Double Beta Decay III: The State of the Field

Julieta Gruszko National Nuclear Physics Summer School July 15, 2022

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Reminder from Yesterday

- Calculating NMEs for $0\nu\beta\beta$ is challenging:
 - Mean-field methods let you calculate matrix elements for large nuclei, but uncertainties are impossible to quantify
 - Ab-initio methods are advancing quickly, but can't address all $\beta\beta$ decay elements yet
- To discover 0vββ, we need very large experiments with very low backgrounds
 - Most experiments use a source=detector strategy to maximize efficiency
 - Background rejection based on event topology, location, type of interaction, and other information is helpful

Outline

- Wednesday: Why look for 0vββ?
- Thursday: How to look for $0\nu\beta\beta$
- Friday: The State of the Field
 - How Measurements Work
 - The $0v\beta\beta$ Search Landscape
 - The Experiments:
 - Liquid Scintillator Experiments
 - TPCs: Liquid and Gas
 - Bolometer Experiments
 - Germanium Experiments
 - Tracking Experiments
 - Doing other physics with $0v\beta\beta$ experiments
 - What comes after discovery?

How Measurements Work

Measuring and Setting Limits on T_{1/2}

- $0\nu\beta\beta$ experiments measure a half-life
- Before you run an experiment, you can calculate its expected half-life sensitivity:

(UL(B(t))) is the average upper limit an ensemble of identical experiments would place in the absence of a signal given B background counts. If B(t) = bt, where b is a constant, then:

Number of

ββ atoms

 $T_{1/2}^{0\nu} > \ln 2 \frac{N_a t \epsilon}{\sqrt{111} \sqrt{D(t)}}$

- If bt >> 1, $\langle UL(B(t)) \rangle = \sqrt{bt}$ (background limited)
- If bt << 1, $\langle UL(B(t)) \rangle$ = constant (background free)
- In between, you have to use Feldman-Cousins statistics

Livetime

Efficiency

Number of

predicted

background

counts in

time t

Feldman-Cousins Statistics

- In classical frequentist statistics, you have to decide
 ahead of making a measurement
 whether you'll be setting confidence
 intervals or an upper limit.
- If you "flip-flop," you will end up with under-coverage.

- Flip-flopping: If the experiment measures...
- x < 0, use a 3σ UL
- x < 3σ, use a 3σ UL
- x > 3σ, use a CL

 Feldman-Cousins gives a recipe for building confidence intervals that don't lead to under-coverage, and transition smoothly between UL and CL

How to Use Feldman-Cousins

- Look-up table for 90% CL from the Feldman-Cousins paper
- ROOT and python packages for calculating F.C. intervals are also available

$n_0 \setminus b$	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
0	0.00, 2.44	0.00, 1.94	0.00, 1.61	0.00, 1.33	0.00, 1.26	0.00, 1.18	0.00, 1.08	0.00, 1.06	0.00, 1.01	0.00, 0.98
1	0.11, 4.36	0.00, 3.86	0.00, 3.36	0.00, 2.91	0.00, 2.53	0.00, 2.19	0.00, 1.88	0.00, 1.59	0.00, 1.39	0.00, 1.22
2	0.53, 5.91	0.03, 5.41	0.00, 4.91	0.00, 4.41	0.00, 3.91	0.00, 3.45	0.00, 3.04	0.00, 2.67	0.00, 2.33	0.00, 1.73
3	1.10, 7.42	0.60, 6.92	0.10, 6.42	0.00, 5.92	0.00, 5.42	0.00, 4.92	0.00, 4.42	0.00, 3.95	0.00, 3.53	0.00, 2.78
4	1.47, 8.60	1.17, 8.10	0.74, 7.60	0.24, 7.10	0.00, 6.60	0.00, 6.10	0.00, 5.60	0.00, 5.10	0.00, 4.60	0.00, 3.60
5	1.84, 9.99	1.53, 9.49	1.25, 8.99	0.93, 8.49	0.43, 7.99	0.00, 7.49	0.00, 6.99	0.00, 6.49	0.00, 5.99	0.00, 4.99
6	2.21,11.47	1.90,10.97	1.61,10.47	1.33, 9.97	1.08, 9.47	0.65, 8.97	0.15, 8.47	0.00, 7.97	0.00, 7.47	0.00, 6.47
7	3.56,12.53	3.06,12.03	2.56,11.53	2.09,11.03	1.59,10.53	1.18,10.03	0.89, 9.53	0.39, 9.03	0.00, 8.53	0.00, 7.53
8	3.96,13.99	3.46,13.49	2.96,12.99	2.51,12.49	2.14,11.99	1.81,11.49	1.51,10.99	1.06,10.49	0.66, 9.99	0.00, 8.99
9	4.36,15.30	3.86,14.80	3.36,14.30	2.91,13.80	2.53,13.30	2.19,12.80	1.88,12.30	1.59,11.80	1.33,11.30	0.43,10.30

