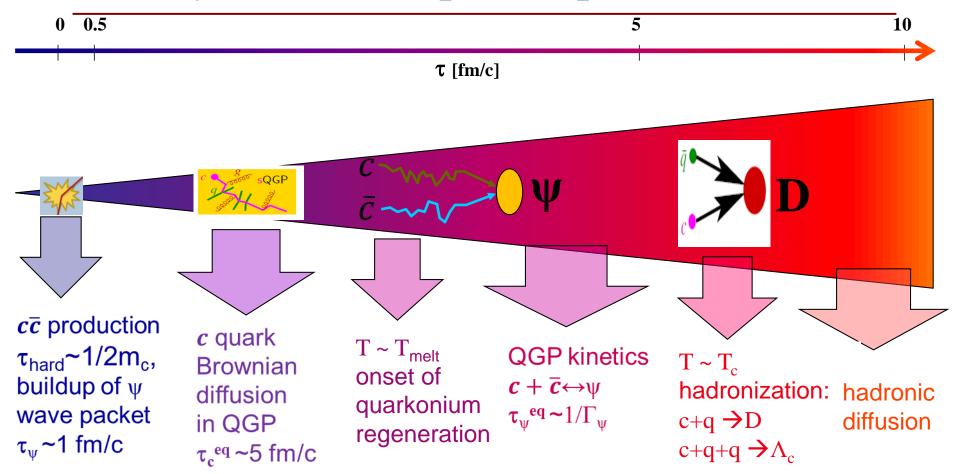
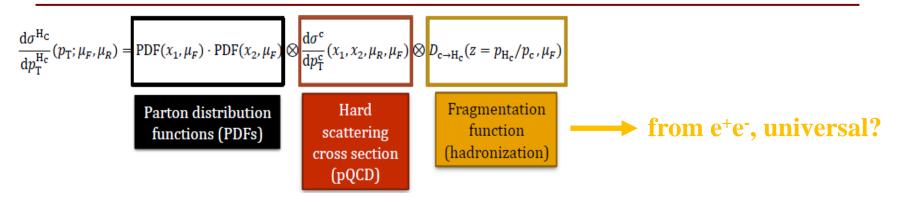
QCD物理研讨会暨基金委重大项目学术交流会

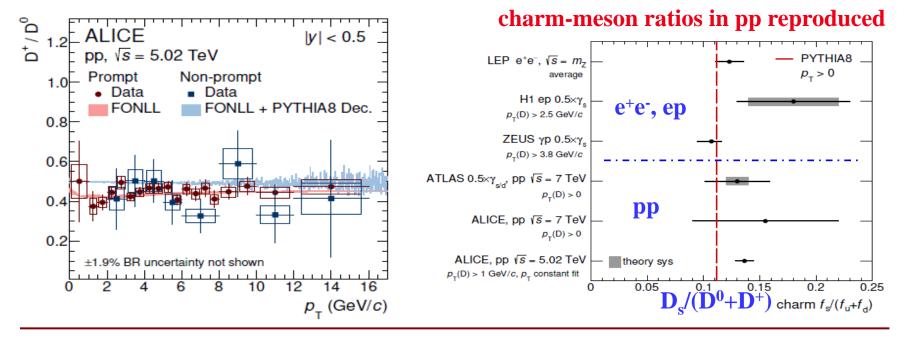

29-31 July 2022 山东大学青岛校区

Selected Overview of Heavy-flavor Production

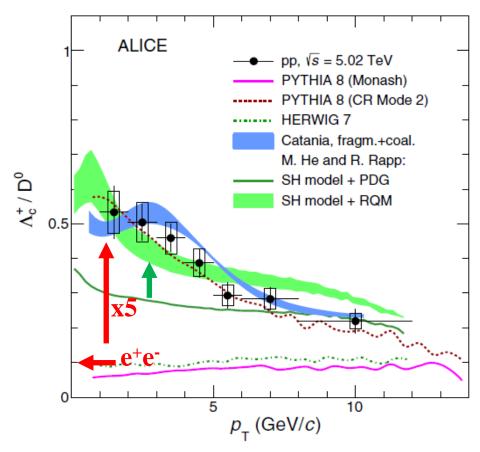
Min He

Nanjing Univ. of Sci. & Tech., Nanjing, China

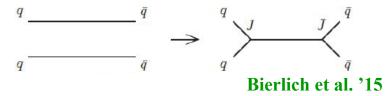

Heavy flavor transport as probes of QGP


Part I: Charm-hadron production in pp

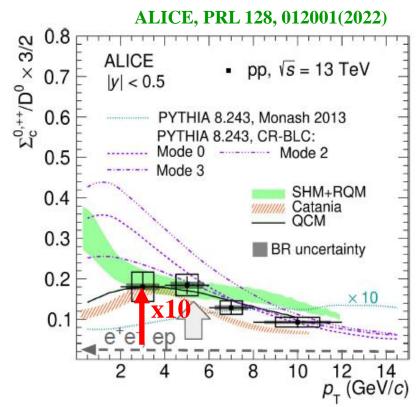
- PQCD factorization & fragmentation
- $\rightarrow \Lambda_c/D^0$ enhancement vs hadronization models
- $\triangleright \Sigma_c \& \Xi_c$ production


pQCD factorization & fragmentation

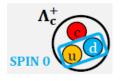
❖ phenomenological FF: assumed universal & constrained by e⁺e⁻



