Dihadron Partial Waves and PID at high Q²

Christopher Dilks EIC Yellow Report – SIDIS Meeting 17 August 2020

SIDIS Dihadrons

TMD PDFs

Twist-3 TMDs

N/q	U	\mathbf{L}	Т			
\mathbf{U}	f^{\perp}	g^{\perp}	h, e			
	f_L^{\perp}	g_L^\perp	h_L, e_L			
\mathbf{T}	f_T, f_T^{\perp}	$g_T, \ g_T^\perp$	$h_T, e_T, h_T^{\perp}, e_T^{\perp}$			

- Access to several additional TMDs:
 - **Transversity** \rightarrow Tensor Charge

$$\delta q = \int_{-1}^{1} dx h(x) = \int_{0}^{1} dx \left[h(x) - \bar{h}(x) \right]$$

- Quark EDM contribution to nucleon EDM
 → CP violation
- Comparisons with lattice QCD calculation
- Sivers Function
- Kotzinian-Mulders (wormgear) Function
- Pretzelocity
- Twist-3 TMDs

Partial Wave Expansion

	Dinauton Fragmentation Functions (DIFFS)								
L	[M]	h_1h_2/q	U	\mathbf{L}	Т				
0	0	UU	D _{1,00}		$H_{1,OO}^{\perp}$				
1	0	$\mathbf{L}\mathbf{U}$	$D_{1,OL}$		$H_{1,OL}^{\perp}$				
2	0	LL	$D_{1,LL}$		$H_{1,LL}^{\perp}$				
1	1	\mathbf{TU}	$D_{1,OT}$	$G_{1,OT}^{\perp}$	$\begin{cases} H_{1,OT}^{\perp} & \text{if } m < 0 \\ H_{1,OT}^{\triangleleft} & \text{if } m > 0 \end{cases}$				
2	1	\mathbf{TL}	$D_{1,LT}$	$G_{1,LT}^{\perp}$	$\begin{cases} H_{1,LT}^{\perp} & \text{if } m < 0 \\ H_{1,LT}^{\triangleleft} & \text{if } m > 0 \end{cases}$				
2	2	\mathbf{TT}	$D_{1,TT}$	$G_{1,TT}^{\perp}$	$\begin{cases} H_{1,TT}^{\perp} & \text{if } m < 0 \\ H_{1,TT}^{\triangleleft} & \text{if } m > 0 \end{cases}$				

Dihadran Franzontation Functions (DiFFa)

- DiFFs expand in partial waves
- Access to interference between dihadrons with relative angular momenta
 - ss, sp, pp interference

Partial Wave Expansion

- Expand cross section on the basis of spherical harmonics
- Dihadron fragmentation functions expand in partial waves
- Basis is total PW angular momentum |L,M>
- \mathbf{A}_{UT} contains several modulations of 4 angles

General Modulation form: $P_{\ell,m}(\cos\theta) \cdot f_m(\phi_h, \phi_R, \phi_S)$ Associated Legendre Polynomials (Fourier functions)

 Gliske, Bacchetta, Radici, Phys.Rev.D 90 (2014) 11, 114027, Phys.Rev.D 91 (2015) 1, 019902 (erratum)

