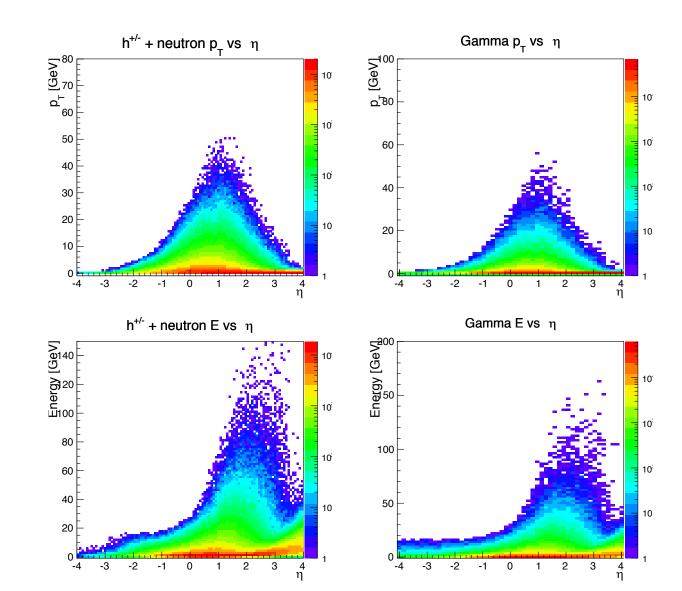

Inclusive Group Update

Renee Fatemi, Nobuo Sato and Barak Schmookler

3rd EIC Yellow Report Workshop Catholic University of America Sept 17, 2020

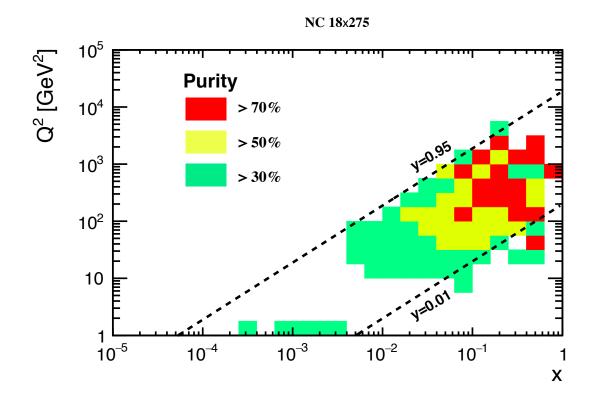
DISCUSSION POINTS							Tracking		Elec	Electrons		π/K/p		
		η	Nomenclature		Resolution	Allowed X/X0	Si-Vertex	Resolution σE/E	PID	p-Range (GeV/c)	Separati on	Resolution σE/E	Muons	
DISCOSSION FORMIS		-6.9 to -5.8			low-Q2 tagger	$\sigma\theta/\theta < 1.5\%; 10-6$ < Q2 < 10-2 GeV2	-		-					
1)	Forward coverage in tracking and calorimeters for JB reconstruction	-4.5 to -4.0	↓ p/A	Auxiliary Detector s	Instrumentation to separate charged particles from photons				<u>2%/√E</u>					
2)		-3.5 to -3.0 -3.0 to -2.5 -2.5 to -2.0 -2.0 to -1.5 -1.5 to -1.0		Central Detector	Backward Detector	σp/p ~ 0.1%⊕0.5% σp/p 0.1%⊕0.5% σp/p 0.05%⊕0.5%	~5% or less X cannot evaluate without full	<u>TBD</u>	d0(rΦ) [GeV	suppression up to 1:104 cannot evaluate without full	<u>≤ 7 GeV/c</u>		<u>~45%/√E+6%</u>	
	resolution for JB purity and stability	-1.0 to -0.5 -0.5 to 0.0 0.0 to 0.5 0.5 to 1.0			<u>Barrel</u>	σp/p ~0.05%×p+0.5%	detector simulations . Critical that this is minimized to reduce pair symmetric correction	σχyz ~ 20 μm, d0(z) ~d0(rΦ) ~ 20/pTGeV μm + 5 μm		detector simulations and PID algorithms see e/pion	≤ 5 GeV/c	≥3σ	~85%/√E+7% ~85%/√E+7% ~85%/√E+7% ~85%/√E+7%	<u>TBD</u>
3)	Pion suppression at mid <i>ish</i> -rapidity -2 < η < 1	1.0 to 1.5 1.5 to 2.0 2.0 to 2.5 2.5 to 3.0 3.0 to 3.5	-		Echward Cetectors	gp/p ~0.05%×p+1.0% gp/p ~ 0.1%×p+2.0%		TBD			≤ 8 GeV/c ≤ 20 GeV/c ≤ 45 GeV/c		~45%/VE+6%	
4)	Minimize material to reduce pair-symmetric background.	3.5 to 4.0 4.0 to 4.5		Auxiliary Detector s	Instrumentation to separate charged particles from photons	Forward coverage critical for JB reconstruction							Forward coverage critical for JB reconstructio n	
					Neutron Detection Proton Spectrometer	ointrinsic(t)/ t ≤1%; Acceptance: 0.2 < pt < 1.2 GeV/c								