The original paper is a classic: <u>10.1103/PhysRevD.57.3873</u>, and some nice slides on the subject can be found at <u>https://www.pas.rochester.edu/~sybenzvi/courses/phy403/2015s/p403_19_intervals.pdf</u>

Measuring and Setting Limits on $T_{1/2}$

- After you run a 0vββ search...
 - You either see an excess at the Q value, and fit a peak with some rate to it
 - Or you don't see an excess. In that case, you set a lower limit on half-life:

$$T_{1/2}^{0\nu} > \ln(2)\frac{N_a T\epsilon}{S}$$

- S is the upper limit on the signal counts based on the observed data. Again, use F.C. to calculate if it's appropriate.
- Experiments that don't see anything report sensitivity and a limit. If they get lucky and have a downward fluctuation, limit will exceed sensitivity.

CUORE 2018 Result

Sensitivity: 7×10^{24} yrs Limit: $T_{1/2} > 1.3 \times 10^{25}$ yrs 10.1103/PhysRevLett.120.132501

Translating Half-Life to $m_{\beta\beta}$

- Need to use a particular model, the phase space factor and a nuclear matrix element to turn half-life into $m_{\beta\beta}$
- Results are generally reported for the full set of NMEs, so the upper limit in $m_{\beta\beta}$ has a range

Information from Other Neutrino Experiments

- Light-colored edges are 3σ uncertainty on neutrino mixing and mass splittings
- Measuring hierarchy would tell us which branch we need to look in
- Mass measurement would tell us which vertical band to look in

The 0vββ Search Landscape

Current Best Limits on 0vßß

Experiment	Isotope	Exposure [kg yr]	T ^{0ν} _{1/2} [10 ²⁵ yr]	m _{ββ} [meV]
Gerda	⁷⁶ Ge	127.2	18	79-180
Majorana	⁷⁶ Ge	26	8.3	113-269
KamLAND- Zen	¹³⁶ Xe	970	23	36-156
EXO-200	¹³⁶ Xe	234.1	3.5	93-286
CUORE	¹³⁰ Te	1038.4	2.2	90-305

NSAC recommendation: quote a range of $m_{\beta\beta}$ using the largest and smallest available NME from the 4 main calculation methods; g_A =1.27; no contribution from the contact term

The Ton-Scale Generation

- The next-generation of experiments seeks to cover the IO region in discovery mode
- That will take O(1 ton) of isotope
- 3 candidate experiments with US participation, in addition to other efforts: LEGEND, nEXO, and CUPID
- All 3 were evaluated by the DOE in Summer 2021. DOE-NP is seeking international support to pursue all 3 experiments.

Discovery Sensitivity for the "Big 3"

10.1103/PhysRevC.104.L042501

Discovery and Sensitivity

- All 3 experiments cover the IO for some matrix elements, and miss for others
- Larger background = more difference between discovery and exclusion

TABLE I. Nuclear matrix elements M for $0\nu\beta\beta$ decay mediated by light neutrinos, calculated with the NSM, QRPA, EDF, and IBM methods. The ranges correspond to the minimum and maximum values obtained with the same manybody method.

