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Reminder from Yesterday

• Calculating NMEs for 0νββ is challenging:

– Mean-field methods let you calculate matrix elements for large 

nuclei, but uncertainties are impossible to quantify

– Ab-initio methods are advancing quickly, but can’t address all ββ

decay elements yet

• To discover 0νββ, we need very large experiments with very low 

backgrounds

– Most experiments use a source=detector strategy to maximize 

efficiency

– Background rejection based on event topology, location, type of 

interaction, and other information is helpful
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• Wednesday: Why look for 0νββ?
• Thursday: How to look for 0νββ
• Friday: The State of the Field

– How Measurements Work
– The 0νββ Search Landscape
– The Experiments:

• Liquid Scintillator Experiments
• TPCs: Liquid and Gas
• Bolometer Experiments
• Germanium Experiments
• Tracking Experiments

– Doing other physics with 0νββ experiments
– What comes after discovery?

Outline
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How Measurements 
Work



Measuring and Setting Limits on T1/2

• 0νββ experiments measure a half-life
• Before you run an experiment, you can 

calculate its expected half-life sensitivity:
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Livetime

Efficiency

Number of 
ββ atoms

• ⟨"# $ % ⟩ is the average upper limit an ensemble of identical 
experiments would place in the absence of a signal given B 
background counts. If B(t) = bt, where b is a constant, then:
– If bt >> 1, "# $ % = (% (background limited)  
– If bt << 1, "# $ % = )*+,%-+% (background free)
– In between, you have to use Feldman-Cousins statistics

Number of 
predicted 

background 
counts in 

time t
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Feldman-Cousins Statistics

• In classical
frequentist statistics, 
you have to decide 
ahead of making a 
measurement
whether you’ll be 
setting confidence 
intervals or an upper 
limit. 

• If you “flip-flop,” you 
will end up with 
under-coverage.

6

Flip-flopping:
If the experiment measures…
- x < 0, use a 3σ UL
- x < 3σ, use a 3σ UL
- x > 3σ, use a CL

Problem! For μ = 2, 
this interval includes 
only 85% of 
probability

• Feldman-Cousins gives a recipe for 
building confidence intervals that don’t 
lead to under-coverage, and transition 
smoothly between UL and CL
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How to Use Feldman-Cousins

• Look-up table for 90% CL from the Feldman-Cousins paper

• ROOT and python packages for calculating F.C. intervals are also available

7

The original paper is a classic: 10.1103/PhysRevD.57.3873, and some nice slides on the subject can be found at 
https://www.pas.rochester.edu/~sybenzvi/courses/phy403/2015s/p403_19_intervals.pdf
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Measuring and Setting Limits on T1/2

• After you run a 0νββ search…
– You either see an excess at the Q value, and fit a 

peak with some rate to it
– Or you don’t see an excess. In that case, you set a 

lower limit on half-life:

– S is the upper limit on the signal counts based on 
the observed data. Again, use F.C. to calculate if 
it’s appropriate.

• Experiments that don’t see anything report 
sensitivity and a limit. If they get lucky and have a 
downward fluctuation, limit will exceed sensitivity. 

8

!"/$%& > ln 2 +,!-
.

CUORE 2018 Result

Sensitivity: 7×10$3 yrs
Limit: T"/$ > 1.3×10$7 yrs

10.1103/PhysRevLett.120.132501

J. Gruszko – DBD III – NNPSS 2022 



Translating Half-Life to mββ

• Need to use a 
particular model, the 
phase space factor 
and a nuclear matrix 
element to turn half-
life into mββ

• Results are generally 
reported for the full
set of NMEs, so the 
upper limit in mββ has 
a range
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Upper limit
for a single 

NME

This area 
excluded

Excluded for 
larger NME
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Information from Other Neutrino Experiments

• Light-colored edges are 3σ
uncertainty on neutrino 
mixing and mass splittings

• Measuring hierarchy would 
tell us which branch we need 
to look in

• Mass measurement would 
tell us which vertical band to 
look in

10

Neutrino 
mass limit

This area 
excluded

Neutrino mass 
measurement
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The 0νββ Search 
Landscape



Current Best Limits on 0νββ

12

NSAC recommendation: quote a range of mββ using 
the largest and smallest available NME from the 4 
main calculation methods; gA=1.27; no contribution 
from the contact term

