody found an excess in black box 3


• Black box 2 was empty

202A fun look at resultsBlack Box 1
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Black Box 2
Reminder no signal



204Observations
• There is no catch all solution 


• Many of the best approaches combine multiple ideas


• A diversity of approaches helps robustness


• LHC Olympics focused on resonant processes


• Non-resonant processes make background extraction harder 


• Can we deal with complex topologies ( such as black box 3)


• Data processing pipeline is assumed to be offline reconsturction


• Could envision some approach in the triggers


• How can we actually compare sensitivities if we don’t have a model?
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Edit me 



• Factorization: each jet mass 
distributions can be 
factorized


• QCD composition is the 
same for leading and 
subleading
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Factorized Topics

Use leading and trailing jet masses

to make “topics”

Solve for the jet mass 1 and 2 that yield 

3 distinct categories

Take Away: Breaks down with small signal

Inputs: Jet mass of each jet 

Signal Extraction : None (did not work on BB1)

R&D Dataset



• Latent Dirichlet Allocation (LDA)


• Decluster jet and use splitting info


• Construct 2 hypotheses in data


• LDA minimization to get 2
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LDA

Take Away: LDA benefits from many event observables

Compute likelihood of two hypothesis to be consistent

BB1 Dataset
Inputs: Jet splittings from declustering

Signal Extraction : None (did not work)