	Ref.	76 Ge	^{100}Mo	136 Xe
	[35]	2.89, 3.07	-	2.28, 2.45
NSM	[36]	3.37, 3.57	_	1.63, 1.76
IN DIVI	[37]	2.66	_	2.39
	All	2.66 - 3.57	—	1.63 - 2.45
	[38]	5.09	_	1.55
	[39]	5.26	3.90	2.91
ORPA	[40]	4.85	5.87	2.72
QIU A	[41]	3.12, 3.40	_	1.11, 1.18
	[42]	_	_	3.38
	All	3.12 - 5.26	3.90 - 5.87	1.11 - 3.38
	[43]	4.60	5.08	4.20
FDF	[44]	5.55	6.59	4.77
EDF	[45]	6.04	6.48	4.24
	All	4.60 - 6.04	5.08 - 6.59	4.20 - 4.77
	$[46]^{a}$	5.14	3.84	3.25
IBM	[47]	6.34	5.08	3.40
	All	5.14 - 6.34	3.84 - 5.08	3.25 - 3.40

From Agostini et al., PRC 104, L042501 (2021)

Recent and Proposed Experiments

The Experiments

Liquid Scintillators

Liquid Scintillator Detector Concept

Measure isotropic scintillation light to extract energy

- Self-shielding, fiducialization
- Interior materials can be made extremely pure
- Some event topology and particle ID, with additional future improvements expected
- Measurement with and without isotope is possible
- Other strengths: flexible and scalable design
- Weakness: energy resolution and spatial resolution; large "target" for cosmogenics

KamLAND-Zen

- Adaptation of existing reactor neutrino experiment
- ¹³⁶Xe concentrated in inner balloon, holds LS doped with 3.13% enriched Xenon by weight
- Relatively shallow site, spallation backgrounds dominate
- KamLAND-Zen 400: 2011-2014
 - Phase I: 320 kg 90% enriched ¹³⁶Xe
 - Phase II: 380 kg
 - T_{1/2} > 1.07 × 10²⁶ yr, m_{$\beta\beta$} < 61–165 meV
- KamLAND-Zen 800:
 - Data-taking began in January 2019
 - Scintillator purification campaign
 - Larger, cleaner inner balloon
 - 750 kg enriched ¹³⁶Xe
- Currently has the largest single-experiment half-life limit: $T_{1/2} > 2.3 \times 10^{26}$ yrs

Backgrounds in KamLAND-Zen

TABLE I: Summary of the estimated and best-fit background contributions for the frequentist and Bayesian analyses in the energy region 2.35 < E < 2.70 MeV within the 1.57-m-radius spherical volume. In total, 24 events were observed.

Background	Estimated	Best-fit					
		Frequentist	Bayesian				
136 Xe $2\nu\beta\beta$	-	11.98	11.95				
	Residual radioactivity in Xe-LS						
²³⁸ U series	0.14 ± 0.04	0.14	0.09				
²³² Th series	-	0.84	0.87				
External (Radioactivity in IB)							
²³⁸ U series	-	3.05	3.46				
²³² Th series	-	0.01	0.01				
Neutrino interactions							
$^8{\rm B}$ solar $\nu~e^-$	$\mathrm{ES} \qquad 1.65 \pm 0.04$	1.65	1.65				
Spallation products							
Long-lived	$7.75\pm0.57~^\dagger$	12.52	11.80				
^{10}C	0.00 ± 0.05	0.00	0.00				
$^{6}\mathrm{He}$	0.20 ± 0.13	0.22	0.21				
137 Xe	0.33 ± 0.28	0.34	0.34				

[†] Estimation based on the spallation MC study. This event rate constraint is not applied to the spectrum fit. Energy resolution: $6.7\%/\sqrt{E}$ (MeV) Vertex resolution 13.7 cm/ \sqrt{E} (MeV)

Poor energy resolution means that $2\nu\beta\beta$ is the largest background

Machine Learning-Based Analysis: KamNET

- Machine learning model using LSTM + spherical CNN can be used to reject balloon and spallation backgrounds
- Complementary to other spallation-tagging methods
- <u>arXiv:2203.01870</u>

KamLAND2-Zen

Primary goal: improve energy resolution

Secondary goal: record longer-buffer data to improve cosmogenic rejection

- 1 ton of ^{enr}Xe
- New, brighter LABbased scintillator
- Winston cones and HQE PMTs
- Scintillating balloon film
- Improved front-end electronics

SNO+

- Adaptation of existing solar neutrino experiment
- Switch from heavy water to liquid scintillator
- ^{nat}Te loaded throughout
- Deeper site, solar v backgrounds expected to dominate Status
- Ultra-pure water Cherenkov phase completed
 - Solar neutrino and BSM physics results released
- Unloaded liquid scintillator phase completed, scintillator characterized
- Tellurium loading underway @ 0.3%
 - Expected loading: 800 kg of ¹³⁰Te
- Expected 5 year sensitivity:
- $T_{1/2}$ > 9×10²⁵ yrs , m_{$\beta\beta$} < 55 133 meV