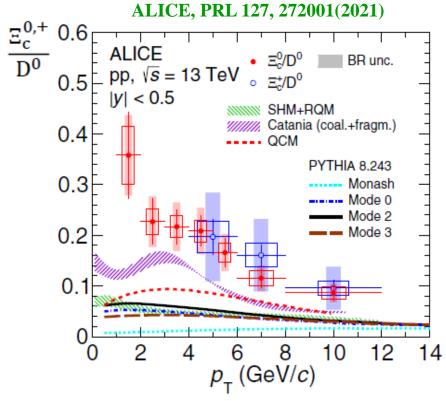
Λ_c^+/D^0 @ 5 TeV pp collisions


ALICE, PRL 127, 202301(2021) ALICE, PRC 104, 054905(2021)

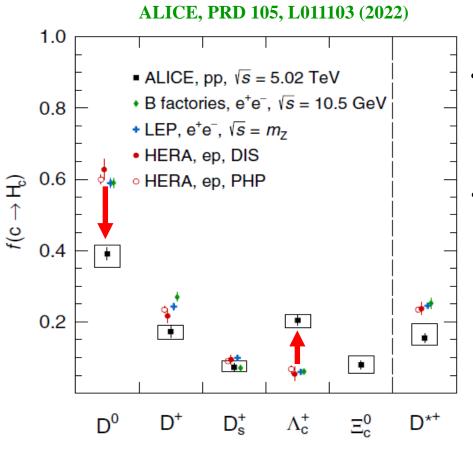
PYTHIA8: Color-reconnection with junctions frag. into baryons



- Catania: c-q(-q) coalescence in a small QGP fireball Minissale et al. '21
- Statistical hadronization in q-rich environment (unlike e+e-)
 - augmented by "missing" charm-baryons assuming relative chemical equilibrium
 - Λ_c^+ enhanced at low p_T by feeddowns MH & Rapp '19


$\Sigma_{c}/D^{0} \& \Xi_{c}/D^{0}$

Σ_c/D⁰ x10 enhanced despite
 more massive spin-1 diquark



 Ξ_c/D^0 ratio underestimated by all models

 $\Xi_{\mathbf{c}}^+$

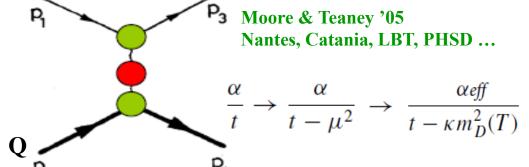
Take-aways from Part I

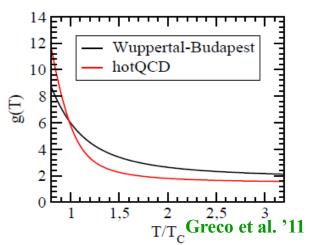
charm quark fragmentation is non-universal from e⁺e⁻ to pp

• $c \rightarrow \Lambda_c$ much enhanced vs $c \rightarrow D^0$ reduced

- full charm-hadrons measured dσ^{cc}/dy~1.16 mb at mid-y
 - → significant impact on charmonia production

Part II: Charm-hadron production in AA


- ➤ Microscopic interactions & diffusion coefficient
- ➤ Hadronization: Coalescence, Resonance Reco., SHMc
- > D-meson R_{AA} & v₂: Diffusion coefficient
- Charm hadro-chemistry: Λ_c/D⁰


Transport coefficient: pQCD vs T-matrix

HQ Brownian diffusion via Fokker-Planck

$$\frac{\partial}{\partial t} f_Q(t, p) = \gamma \frac{\partial}{\partial p_i} [p_i f_Q(t, p)] + D_p \Delta_{\vec{p}} f_Q(t, p) \qquad \gamma = A \sim \int /T_{Qj} /2 (1 - \cos \theta) f^j$$

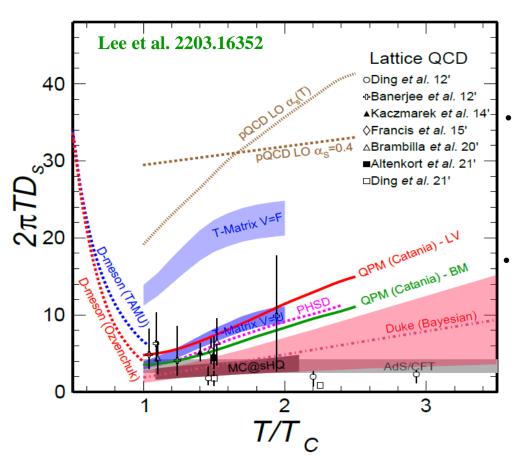
 \Leftrightarrow effective Born diagram w/ large α_s

❖ T-matrix: coupled two- and one-body integral equations

$$\begin{array}{c|c}
Q \\
\hline
T = V + V T
\end{array}$$

$$Q - \Sigma_Q - = T$$

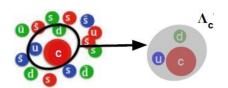
TAMU '05-'19


T-matrix approach: Spectral + Transport Properties

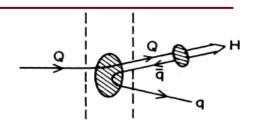
M. He

Transport coefficient: $\mathcal{D}_{s}(2\pi T)$

♦ HQ spatial diffusion coefficient: \mathcal{D}_s =T/m_QA(p=0)=T/m_Qγ



models & lattice $\mathcal{D}_{\rm s}(2\pi T)\sim 2-4$ near T_c, x10 smaller than pQCD


maximum coupling strength near T_c, remnant of confining force?