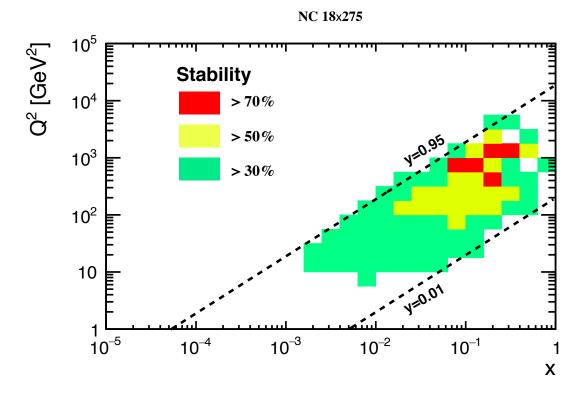
Backward Tracking and Calorimeter Coverage



- Extending electron reconstruction out to $\eta = -4$ is not critical for majority of inclusive channels.
- The only exception may be studies on deviations from DGLAP and color glass condensate studies.
- Kinematic losses at Q² < 1 GeV² for all beam configurations.
- Work by Barak Schmookler.

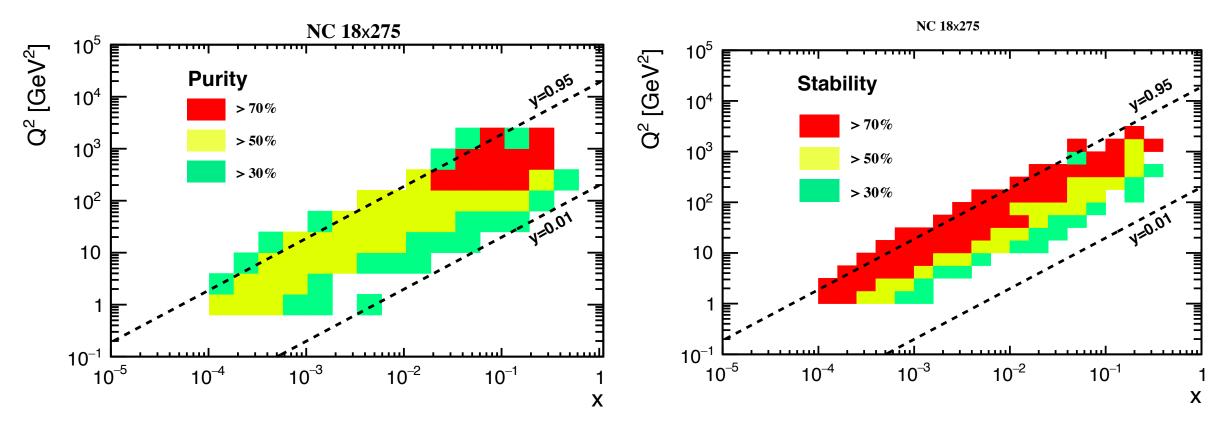
Forward Tracking and Calorimeter Coverage


- JB reconstruction is the only option for reconstruction of charged-current observables.
- But JB reconstruction is also important for neutral current channels at small inelasticity, which is also high x.
- JB requires tracking as well as electromagnetic (photons) and hadronic calorimeters.
- Work by Xiaoxuan Chu


$$x_{JB} = \frac{Q_{JB}^2}{sy_{JB}}; \quad y_{JB} = \frac{(E - p_z)_h}{2E_e}; \quad Q_{JB}^2 = \frac{p_{t,h}^2}{1 - y_{JB}}$$

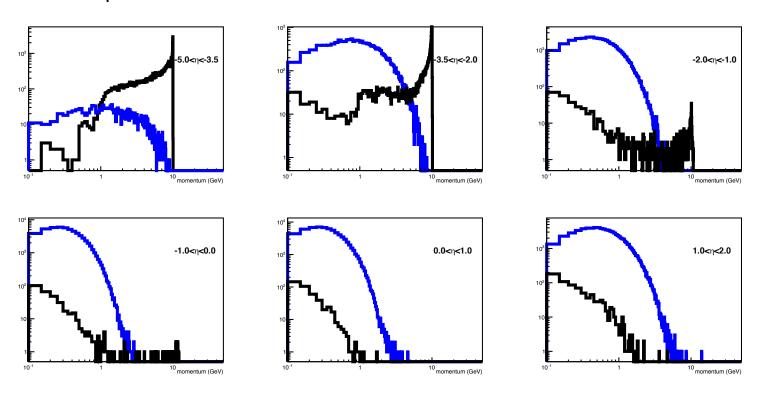
Hadronic Calorimeter Resolution

Need > 30%, higher is better for Purity and Stability.