Experiment Isotope Exposure 
[kg yr]

!"/$%& [1025 

yr]
mββ [meV]

Gerda 76Ge 127.2 18 79-180

Majorana 76Ge 26 8.3 113-269

KamLAND-
Zen

136Xe 970 23 36-156

EXO-200 136Xe 234.1 3.5 93-286

CUORE 130Te 1038.4 2.2 90-305

arXiv: 2203.02139
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The Ton-Scale Generation

• The next-generation of experiments 
seeks to cover the IO region in 
discovery mode

• That will take O(1 ton) of isotope
• 3 candidate experiments with US

participation, in addition to other 
efforts: LEGEND, nEXO, and CUPID

• All 3 were evaluated by the DOE in
Summer 2021. DOE-NP is seeking 
international support to pursue all 3 
experiments. 

13

Discovery Sensitivity for the “Big 3” 

10.1103/PhysRevC.104.L042501
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Discovery and Sensitivity

14

• All 3 experiments cover 
the IO for some matrix 
elements, and miss for 
others 

• Larger background = 
more difference between 
discovery and exclusion

From Agostini et al., PRC 104, L042501 (2021)

Discovery Sensitivity Exclusion Sensitivity
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Recent and Proposed Experiments
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The Experiments Liquid Scintillators



Liquid Scintillator Detector Concept

17

Measure isotropic scintillation 
light to extract energy

• Self-shielding, fiducialization
• Interior materials can be made 

extremely pure
• Some event topology and particle 

ID, with additional future 
improvements expected

• Measurement with and without 
isotope is possible 

• Other strengths: flexible and 
scalable design

• Weakness: energy resolution and 
spatial resolution; large “target” for 
cosmogenics
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KamLAND-Zen

• Adaptation of existing reactor neutrino experiment
• 136Xe concentrated in inner balloon, holds LS doped with 3.13% 

enriched Xenon by weight
• Relatively shallow site, spallation backgrounds dominate
• KamLAND-Zen 400: 2011-2014

– Phase I: 320 kg 90% enriched 136Xe
– Phase II: 380 kg 
– T1/2 > 1.07 × 1026 yr, mββ < 61−165 meV

• KamLAND-Zen 800: 
– Data-taking began in January 2019
– Scintillator purification campaign
– Larger, cleaner inner balloon
– 750 kg enriched 136Xe

• Currently has the largest single-experiment half-life limit: !"/$ >2.3 ×10$, yrs
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Backgrounds in KamLAND-Zen

19

Energy resolution: 6.7%/ "(MeV) 
Vertex resolution 13.7 cm/ "(MeV) 

Poor energy resolution means that 
2νββ is the largest background

arXiv:2203.02139
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Machine Learning-Based Analysis: KamNET

20

• Machine learning model using LSTM + spherical CNN can be used to reject balloon and spallation 
backgrounds

• Complementary to other spallation-tagging methods
• arXiv:2203.01870
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KamLAND2-Zen

21

KamLAND-Zen 800 Primary goal: improve 
energy resolution

Secondary goal: record 
longer-buffer data to 
improve cosmogenic 
rejection

• 1 ton of enrXe
• New, brighter LAB-

based scintillator
• Winston cones and 

HQE PMTs
• Scintillating balloon film
• Improved front-end 

electronics 

KamLAND2-Zen 
90% 

exclusion 
sensitivity
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SNO+

• Adaptation of existing solar neutrino experiment
• Switch from heavy water to liquid scintillator
• natTe loaded throughout
• Deeper site, solar ν backgrounds expected to dominate
Status
• Ultra-pure water Cherenkov phase completed 

– Solar neutrino and BSM physics results released
• Unloaded liquid scintillator phase completed, scintillator 

characterized
• Tellurium loading underway @ 0.3% 

– Expected loading: 800 kg of 130Te
• Expected 5 year sensitivity: 
!1/2> 9×1025 yrs , mββ < 55 – 133 meV

22

Initial loading: 0.5% 
natural Te by weight
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Backgrounds in SNO+

• Expected backgrounds 
before running

• Since then, U and Th
backgrounds have
been measured to be
smaller than expected! 