HQ hadronization in QGP

Coalescence:

vs. Fragmentation

Instantaneous coalescence models (ICM)

$$f_h(\boldsymbol{p}_h') = \int \Big[\prod_i d\boldsymbol{p}_i f_i(\boldsymbol{p}_i)\Big] W(\{\boldsymbol{p}_i\}) \delta(\boldsymbol{p}_h' - \sum_i \boldsymbol{p}_i) \quad \text{Fries et al., Greco et al., Voloshin '03}$$

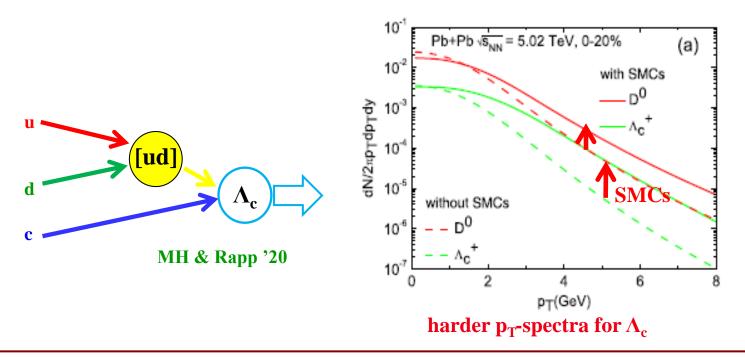
- static Wigner distribution w/ hadron radius
- equilibrium limit challenging at low p_T
- improvement: c-q(-q) form excited cluster + decay

Greco et al. '04, Oh et al.'09, Plumari et al.'18, Cao et al. '16, '20, Katz '20, Li+Liao '20

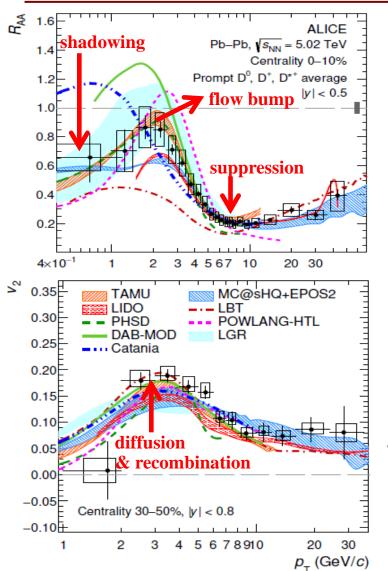
Beraudo et al. '15, '22 Cao et al.'20

- ❖ Statistical hadronization with charm (SHMc) Andronic et al. '21
 - thermalized c-quarks hadronize at T_c

$$\frac{\mathrm{d}N(h_{oc,\alpha}^i)}{\mathrm{d}y} = g_c^\alpha \, V \, n_i^{\mathrm{th}} \frac{I_\alpha(N_c^{\mathrm{tot}})}{I_0(N_c^{\mathrm{tot}})} \, \propto \mathrm{g_c^\alpha} \leftarrow \mathrm{d}\sigma^{\mathrm{c}\overline{\mathrm{c}}}/\mathrm{d}\mathrm{y}$$


p_T-spectrum by hydrodynamic blast wave at T_c

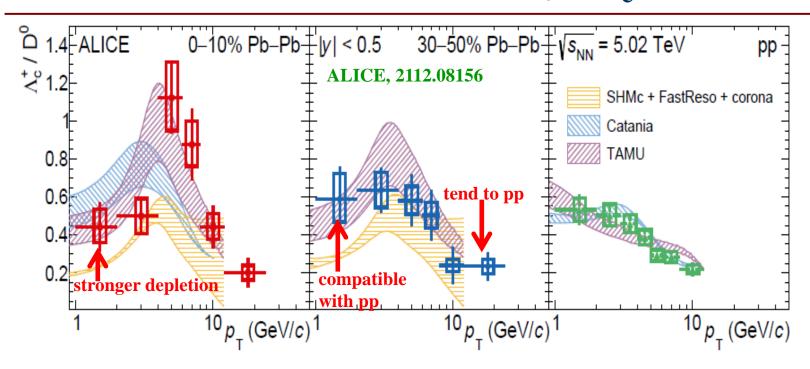
HQ hadronization II


Resonance recombination model (RRM) Ravagli et al.'07, MH et al.'12

$$f_M(\vec{x}, \vec{p}) = \frac{\gamma_M(p)}{\Gamma_M} \int \frac{d^3 \vec{p}_1 d^3 \vec{p}_2}{(2\pi)^3} f_q(\vec{x}, \vec{p}_1) f_{\bar{q}}(\vec{x}, \vec{p}_2) \, \underline{\sigma_M(s)} v_{\rm rel}(\vec{p}_1, \vec{p}_2) \delta^3(\vec{p} - \vec{p}_1 - \vec{p}_2)$$

- $\sigma_M(s)$ resonant cross section: energy conservation & equilibrium limit
- 3-body RRM & space-momentum correlations (SMCs) → enhancing Λ_c/D⁰

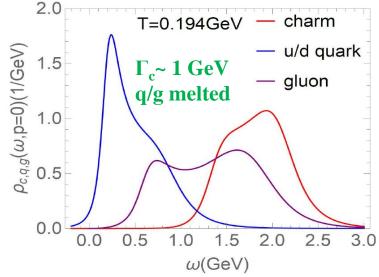
D-meson R_{AA} & v_2 : extracting $\mathcal{D}_s(2\pi T)$