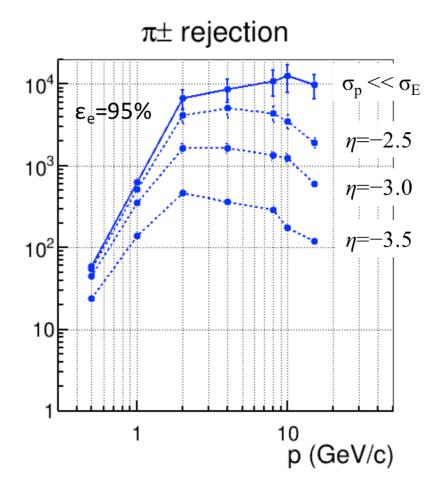


Purity: Fraction of events reconstructed in a bin i that were generated in bin i.
Reflects migration into bin i.

Stability: Fraction of events generated in a bin i that were reconstructed in bin i.
Reflects event migration out of bin i.


Purity and Stability Comparison for e- Reco

Note: The lack of coverage at low inelasticity is highlighted here. This region is filled in by the JB reconstruction and demonstrates what would be lost without forward coverage with good calorimeter and tracking resolution.


Charged pion suppression

 ΔG needs pi/e 10^{-3} , A_{PV} needs pi/e 10^{-4} . Using only raw yields and no algorithms, suppression in η bins -2 to 1 are marginal for ΔG and 10x too large for A_{PV} . Need full simulation and algorithm development for more robust answer.

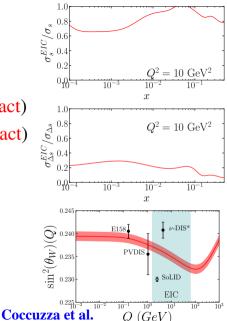
10 x 100 GeV Pion/e- Ratio (Work by Hanjie Liu)

NOTE: Detector matrix has 10⁴ suppression. But GEANT studies show this is idealized and only true at high electron momentum. *Is* 10⁴ realistic?

GEANT Studies from A. Bazilevsky

Impact studies

- Parity violating DIS (A_{PV})
- Double spin asymmetry (A_{LL})
- Unpolarized NC and CC DIS
- New tools for impact studies


Parity violating DIS (A_{PV})

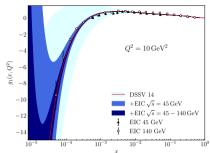
Physic objectives

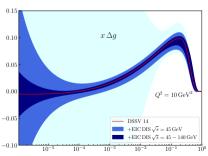
- polarized strangeness (significant impact)
- upolarized strangeness (moderate impact)
- $= \sin^2 \theta_w$ (moderate impact)

Progress

- error estimation (✓)
- global analysis with EIC pseudo data (near completion)

Double spin asymmetry (A_{LL})

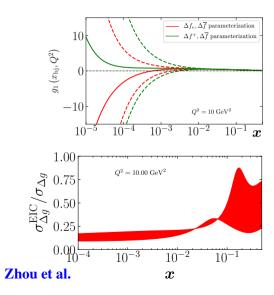

Physic objectives


lacksquare Δg (significant impact)

Progress

- error estimation (✓)
- global analysis with EIC pseudo data (completed)
- \blacksquare based on g_1 extrapolation

Borsa et al. arXiv:2007.08300

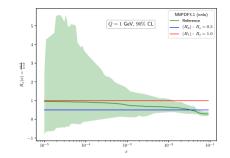

Double spin asymmetry (A_{LL})

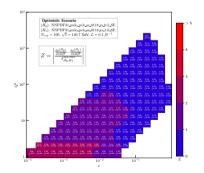
Additional questions

- how important is the g_1 extrapolation?
- is the impact on Δg stable under different g_1 scenarios