• Solar neutrino 
scattering will 
dominate

23

arXiv:1809.05986 
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SNO+ Future Improvements

24

Planning to move to 3% natTe loading for future 

data-taking

No hardware changes needed: just add more Te

Extends exclusion sensitivity to > ~1027 yrs
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Multi-purpose Liquid Scintillator Experiments
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JUNO 0νββ Search Proposal:
• 50 tons of 136Xe, expected energy resolution better than 2% (σ/E)
• Exclusion sensitivity: 1.8×10&' yr, 5-12 meV
• 0νββ upgrade starting in 2030s Eur. Phys. J. C (2020) 80:416

Theia Detector Concept 

1.8 kton LS with 90% 
PMT coverage, 3%/√E, 

event topology 
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Solar Neutrino Scattering in Liquid Scintillator Detectors

• How to reduce this “irreducible 
background”?

• If you can measure 
Cherenkov and scintillation 
light (separately) you can tell 
them apart

• Timing- and wavelength-based 
separation have been 
demonstrated in benchtop 
test-stands
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R&D Efforts for Liquid Scintillators

• Hybrid Cherenkov/scintillation detectors:
– Reduce backgrounds by measuring 2 e- signature
– Timing-based separation: slower fluors, faster photodetectors
– Wavelength-based separation: dichroic filers

• New scintillator cocktails and isotopic loading techniques:
– Water-based Liquid Scintillator: purification and stability, 

gadolinium loading, pulse shape discrimination 
– Tellurium loading: several % loading demonstrated, increased 

loading and purification R&D underway
– Quantum dot-based isotope loading: production scaling, 

stability, and optical performance studies underway
• Advanced photon sensors and collectors:

– LAPPDs: ongoing R&D on high-channel-count readout 
techniques, self-triggering and synchronization, streamlined 
fabrication

• Advanced simulation and analysis techniques

27

Te LoadingDichroicon

Slow Fluor
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Mid-Scale Test Stands for Future Liquid Scintillator Detectors

28

• ANNIE: first large-scale test of LAPPDs, 

planning for Gd-loaded WbLS

ANNIE detector and LAPPD module 

• NuDot: timing-based Cherenkov/scintillation 
separation and quantum dot loading

• Eos: Cherenkov/scintillation separation and 
WbLS, validation of microphysics simulations 
at low energy

NuDot: ½ ton test stand Eos: few-ton WbLS
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The Experiments TPCs: Liquid and Gas



Liquid Xenon TPC Concept

• Single-phase time projection chamber, 
made out of enriched Xenon

• Read out ionization and scintillation
• Dark matter experiments use dual-

phase to amplify the ionization signal –
not needed for higher-energy ββ

• Take advantage of self-shielding, (non-
binary) fiducialization, and event 
topology information to reduce 
backgrounds

• Better energy resolution and spatial 
resolution than LS, while still being 
monolithic

• Weaknesses: background peak 
overlapping Qββ, cost/Xe availability

30

EXO-200
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EXO-200

• 200 kg TPC with a 
center wire grid cathode

• Ran starting in 2011, 
then stopped in 2014 
due to WIPP fire

• Upgrade in 2016: 
improved electronics led 
to better energy 
resolution

• Use anticorrelation 
between charge and
scintillation to improve 
resolution: σ/E = 1.15%
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EXO-200 Results

• Detector upgrade and improved 
analysis techniques have led to 
linear sensitivity growth over time

32

• Deep Neural 
Network, stand-
off distance, and 
cluster size used 
to reduce 
backgrounds

!"/$ > 3.5 ×10$, yrs
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Proposed Next-Generation: nEXO

33

• Large single-phase LXe TPC, 
building on EXO-200 experience

• Switches to charge tiles for ionization 
readout, SiPMs for light readout 

J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)

• 5000 kg of enrXe
• Enriched to 90% 136Xe
• Energy res. (σE/E): 0.8%
• Discovery sensitivity: !"/$ ∼ 7.4×10$,yrs
• mββ discovery sensitivity: 5-27 meV
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High-Pressure Gas TPC Concept

34

Department Name

High-pressure gas Xenon 
time projection chamber:
• Energy resolution is 

intrinsically better in gas
• Event topology tracking 

information, 
fiducialization, and 
particle ID

• Can actually see β tracks!
Other TPC gases could use 
this technique: SeF6 in R&D

ββ Signal e- Track Background
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NEXT-White