ALICE, JHEP01(2022)174; PLB 813(2021)136054

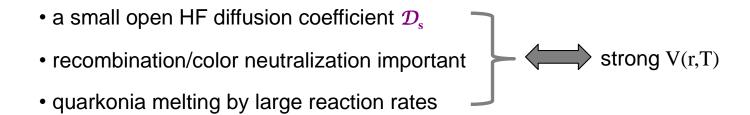
Model	χ^2/ndf	
	R_{AA}	v_2
Catania [6, 7]	(143.8/30)	(14.0/8)
DAB-MOD [9]	234.1/30	9.8/6
LBT [10, 11]	411.8/30	15.8/12
(LIDO [13])	(46.4/26)	62.0/11
LGR [12]	(9.2/30)	(15.5/11)
MC@sHQ+EPOS2 [8]	(56.6/30)	(5.7/12)
PHSD [5]	294.7/30	19.6/11
POWLANG-HTL [3, 4]	468.6/30	13.5/8
TAMU [2]	(30.2/30)	8.15/9

- models with $\chi^2/\text{ndf} < 5$ (2) for R_{AA} (v_2) • $\mathcal{D}_s(2\pi T) = 1.5-4.5$ near T_c
- caveat: also affected by hadronization, hydro, hadronic phase


Charm hadro-chemistry: Λ_c/D^0

- Catania: instantaneous coalescence + fragmentation Plumari et al. '18
- SHMc: hydrodynamic blast wave spectrum on PDG-only baryons + corona pp
 Andronic et al. '21
- TAMU: RQM charm-baryons + RRM w/ SMCs integrated ratio compatible with pp
 MH & Rapp '20

Take-aways from Part II


- Heavy-quark diffusion
 - $\mathcal{D}_{s}(2\pi T)=1.5-4.5$ near T_{c} \Rightarrow scattering rate Γ_{coll} ~3/ \mathcal{D}_{s} ~1 GeV > $M_{q,g}$ \Rightarrow thermal partons melt, Brownian markers survive
 - strong coupling via remnants of confining force

- Heavy-quark hadronization
 - recombination → p_T-dependent charm hadro-chemistry
 - p_T -integrated Λ_c/D^0 compatible with pp \rightarrow kinematic redistribution in p_T in AA

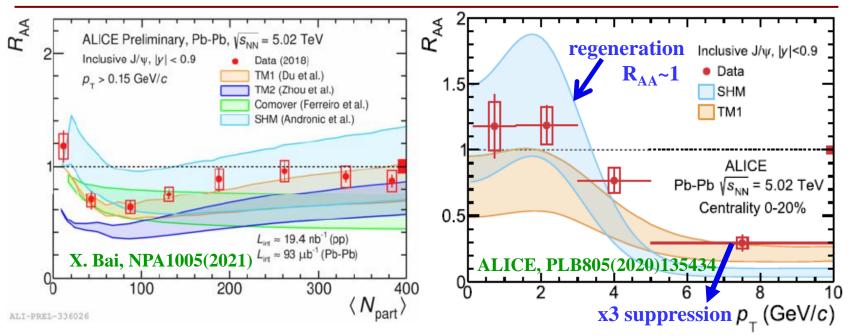
Summary & outlook

HFs: excellent probes of sQGP structure, transport properties, in-medium force & hadronization


→ connection between open- & hidden-HF, e.g. via J/ψ regeneration (not discussed here)

Thanks for attention!

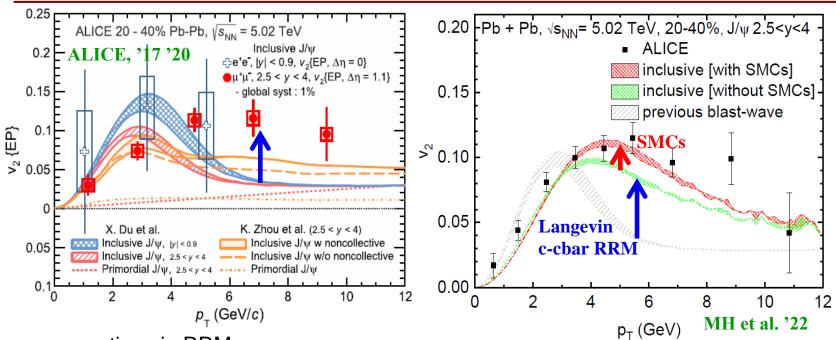
Part III: Heavy quarkonium production in AA


- Strong HQ potential
- Semi-classical approach: suppression vs regeneration
- \rightarrow J/ ψ v₂ puzzle
- > Open quantum system approach to Y states

Extraction of HQ potential

M. He

J/ψ: suppression vs regeneration


• semi-classical transport Du et al. '15, Zhou et al. '14, Ferreiro et al. '14

$$\frac{dN_{\Psi}(\tau(T))}{d\tau} = -\Gamma_{\Psi}(T)[N_{\Psi}(\tau(T)) - N_{\Psi}^{\rm eq}(T)]$$
 reaction rate Γ_{Ψ} regeneration toward equilibrium

• SHMc: hydrodynamic blastwave spectrum + pp corona Andronic et al. '19

$$\frac{\mathrm{d}N(h_{hc}^j)}{\mathrm{d}y} = g_c^2 V n_j^{\text{th}} \propto g_c^2 \leftarrow \mathrm{d}\sigma^{\text{ccbar}}/\mathrm{d}y$$