Progress

- impact on Δg stable against g_1 extrapolation
- Analysis near completion


New tools


Physic objectives

- bin-by-bin hypothesis test at EIC
- complementary to full global fits

Progress

- numerical tools are ready
- \blacksquare case study R_s

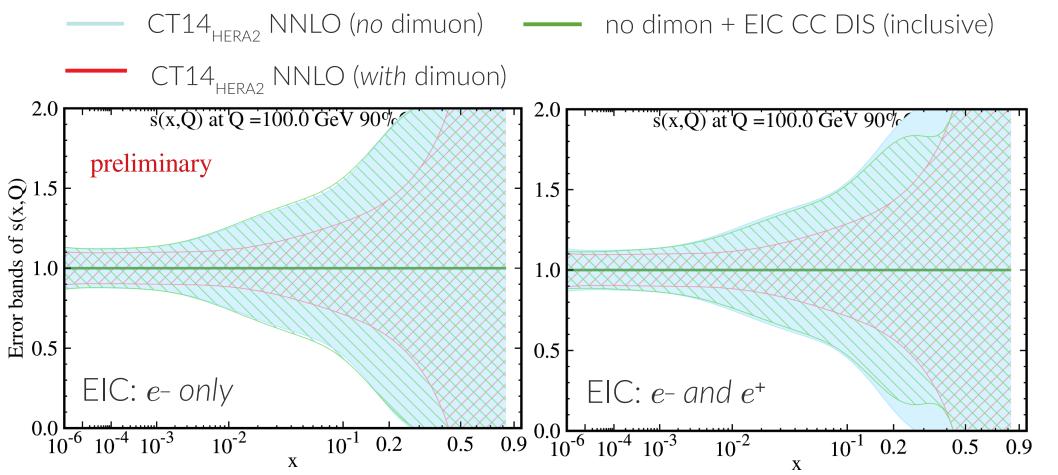
Rabah et al.

Unpolarized NC and CC DIS

Physic objectives

- \blacksquare flavor separation (u, d)
- \blacksquare gluon PDF in the intermediate x region

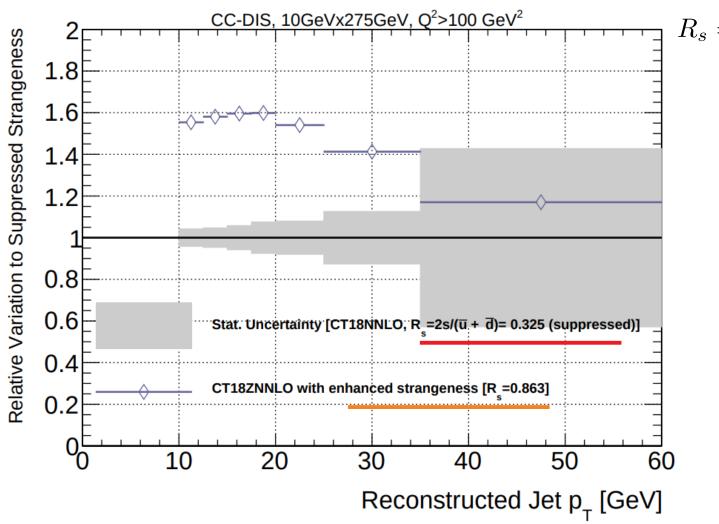
Progress


- error estimation (✓)
- global analysis with EIC pseudo data p, d (in progress)

Global analyzers
CT. NNPDF, CJ. JAM

nucleon strangeness: EIC inclusive pseudodata & legacy CT data

- beyond fitting EIC over present data, comparisons with legacy data are instructive
- in CT, vFe dimuon production (NuTeV, CCFR) are important constraints on s(x,Q)
- especially without e^+ , EIC CC <u>inclusive</u> DIS data struggle to compete <u>by themselves</u>
 - \rightarrow some high-x pull


→ inputs from tagged CC data helpful

charge-current charm-jet production sensitive to strange sea

Arratia, Furletova, Hobbs, Olness, Sekula

- 100 fb⁻¹ CC DIS (10M simulated events), at 10x275 GeV (e^- on p); $Q^2 > 100$ GeV²
- even assuming conservative charm-tagging efficiency, event-level discrimination potential is substantial, relative to statistical uncertainties

$$R_s = \frac{s + \bar{s}}{\bar{u} + \bar{d}} = 0.325 \text{ (CT18)*}$$

= 0.863 (CT18Z)*

arXiv: 2006.12520

final-state tagging will provide a critical lever arm for flavor separation

Conclusions

• Detector studies are complete for this stage of evaluation. There is still a substantial amount of work to be done in evaluating electron PID and backgrounds once a realistic detector, with full material budget is proposed.

 Impact studies are well underway and include several published results. These are on track to be finalized by Berkeley Workshop (or sooner).

Detector Group Questions

Have MC been validated? Can they reproduce world data?

YES! Very good agreement with HERA and existing PDF extractions.

- CC cross-sections by Xiaoxuan Chu https://indico.bnl.gov/event/8389/
- NC cross-sections by Matt Posik https://indico.bnl.gov/event/8658/
- NC cross-sections by Barak Schmookler https://indico.bnl.gov/event/9093/