• 5kg demonstrator TPC, ran 2016-2021
• 10 bar pressure, energy resolution: 0.91% σ/E
• Right now, one issue is relatively low efficiency, larger detector will improve that

35

Background-
subtracted 2νββ fit

enrXe

depXe

arXiv:2201.10907
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Future Directions for NEXT

36

NEXT-HD
• 1230 kg of enrXe
• 1109 kg of 136Xe
• Energy res. (FWHM/E): 0.5%
• BI < 4x10-6 cnts/(keV kg yr)
• Discovery sensitivity: !"/$ ∼ 2.7×10$,yrs
• mββ discovery sensitivity: 8-45 meV

NEXT-100
• 100 kg at 15 bar
• Construction started in 2021
• Expected sensitivity: 6×10$. yrs
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Barium Tagging

37

• Considered a possible upgrade path for the tonne-scale TPC experiments 
• Could extend sensitivity (further) into the normal ordering region!

Materials 
courtesy of the 
NEXT and 
nEXO
Collaborations, 
from B. 
Fairbank 
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R&D for Barium Tagging

38

• Feasible single-ion sensing techniques have been demonstrated in GXe and LXe

• Next steps: Barium capture, transport, and sensing in more-realistic detector environments

Laser-based ID in solid Xe for nEXO, Nature 569, 203-207 (2019)

Fluorescent molecule-based ID for NEXT, 
ACS Sens. 2021, 6, 1, 192–202 (2021)

Cryoprobe-based 
extraction for 
nEXO

RF carpet-based transport 
for NEXT, 
arXiv:2111.11091 (2021)
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Other TPC R&D

For Xe, isotope acquisition is a challenge:
• Currently depends on liquid oxygen production for 

steel industry, limiting supply
• R&D on alternative extraction methods: Xe-

adsorbing materials, could be implemented at CO2 
capture plants

If acquisition can be resolved, kiloton-scale GXe
and LXe TPCs should be feasible:
• R&D: increasing light detection efficiency, 

Cherenkov light-based background reduction
• Projected sensitivity ~1030 yrs
Other ideas:
• DUNE and DarkNoon: Xe-doped LAr; R&D on 

energy resolution, gas mixture handling, and 
Cherenkov/scintillation response

• SeF6 TPCs: R&D on ion readout techniques

39

Physical Review D 104 (11): 112007 (2021)
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The Experiments Bolometer Experiments



Bolometer Detector Concept

• Keep crystals at ~15 mK temperature in dilution fridge
• Interactions create phonons, read out with temperature sensor
• Some experiments use scintillating crystals and add a light detector: 

lets you distinguish α from β/γ
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CUORE

42

• 988 natural-abundance TeO2 
crystals operated as bolometers

• 742 kg of detectors, 206 kg of 
130Te

• Energy resolution is 7.4 - 8.3 keV
FWHM at Qββ

• Taking data since 2017
• Will continue to take data until 

CUPID begins 
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CUORE Results

43

2021 Results: T1/2> 2.2 × 1025 yr, mββ > 90 – 305 meV

DOI: 10.1038/s41586-022-04497-4

90% of backgrounds from 
degraded α particles: no 
ability to reject these 
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CUPID

44

• Tonne-scale bolometer approach 
demonstrated in CUORE

• 100Mo Q-value: 3.03 MeV
• Scintillating bolometer technique 

demonstrated in CUPID-Mo and 
other experiments, allows for α
rejection

• Switch from CUORE crystals to 
scintillating bolometers with light 
readout in existing infrastructure

• Other options for crystal/isotope: 
ZnSe (candidate 82Se), CdWO4
(candidate 116Cd), and TeO2
(candidate 130Te) 

Material provided by CUORE, CUPID, 
CUPID-Mo, and CUPID-0 Collaborations

• Crystal: Li2100MoO4
• Enrichment > 95% → 253 kg of 100Mo
• Energy res. (FWHM): 5 keV
• BI < 10-4 cnts/(keV kg yr)
• Discovery sensitivity: !"/$ ∼ 1.1×10$*yrs
• mββ discovery sensitivity: 12-20 meV

α rejection in CUPID-Mo
D

O
I: 10.1140/epjc/s10052-019-7578-6
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Beyond Ton-Scale in Bolometers

45

CUPID-1T

“Toward Sensitivity to the Neutrino 
Normal Hierarchy with Quantum 
Calorimetry,” D. Speller, Y. 
Kolomensky, L. Winslow, 
Snowmass LOI