J/ψ "v₂ puzzle"

regeneration via RRM

$$f_{\Psi}(\vec{x}, \vec{p}) = C_{\Psi} \frac{E_{\Psi}(\vec{p})}{m_{\Psi} \Gamma_{\Psi}} \int \frac{d^{3} \vec{p_{1}} d^{3} \vec{p_{2}}}{(2\pi)^{3}} f_{\underline{c}}(\vec{x}, \vec{p_{1}}) f_{\underline{c}}(\vec{x}, \vec{p_{2}}) \times \sigma_{\Psi}(s) v_{\text{rel}}(\vec{p_{1}}, \vec{p_{2}}) \delta^{3}(\vec{p} - \vec{p_{1}} - \vec{p_{2}})$$

transported $c \& \overline{c}$ quark spectra constrained by D-meson observables

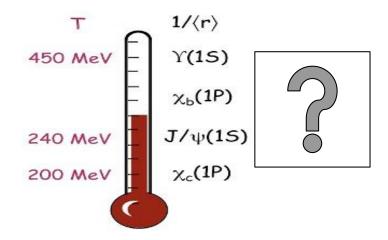
- off-equilibrium c/\bar{c} spectra + space-momentum correlations (SMCs)
 - → regeneration up to p_T~8 GeV → v₂ enhanced

Open quantum system approach to Y states

❖ OQS + pNRQCD → Lindblad equation Brambilla et al. '17-21, Yao et al., '21, Blaizot '18 Akamatsu '21, Rothkopf '20, Gossiaux et al. '21

$$\frac{d\rho(t)}{dt} = -i[H,\rho(t)] + \sum_n \left(C_n \rho(t) C_n^\dagger - \frac{1}{2} \{ C_n^\dagger C_n, \rho(t) \} \right) \qquad M \gtrsim 1/a_0 \gg \pi T \sim m_D \gg E.$$

- quantum transition between different states included, lacking in semi-classical
- regeneration currently limited to diagonal $b \, ar{b}$
- Coulomb potential + transport coefficient κ encoded in C_n



Y(1S) in-medium width $\Gamma_{Y(1S)}=3a_0^2\kappa\sim 50$ MeV at T~250 MeV

values & results comparable to semi-classical approach
Strickland et al. '15

Take-aways from Part III

- ❖ strong HQ potential with little screening close to T_c quarkonia melt through large reaction rates (↔ small HQ \mathcal{D}_s)
 - probe of in-medium force via in-medium "spectroscopy", not "thermometer"

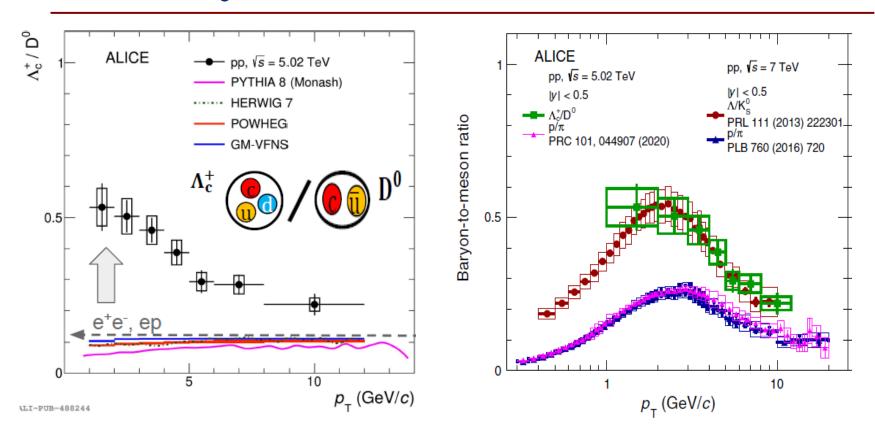
- ❖ Quantitative connections open- ↔ hidden-charm transport
 - transported c/cbar distributions & dσ^{cc̄}/dy

Summary & outlook

HFs: excellent probes of sQGP structure, transport properties, in-medium force & hadronization

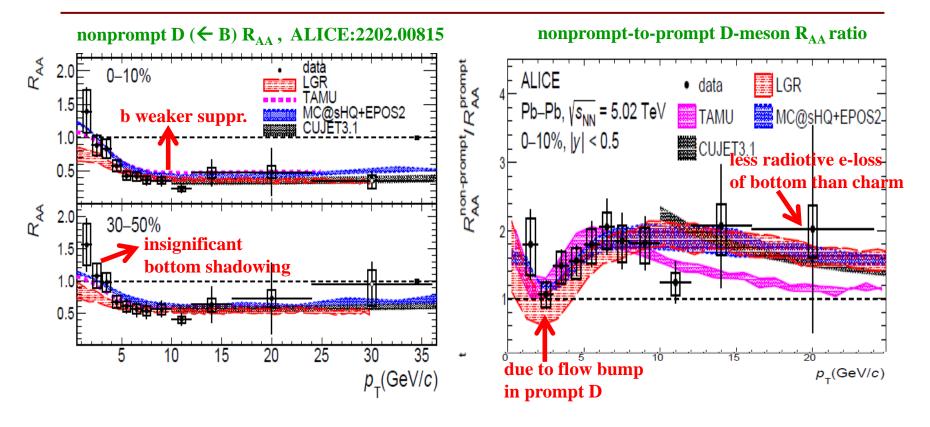
- a small open HF diffusion coefficient $\mathcal{D}_{\scriptscriptstyle s}$
- recombination/color neutralization important
- quarkonia melting by large reaction rates
- → connection between open- & hidden-HF, e.g. via J/ψ regeneration