Initial loading: 0.5% natural Te by weight

Backgrounds in SNO+

- Expected backgrounds before running
- Since then, U and Th backgrounds have been measured to be smaller than expected!
- Solar neutrino scattering will dominate

arXiv:1809.05986

SNO+ Future Improvements

Planning to move to 3% ^{nat}Te loading for future data-taking

No hardware changes needed: just add more Te

Extends exclusion sensitivity to > $\sim 10^{27}$ yrs

Multi-purpose Liquid Scintillator Experiments

JUNO 0vββ Search Proposal:

- 50 tons of 136 Xe, expected energy resolution better than 2% (σ /E)
- Exclusion sensitivity: 1.8×10²⁸ yr, 5-12 meV
- 0vββ upgrade starting in 2030s

Eur. Phys. J. C (2020) 80:416

1400

Light yield (N_{hits}/MeV)

1200

600

800

1000

1800

1600

Solar Neutrino Scattering in Liquid Scintillator Detectors

- How to reduce this "irreducible background"?
- If you can measure Cherenkov and scintillation light (separately) you can tell them apart
- Timing- and wavelength-based separation have been demonstrated in benchtop test-stands

R&D Efforts for Liquid Scintillators

- Hybrid Cherenkov/scintillation detectors:
 - Reduce backgrounds by measuring 2 e- signature
 - Timing-based separation: slower fluors, faster photodetectors
 - Wavelength-based separation: dichroic filers
- New scintillator cocktails and isotopic loading techniques:
 - Water-based Liquid Scintillator: purification and stability, gadolinium loading, pulse shape discrimination
 - Tellurium loading: several % loading demonstrated, increased loading and purification R&D underway
 - Quantum dot-based isotope loading: production scaling, stability, and optical performance studies underway
- Advanced photon sensors and collectors:
 - LAPPDs: ongoing R&D on high-channel-count readout techniques, self-triggering and synchronization, streamlined fabrication
- Advanced simulation and analysis techniques

Mid-Scale Test Stands for Future Liquid Scintillator Detectors

• ANNIE: first large-scale test of LAPPDs, planning for Gd-loaded WbLS

ANNIE detector and LAPPD module

NuDot: ¹/₂ ton test stand Eos: few-ton WbLS

- NuDot: timing-based Cherenkov/scintillation separation and quantum dot loading
- Eos: Cherenkov/scintillation separation and WbLS, validation of microphysics simulations at low energy

The Experiments

TPCs: Liquid and Gas

Liquid Xenon TPC Concept

- Single-phase time projection chamber, made out of enriched Xenon
- Read out ionization and scintillation
- Dark matter experiments use dualphase to amplify the ionization signal – not needed for higher-energy ββ
- Take advantage of self-shielding, (nonbinary) fiducialization, and event topology information to reduce backgrounds
- Better energy resolution and spatial resolution than LS, while still being monolithic
- Weaknesses: background peak overlapping Q_{ββ}, cost/Xe availability

EXO-200

200 kg TPC with a center wire grid cathode

3500

2000

1000

3000 25: 25:

scintillation 1500

- Ran starting in 2011, then stopped in 2014 due to WIPP fire
- Upgrade in 2016: improved electronics led to better energy resolution
- Use anticorrelation between charge and scintillation to improve resolution: $\sigma/E = 1.15\%$

J. Gruszko – DBD III – NNPSS 2022

EXO-200 Results

EXO-200 $0\nu\beta\beta$ search results Detector upgrade and improved ×10²⁴ 100 sensitivity analysis techniques have led to 2019 68% C.I. of limits data limit linear sensitivity growth over time 80 M-T projection 2018 $T_{1/2} > 3.5 \times 10^{25}$ yrs <u> 동</u> 60 2 SS 40 Ra-226 2014 1.0 **Deep Neural** $2\nu\beta\beta$ $0\nu\beta\beta$ 2012 Network, stand-20 counts Start of Phase-2 off distance, and 50 150 200 Normalized 0.2 100 250 cluster size used Exposure [kg · yr] MS ⊥.0**⊢____**___ 2012: Phys.Rev.Lett. 109 (2012) 032505 to reduce 2014: Nature 510 (2014) 229-234 backgrounds 2018: Phys. Rev. Lett. 120, 072701 (2018) 2019: arXiv 1906.02723 0.5 1.0 Sig-like Bkg-like 0ν discriminator