• R&D Areas: high-speed superconducting sensors, multiplexed 
readout technologies, active γ veto, CMOS and ASIC 
instrumentation for quantum sensors, superconducting crystal 
coatings for improved PSD

• Could adopt a diffuse staging technique, with sites around the 
world
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The Experiments Germanium Experiments



Germanium Detector Concept

• Single-crystal semiconductor diode made from enriched Ge
• Read out ionization signal– pulse shape can be used to

distinguish multi-site and surface events from ββ events
• Excellent energy resolution: ~0.05% σ/E

47

0νββ signal candidate (single-site) γ-background (multi-site)

Acceptance Window

Weighting Potential and Charge Drift

rejected

Weighting Potential and Charge Drift

Acceptance Window
Charge 
signal

Current 
signal

accepted

Charge 
signal

Current 
signal
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Ge-Based 0νββ Program

48

GERDA: Final 0νββ results published

MJD: Final results recently announced

LEGEND-200: Now in 

commissioning LEGEND-1000: Conceptual design 

development ongoing

arXiv: 2107.11462PRL 125, 252502 (2020)
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The MAJORANA DEMONSTRATOR

• ~30kg of enriched Ge detectors
in a compact graded shield

• Innovations:
– make underground electroformed 

copper (“the cleanest copper in 
the world”)

– Low-mass low-noise low-
background electronics enable
the best energy resolution of any
0νββ experiment and a low
energy threshold
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The MAJORANA DEMONSTRATOR Results

50

Final enriched detector active 
exposure: 

64.5 ± 0.9 kg yrs
Background Index at 2039 keV in 
lowest background config:

15.7 ± 1.4 cts/(FWHM t yr)
Background Index: 

(6.2 ± 0.6) × 10-3 cts/(keV kg yr) 

Energy resolution (FWHM) : 2.5 keV

Preliminary

Median T1/2 Sensitivity: 8.1 × 1025 yr (90% C.I.)

65 kg-yr Exposure Limit: T1/2 > 8.3 × 1025 yr (90% C.I.)
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LAr Active Veto

52

Compton events 
with energy 
deposition in the 
LAr

Pure 2nbb spectrum 
after LAr signal 
suppression 

Courtesy of the 
GERDA Collaboration
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GERDA Final-Exposure Spectrum

53

Courtesy of the GERDA Collaboration
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GERDA Results

54

PRL 125, 252502 (2020)

Background 
estimation 

window

Courtesy of the 
GERDA Collaboration

Background index: 5.2+1.6 ⋅10-4 cts/(keV kg yr), 

Energy resolution ~3 keV (FWHM) 

Frequentist: N0v = 0 best fit, T1/2 > 1.8⋅1026 yr at 90% C.L.
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LEGEND-200

55

• 200 kg of HPGe ICPC detectors enriched to 91% 76Ge, 
operated in active LAr shield

• Upgrade of GERDA infrastructure

• Uses new, larger inverted-coxial point-contact detectors

• >2.5x background reduction relative to GERDA 
expected

• Commissioning underway, full detector 
deployment expected this year

• Final expected sensitivity: 
T1/2 > 1 x 1027 yrs
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LEGEND-1000

56

• New cryostat either at LNGS or SNOLAB; 4 independent payloads with depleted UAr in 
inner volumes

• 1000 kg of enriched Ge detectors: fabricate 870 kg of new detectors; use 130 kg from 
LEGEND-200; recycle 50 kg of small detectors

• Multi-dimensional analysis nearly eliminates γ, surface α and β backgrounds
• LEGEND goal: BI < 1x10-5 cnts/keV kg yr, Discovery up to 1.3×10&' yrs

0νββ (T1/2 = 1028 yr)

3-4 events 

Projected spectrum: even a signal at 
the bottom of the inverted ordering 

will be visible to the eye

Multi-dimensional analysis can also 
be conducted

No background peaks are 
expected close to Qββ (2039 keV)

2νββ
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The Experiments Tracking Experiments



Tracking Detector Concept

• Source ≠ Detector!
• Thin foils of ββ decay 

materials sandwiched 
between tracking planes 
and surrounded by 
calorimeters

• Magnetic field for charge ID
• Allows full track

reconstruction of ββ decays 
and energy measurement

• Can use any isotope
• Foils have to be just 0.3mm 

thick so βs can escape

58

Images courtesy of the 
NEMO Collaboration
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NEMO-3