outlook

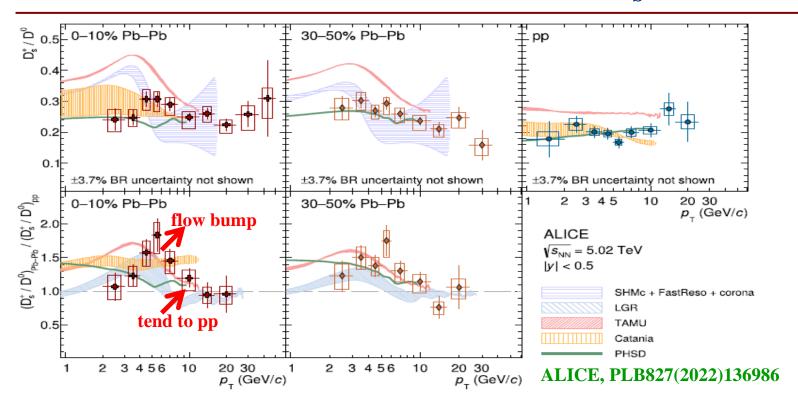

- Ξ_c production in pp
- p-dependence of \mathcal{D}_s : nonperturabtive diffusion \rightarrow perturbative radiative e-loss?
- tension: Λ_c/D⁰ in pp/pA by LHCb at forward-y vs ALICE at mid-y
- more ...

strong V(r,T)

Back-up

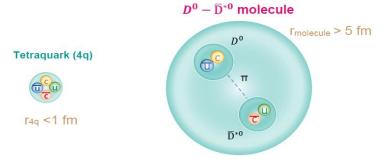

The following are back-up pages

Λ_c^+/D^0 enhancement surprise

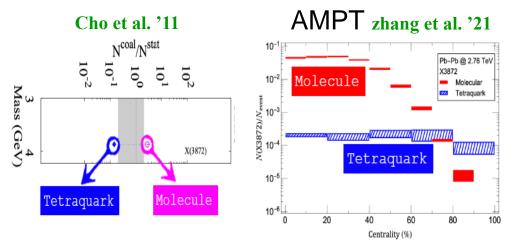

- ❖ a factor ~5 enhancement w.r.t. e⁺e⁻ at low p_T, much underestimated by FFs tuned to e⁺e⁻
- decreasing toward high p_T, trend similar to Λ/K and p/pi

Flavor dependence: charm vs bottom

- ❖ x3 mass: b-quark longer thermalization time at low p_T than charm less flow added to b from recombination with u/d/s
- ♦ high p_T>15 GeV: b-quark less radiative e-loss ← stronger "dead cone"

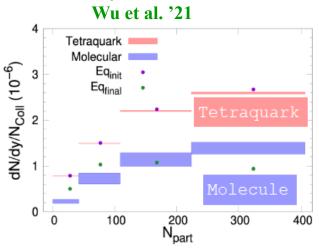

Charm hadro-chemistry: D_s/D⁰

- low p_T: enhancement due to charm recombination in a strangeness-equilibrated QGP reproduced by Cantania & PHSD; overestimated by TAMU in both pp and PbPb
- high p_T: tending to pp value as fragmentation takes over
- flow bump due to recombination with flowing s-quark heavier than u/d, predicted by TAMU (RRM w/ SMCs) & SHMc (hydro blastwave spectrum)


X(3872) production in HIC

❖ inner structure: compact tetraquark vs loosely bound molecule

coalescence model


coalescence within

 $N_{\text{molecule}} > N_{\text{tetraquark}}$ by x10 or 100, yet no account of hadron phase reactions $\pi X < --> DD^*$

→to be better constrained

transport model

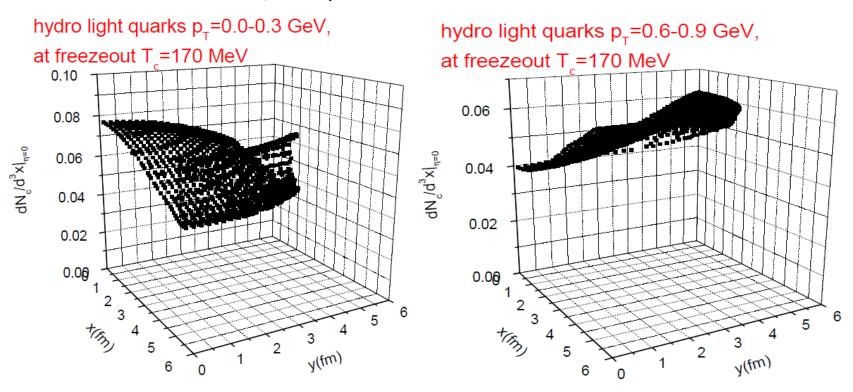

N_{tetraquark} > N_{molecule} by x2, molecule regenerated in late hadronic phase, tetraquark chem. freezeout at T_c