Proposed Next-Generation: nEXO

- Large single-phase LXe TPC, building on EXO-200 experience
- Switches to charge tiles for ionization readout, SiPMs for light readout

- 5000 kg of ^{enr}Xe
- Enriched to 90% ¹³⁶Xe
- Energy res. (σ_E/E): 0.8%
- Discovery sensitivity: $T_{1/2} \sim 7.4 \times 10^{27}$ yrs
- $m_{\beta\beta}$ discovery sensitivity: 5-27 meV

High-Pressure Gas TPC Concept

High-pressure gas Xenon time projection chamber:

- Energy resolution is intrinsically better in gas
- Event topology tracking information, fiducialization, and particle ID
- Can actually see β tracks! Other TPC gases could use this technique: SeF₆ in R&D

ββ Signal

e- Track Background

NEXT-White

- 5kg demonstrator TPC, ran 2016-2021
- 10 bar pressure, energy resolution: 0.91% σ/E
- Right now, one issue is relatively low efficiency, larger detector will improve that

Future Directions for NEXT

NEXT-100

- 100 kg at 15 bar
- Construction started in 2021
- Expected sensitivity: 6×10²⁵ yrs

NEXT-HD

- 1230 kg of ^{enr}Xe
- 1109 kg of ¹³⁶Xe
- Energy res. (FWHM/E): 0.5%
- BI < 4x10⁻⁶ cnts/(keV kg yr)
- Discovery sensitivity: $T_{1/2} \sim 2.7 \times 10^{27}$ yrs
- m_{ββ} discovery sensitivity: 8-45 meV

Barium Tagging

 $^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^{-}$

"Tagging" Ba daughter has potential to eliminate all but 2v66 backgrounds

Materials courtesy of the NEXT and nEXO Collaborations, from B. Fairbank

- Considered a possible upgrade path for the tonne-scale TPC experiments
- Could extend sensitivity (further) into the normal ordering region!

R&D for Barium Tagging

RF carpet-based transport for NEXT, *arXiv:2111.11091 (2021)*

- Feasible single-ion sensing techniques have been demonstrated in GXe and LXe
- Next steps: Barium capture, transport, and sensing in more-realistic detector environments

Other TPC R&D

For Xe, isotope acquisition is a challenge:

- Currently depends on liquid oxygen production for steel industry, limiting supply
- R&D on alternative extraction methods: Xeadsorbing materials, could be implemented at CO2 capture plants
- If acquisition can be resolved, kiloton-scale GXe and LXe TPCs should be feasible:
- R&D: increasing light detection efficiency, Cherenkov light-based background reduction
- Projected sensitivity ~10³⁰ yrs

Other ideas:

- DUNE and DarkNoon: Xe-doped LAr; R&D on energy resolution, gas mixture handling, and Cherenkov/scintillation response
- SeF₆ TPCs: R&D on ion readout techniques

Physical Review D 104 (11): 112007 (2021)

The Experiments

Bolometer Experiments

Bolometer Detector Concept

- Keep crystals at ~15 mK temperature in dilution fridge
- Interactions create phonons, read out with temperature sensor
- Some experiments use scintillating crystals and add a light detector: lets you distinguish α from β/γ

- 988 natural-abundance TeO₂ crystals operated as bolometers
- 742 kg of detectors, 206 kg of ¹³⁰Te
- Energy resolution is 7.4 8.3 keV FWHM at $Q_{\beta\beta}$
- Taking data since 2017
- Will continue to take data until CUPID begins

CUORE Results

DOI: 10.1038/s41586-022-04497-4

CUPID

- Tonne-scale bolometer approach demonstrated in CUORE
- ¹⁰⁰Mo Q-value: 3.03 MeV
- Scintillating bolometer technique demonstrated in CUPID-Mo and other experiments, allows for α rejection
- Switch from CUORE crystals to scintillating bolometers with light readout in existing infrastructure
- Other options for crystal/isotope: ZnSe (candidate ⁸²Se), CdWO₄ (candidate ¹¹⁶Cd), and TeO₂ (candidate ¹³⁰Te)