• Ran from 2003-2011 with 10 kg total mass
• Measured many isotopes simultaneously 

(including some first measurements)

59

Images courtesy of the 
NEMO Collaboration
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Super-NEMO and Science Goals

• Using 82Se foils for initial run

• 1 module to start, up to 20 after

that

• Low mass, so not much 

sensitivity (~1024 yrs)

• Tracking allows you to look for 

new physics in 2νββ decays

• R&D for future Majorana mass 

mechanism investigations?
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Doing Other Physics 
with 0νββ Experiments



Not Just 0νββ…

• Once you’ve built a large low-background detector, there’s a 
lot of other physics you can do with it!

• ββ-related searches

• Standard Model rare-event searches

• Dark matter searches

• Other BSM physics
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Other ββ-related Physics

Excited-state decays:
• 2νββ and 0νββ decays to excited states can also 

occur
• ββ decay, followed by γ emission from de-excitation
• The 2νββ decay to the 01

+ state has been measured 
in 150Nd and 100Mo. Other first measurements may be 
around the corner!

• 0νββ excited state decay measurements could help 
constrain the Majorana mass mechanism some day

Lorentz violation:
• Violation in 2νββ decay would change the spectral 

shape

63

DOI: 10.1103/PhysRevD.100.092002
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Standard Model Rare-Event Searches

Addressing uncertainties in expected rates 
of SM processes:
• Studies of in-situ cosmogenics for future 

low-background experiments
• (α, n) reactions from calibration sources 
Rare-event searches with added sources:
• The Majorana Demonstrator is now 

searching for the decay of 180mTa: 
“nature’s longest-lived excited state”

• Expected sensitivity: 1019 yrs

64

Added Ta 
foils
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Dark Matter Searches

• Many searches enabled by low energy threshold and 
low backgrounds: 

– Pseudoscalar dark matter: axion-like particles
– Vector dark matter: dark photons
– Fermionic dark matter
– Sterile neutrino
– Primakoff solar axion
– 14.4-keV solar axion

• Dark matter searches at higher energy:
– keV-scale dark matter
– Bosonic super-WIMPs

• 0νββ experiments can be competitive with 
dedicated dark matter experiments!
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Vector Boson Dark Matter

Pseudoscalar Dark Matter

arXiv:2206.10638
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https://arxiv.org/abs/2206.10638


Other BSM Searches

• Tests of fundamental
symmetries and conservations:
– Baryon number violation
– Pauli exclusion principle 

violation
• Other exotic physics:

– Quantum wavefunction collapse
– Lightly-ionizing (fractionally 

charged) particles
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Limits on fractionally charged particles

DOI: 10.1103/PhysRevLett.120.211804
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What comes after 
discovery?



Confirming a Signal

• Make sure your signal
behaves correctly as a
function of your analysis
parameters

• Depending on the
experiment, you may be able
to do an “on/off”
measurement.

• Or, if your backgrounds are 
low enough, run for longer 
and increase your signal!

• Add more mass, if you can!
• If the signal is confirmed…
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Three counts in 0νββ region: What is their origin?

! continuum
(GERDA calibrations)

" events
(GERDA physics)

! full absorption
(GERDA calibrations)

0νββ
(simulations)
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LAr anti-coincidence classifier (p.e.)

Example from LEGEND:
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Hand out the Nobel Prizes!



Where do we go from there?

• If we discover 0νββ, we’ll want to measure it in more isotopes: 
ratios between isotopes could provide insight into mechanism

• Precision measurements, along with measurements of other
neutrino properties, would let us figure out the Majorana phases:
many theories of flavor predict specific phases

• Try to measure excited-state decays to get more insight into 
mechanism

• Measure outgoing electron energies and momenta: some 
Majorana mass mechanism models make specific predictions

– Build HyperNEMO for this?
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Conclusion

• I hope you’ve enjoyed learning something about 0νββ!
• This is a rich field with a lot of ongoing activity, and big 

things coming soon!
• We’re entering a regime where discovery could come at any 

time, giving us vital insight into the nature of neutrino mass 
and potentially, the origin of the matter/anti-matter 
asymmetry.
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