Charm quark recombination probability

No. of mesons/baryons formed from a single c-quark of rest frame p_c*

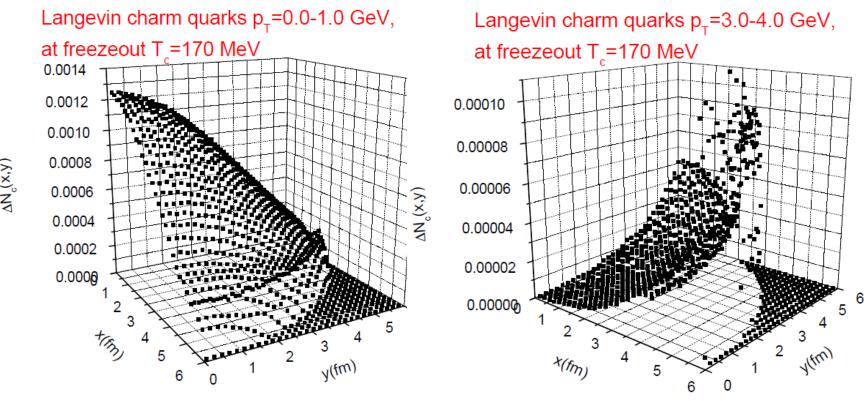
$$\begin{split} N_{M}(p_{c}^{*}) &= \int \frac{d^{3}\vec{p}_{1}^{*}}{(2\pi)^{3}} g_{q} e^{-E(\vec{p}_{1}^{*})/T_{\text{pc}}} \frac{E_{M}(\vec{p}^{*})}{m_{M}\Gamma_{M}} \sigma(s) v_{\text{rel}}, \\ N_{B}(p_{c}^{*}) &= \int \frac{d^{3}p_{1}d^{3}p_{2}}{(2\pi)^{6}} g_{1} e^{-E(\vec{p}_{1})/T_{c}} g_{2} e^{-E(\vec{p}_{2})/T_{c}} \frac{E_{d}(\vec{p}_{12})}{m_{d}\Gamma_{d}} \sigma(s_{12}) v_{\text{rel}}^{12}(\vec{p}_{1}, \vec{p}_{2}) \frac{E_{B}(\vec{p})}{m_{B}\Gamma_{B}} \sigma(s_{d3}) v_{\text{rel}}^{d3}(\vec{p}_{12}, \vec{p}_{30}), \end{split}$$

Renormalizing $N_M(p_c^*)$ and $N_B(p_c^*)$ by a common factor ~4 for all charmed mesons/baryons such that $\sum_M P_{\text{coal},M}(p_c^*=0) + \sum_B P_{\text{coal},B}(p_c^*=0) = 1$


→ charm conservation consistently built in, in an (e-by-e) way without spoiling the relative chemical equilibrium realized by RRM

Space-momentum correlations: light-q

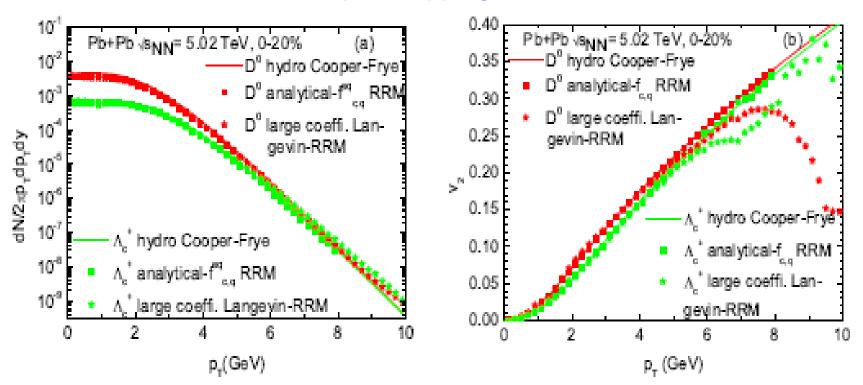
hydro: a manifestation of SMCs


$$f_q^{eq}(\vec{x},\vec{p}) = g_q e^{-p \cdot u(x)/T(x)} = g_q e^{-\gamma_T(x)[m_T \cosh(y-\eta) - \vec{p}_T \cdot \vec{v}_T(x)]/T(x)}$$
 longitudinal boost invariance: y- η transverse SMCs pT•vT

hydro-q: low (high) p_⊤ more concentrated in center (boundary)

SMCs: Langevin charm quarks

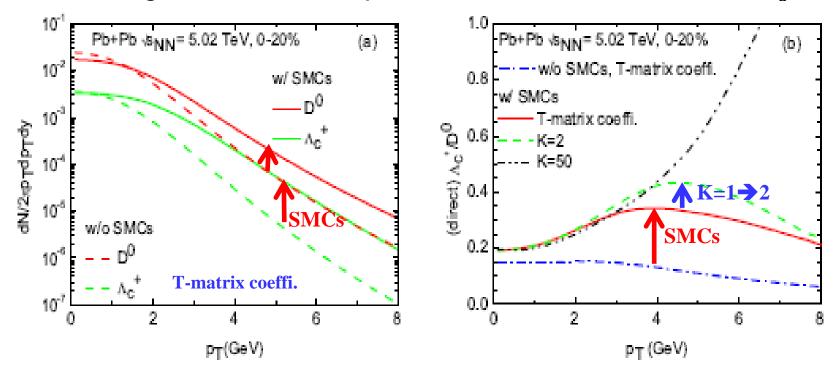
Langevin-c: low (high) p_⊤ more populated in central (outer).