Material provided by CUORE, CUPID, CUPID-Mo, and CUPID-0 Collaborations

- Crystal: Li₂¹⁰⁰MoO₄
- Enrichment > 95% \rightarrow 253 kg of ¹⁰⁰Mo
- Energy res. (FWHM): 5 keV
- BI < 10⁻⁴ cnts/(keV kg yr)
- Discovery sensitivity: $T_{1/2} \sim 1.1 \times 10^{27}$ yrs
- m_{ββ} discovery sensitivity: 12-20 meV

Beyond Ton-Scale in Bolometers

- R&D Areas: high-speed superconducting sensors, multiplexed readout technologies, active γ veto, CMOS and ASIC instrumentation for quantum sensors, superconducting crystal coatings for improved PSD
- Could adopt a diffuse staging technique, with sites around the world

Parameter	CUPID Baseline	CUPID-reach	CUPID-1T
Crystal	$\text{Li}_2^{100}\text{MoO}_4$	$\text{Li}_2^{100}\text{MoO}_4$	$Li_2^{100}MoO_4$
Detector mass (kg)	472	472	1871
¹⁰⁰ Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index (counts/(keV·kg·yr))	10^{-4}	2×10^{-5}	5×10^{-6}
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$	$2.3 \times 10^{27} \text{ y}$	$9.2 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} \text{ y}$	2×10^{27} y	$8 \times 10^{27} \text{ y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	10-17 meV	8.2-14 meV	4.1-6.8 MeV
$m_{\beta\beta}$ discovery sensitivity (3 σ)	$1220~\mathrm{meV}$	$8.815~\mathrm{meV}$	$4.47.3~\mathrm{meV}$

"Toward Sensitivity to the Neutrino Normal Hierarchy with Quantum Calorimetry," D. Speller, Y. Kolomensky, L. Winslow, Snowmass LOI

The Experiments

Germanium Experiments

Germanium Detector Concept

- Single-crystal semiconductor diode made from enriched Ge
- Read out ionization signal
 – pulse shape can be used to distinguish multi-site and surface events from ββ events
- Excellent energy resolution: $\sim 0.05\% \sigma/E$

γ-background (multi-site)

Ge-Based 0vββ Program

MJD: Final results recently announced

LEGEND-200: Now in commissioning

LEGEND-1000: Conceptual design development ongoing

arXiv: 2107.11462

The MAJORANA DEMONSTRATOR

- ~30kg of enriched Ge detectors in a compact graded shield
- Innovations:
 - make underground electroformed copper ("the cleanest copper in the world")
 - Low-mass low-noise lowbackground electronics enable the best energy resolution of any 0vββ experiment and a low energy threshold

The MAJORANA DEMONSTRATOR Results

Final enriched detector active exposure:

64.5 ± 0.9 kg yrs

Background Index at 2039 keV in lowest background config:

15.7 ± 1.4 cts/(FWHM t yr)

Background Index:

 $(6.2 \pm 0.6) \times 10^{-3} \text{ cts/(keV kg yr)}$

Energy resolution (FWHM): 2.5 keV

Median T_{1/2} Sensitivity: 8.1×10^{25} yr (90% C.I.) 65 kg-yr Exposure Limit: T_{1/2} > 8.3×10^{25} yr (90% C.I.)

LAr Active Veto

GERDA Final-Exposure Spectrum

Courtesy of the GERDA Collaboration

GERDA Results

Frequentist: $N^{0v} = 0$ best fit, $T_{1/2} > 1.8 \cdot 10^{26}$ yr at 90% C.L.

LEGEND-200

- 200 kg of HPGe ICPC detectors enriched to 91% ⁷⁶Ge, operated in active LAr shield
- Upgrade of GERDA infrastructure
- Uses new, larger inverted-coxial point-contact detectors
- >2.5x background reduction relative to GERDA expected
- Commissioning underway, full detector deployment expected this year
- Final expected sensitivity: T_{1/2} > 1 x 10²⁷ yrs

LEGEND-1000

- New cryostat either at LNGS or SNOLAB; 4 independent payloads with depleted UAr in inner volumes
- 1000 kg of enriched Ge detectors: fabricate 870 kg of new detectors; use 130 kg from LEGEND-200; recycle 50 kg of small detectors
- Multi-dimensional analysis nearly eliminates γ , surface α and β backgrounds
- LEGEND goal: BI < 1×10^{-5} cnts/keV kg yr, Discovery up to 1.3×10^{28} yrs