SMCs usually neglected in ICMs: uniformly distributed independent of p_T $f_{c,q}(\vec{x},\vec{p}) = (2\pi)^3 \frac{dN_{c,q}}{d^3\vec{x}d^3\vec{p}} = \frac{(2\pi)^3}{VE_(\vec{p})} \frac{dN_{c,q}}{p_T dp_T d\phi_q dy}$

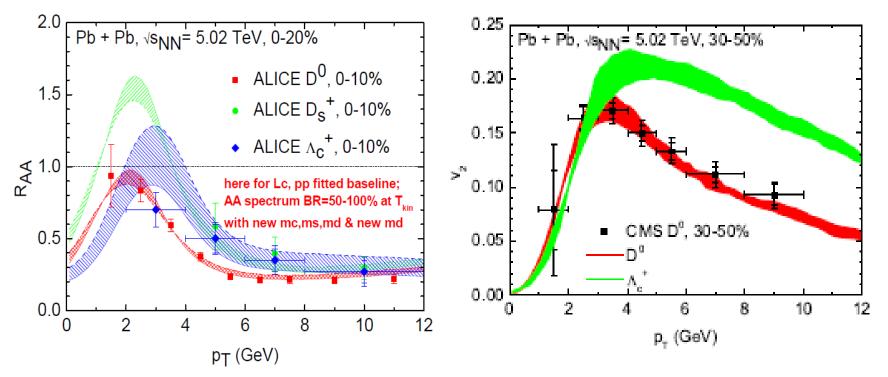
$$d^3xd^3p = VE_{(p)} p_T dp_T d\phi_q dy$$

RRM equilibrium mapping

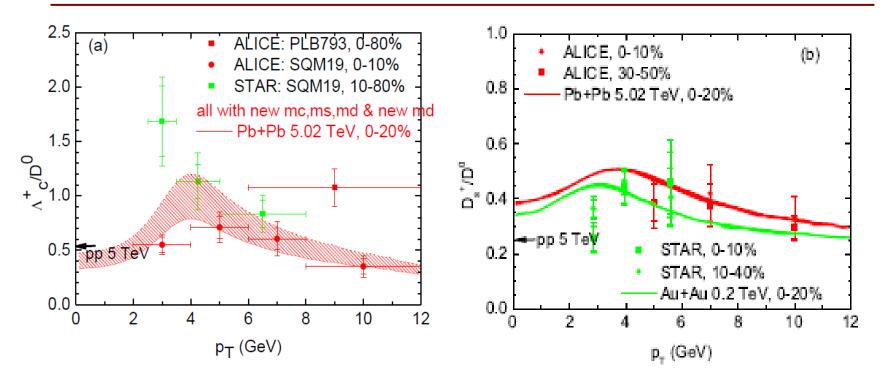

- Event-by-event Langevin-RRM simulation with very large trans. coeffi.
 & with SMCs properly incorporated
 - → kinetic & chemical equil. mapping

Observables come out as RRM predictions with realistic T-matrix coeffi.

Direct D^0 & Λ_c^+ production via RRM


Including SMCs makes spectra harder & enhances the Λ_c+/D⁰

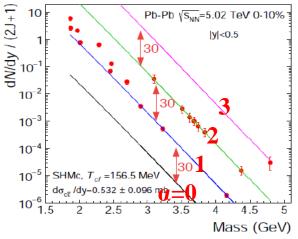
- Fast-moving c-quarks [p_T~ 3-4 GeV] moving to outer part of fireball find higher-density of harder [p_T~ 0.6-0.9 GeV] light quarks for recombination
- An effect entering squared for the recombination production of Λ_c^+ arger enhancement for $\Lambda_c^+ \rightarrow \Lambda_c^+/D^0$ ratio enhanced!

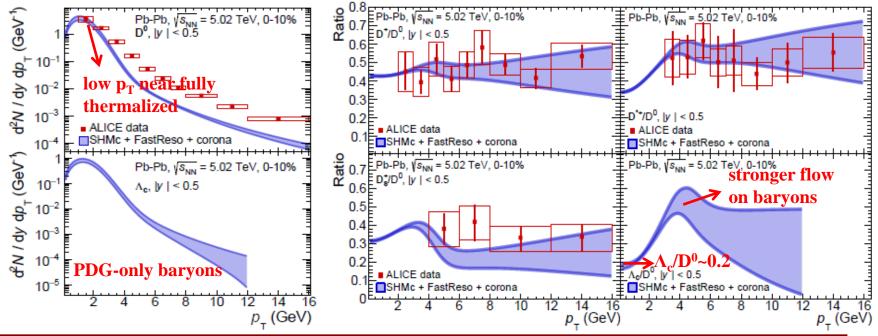

D^0 , D_s^+ & Λ_c^+ suppression & elliptic flow

Final D⁰, D_s⁺ & Λ_c⁺, including feeddowns from all RQM baryons

- T-matrix coefficient*K-factor(=1.6), to compensate for radiative e-loss; uncertainty: BR=50-100% to Λ_c^+ for Λ_C^- 's & Σ_C^- 's above DN (2805 MeV)
- Hadronic phase diffusion also included: seamlessly connected to hadronization (RRM+frag), increasing D-meson v₂ by ~15%

Charm-hadron ratios: Λ_c^+/D^0 & D_s^+/D^0


- Λ_c+/D⁰: low p_T approaching RRM equil. limit = SHM pp; intermediate p_T enhancement from RRM with SMCs; high p_T fragmentation tending to pp value


Hadronization: SHMc Andronic, PBM et al. 2104.12754

- > SHMc: open-charm statistical hadronization at T_c $\frac{\mathrm{d}N(h_{oc,\alpha}^i)}{\mathrm{d}y} = g_c^\alpha V n_i^{\mathrm{th}} \frac{I_\alpha(N_c^{\mathrm{tot}})}{I_0(N_c^{\mathrm{tot}})}$
 - \square multicharm baryons α =1,2,3 emerging pattern
 - □ yields enhanced by $g_c^{\alpha} \sim 30^{\alpha}$ than pure thermal →strong signal of deconfinement

M. He

➤ SHMc yields + blast wave → p_T spectra