Projected spectrum: even a signal at the bottom of the inverted ordering will be visible to the eye

Multi-dimensional analysis can also be conducted

The Experiments

Tracking Experiments

Tracking Detector Concept

- Source ≠ Detector!
- Thin foils of ββ decay materials sandwiched between tracking planes and surrounded by calorimeters
- Magnetic field for charge ID
- Allows full track reconstruction of ββ decays and energy measurement
- Can use any isotope
- Foils have to be just 0.3mm thick so βs can escape

Images courtesy of the NEMO Collaboration

- Ran from 2003-2011 with 10 kg total mass
- Measured many isotopes simultaneously (including some first measurements)

Images courtesy of the NEMO Collaboration

Super-NEMO and Science Goals

- Using ⁸²Se foils for initial run
- 1 module to start, up to 20 after that
- Low mass, so not much sensitivity (~10²⁴ yrs)
- Tracking allows you to look for new physics in 2vββ decays
- R&D for future Majorana mass mechanism investigations?

Doing Other Physics with 0vββ Experiments

Not Just 0vββ...

- Once you've built a large low-background detector, there's a lot of other physics you can do with it!
- ββ-related searches
- Standard Model rare-event searches
- Dark matter searches
- Other BSM physics

Other ββ-related Physics

Excited-state decays:

- 2vββ and 0vββ decays to excited states can also occur
- ββ decay, followed by γ emission from de-excitation
- The $2\nu\beta\beta$ decay to the 0_1^+ state has been measured in ^{150}Nd and ^{100}Mo . Other first measurements may be around the corner!
- 0vββ excited state decay measurements could help constrain the Majorana mass mechanism some day

Lorentz violation:

Violation in 2vββ decay would change the spectral shape

Standard Model Rare-Event Searches

Addressing uncertainties in expected rates of SM processes:

- Studies of in-situ cosmogenics for future low-background experiments
- (α, n) reactions from calibration sources Rare-event searches with added sources:
- The Majorana Demonstrator is now searching for the decay of ^{180m}Ta: "nature's longest-lived excited state"
- Expected sensitivity: 10¹⁹ yrs

Pseudoscalar Dark Matter

Dark Matter Searches

- Many searches enabled by low energy threshold and low backgrounds:
 - Pseudoscalar dark matter: axion-like particles
 - Vector dark matter: dark photons
 - Fermionic dark matter
 - Sterile neutrino
 - Primakoff solar axion
 - 14.4-keV solar axion
- Dark matter searches at higher energy:
 - keV-scale dark matter
 - Bosonic super-WIMPs
- 0vββ experiments can be competitive with dedicated dark matter experiments!

Vector Boson Dark Matter

Other BSM Searches

- Tests of fundamental symmetries and conservations:
 - Baryon number violation
 - Pauli exclusion principle violation
- Other exotic physics:
 - Quantum wavefunction collapse
 - Lightly-ionizing (fractionally charged) particles

DOI: 10.1103/PhysRevLett.120.211804

What comes after discovery?

Confirming a Signal

- Make sure your signal behaves correctly as a function of your analysis parameters
- Depending on the experiment, you may be able to do an "on/off" measurement.
- Or, if your backgrounds are low enough, run for longer and increase your signal!
- Add more mass, if you can!
- If the signal is confirmed...

Example from LEGEND:

Three counts in $0\nu\beta\beta$ region: What is their origin?

Hand out the Nobel Prizes!

Where do we go from there?

- If we discover 0vββ, we'll want to measure it in more isotopes: ratios between isotopes could provide insight into mechanism
- Precision measurements, along with measurements of other neutrino properties, would let us figure out the Majorana phases: many theories of flavor predict specific phases
- Try to measure excited-state decays to get more insight into mechanism
- Measure outgoing electron energies and momenta: some Majorana mass mechanism models make specific predictions
 - Build HyperNEMO for this?

Conclusion

- I hope you've enjoyed learning something about 0vββ!
- This is a rich field with a lot of ongoing activity, and big things coming soon!
- We're entering a regime where discovery could come at any time, giving us vital insight into the nature of neutrino mass and potentially, the origin of the matter/anti-matter asymmetry.