L=0: ss L=1: sp L=2: pp

θ Modulations

 $P_{\ell,m}(\cos\theta) \cdot f_m(\phi_h,\phi_R,\phi_S)$

Associated Legendre Polynomials

ϕ Modulations of $\mathsf{F}_{_{\rm UT}}$

 $P_{\ell,m}(\cos\theta) \cdot f_m(\phi_h,\phi_R,\phi_S)$

twist	ϕ modulation	PDF⊗FF					
2	$\sin[(1+m)\phi_h-m\phi_R-\phi_S]$	$f_{1T}^\perp \otimes D_1^{[\ell,m angle}, ~~g_{1T} \otimes G_1^{[\ell,m angle}$					
2	$\sin[(1-m)\phi_h+m\phi_R+\phi_S]$	$h_1 \otimes H_1^{[\ell,m angle}$					
2	$\sin[(3-m)\phi_h+m\phi_R-\phi_S]$	$h_{1T}^\perp \otimes H_1^{[\ell,m angle}$					
3	$\sin[-m\phi_h+m\phi_R+\phi_S]$	$f_T \otimes D_1^{[\ell,m angle}, \ h_T \otimes H_1^{[\ell,m angle}, \ h_T^\perp \otimes H_1^{[\ell,m angle}$					
3	$\sin[(2-m)\phi_h+m\phi_R-\phi_S]$	$f_T^\perp \otimes D_1^{[\ell,m angle}, \ h_T \otimes H_1^{[\ell,m angle}, \ h_T^\perp \otimes H_1^{[\ell,m angle}$					

Sensitive to transversity:

$$egin{array}{lll} &\circ \, \sin(\phi_R+\phi_S) \, o \, h_1\otimes \sum_\ell H_1^{|\ell,1
angle} \ &\circ \, \sin(\phi_h+\phi_S) \, o \, h_1\otimes \sum_\ell H_1^{|\ell,0
angle} \end{array}$$

Include θ dependence to select a partial wave |L,M> of the IFF H₁

ϕ Modulations of $F_{\mu\nu}$

5 azimuthal modulations x 9 partial waves (L<=2) = $45 A_{IIT}$ amplitudes

- 3 Tests to Focus on sensitivity to transversity
- 1. PWs of modulation with h(x)
- 2. All |L,0> modulations
- All II. 45 we advised as

3. All [L,1> modulations		$-\iota, m(0000)$								
* note: no θ-dep in tests 2 & 3			0,0 angle		1,1 angle		1,0 angle	$ 1,-1\rangle$		
	$\sin[(1+m)\phi_h-m\phi_R-\phi_S]$									
$f_m(\phi_h,\phi_R,\phi_S)$	$\sin[(1-m)\phi_h+m\phi_R+\phi_S]$							1		
	$\sin[(3-m)\phi_h+m\phi_R-\phi_S]$									
	$\sin[-m\phi_h+m\phi_R+\phi_S]$									
	$\sin[(2-m)\phi_h+m\phi_R-\phi_S]$		2		3		2			8

 P_{a} (cos θ)

Monte Carlo

Event Generation

- Pythia6 (via pythiaeRHIC)
 - 1M events
 - Radiative corrections using RADGEN attempted, but was unsuccessful

Fast Simulation

- EICsmear with the handbook detector setting (via eJANA)
- Require the electron and hadron E and P to be smeared (in tracker+calorimeter)

Analysis

- DIS kinematics reconstructed using highest-energy scattered electron
- Pions and Kaons are paired inclusively

Event Selection

Focusing on π⁺π⁻ channel

 $x_{F_h} > 0$ 0.2 < $z_{pair} < 0.95$

0.01 < y < 0.95

 $O^2 > 1 \,\,{\rm GeV}^2$

W > 3 GeV

In addition, test 3 lab-frame pion p_{T} cuts

- p_T > 0 (control test)
- p_T > 100 MeV
- p_T > 300 MeV

 p_{τ} limits arise from tracking limitations at low p_{τ} Goal: Assess impact of p_{τ} limits on A_{τ} projections

Kinematics pion $p_T > 0$

Q² vs. x for selected dihadrons

Kinematics pion $p_T > 0$

5x41

18x275

 π^+ η vs. p, for 10<Q ²<3000 and 0.005<x<1 10 p [GeV]

Kinematics pion $p_{T} > 0$

5x41

18x275

Lines drawn at test pion p_{τ} cuts

- p₁ > 100 MeV
- p_T > 300 MeV

Scaling projections to 10 fb⁻¹

Beam Energies 5x41

- number of generated events: 1,000,000
- cross section: 362.418 nb
- generated luminosity: 0.002759 fb^-1
- scale factor to 10 fb^-1: 3624.18
- scale uncertainty by: 0.016611

Test 1 1. PWs of modulation with h(x) $p_T > 0$ MeV (control)

Test 1 1. PWs of modulation with h(x) $p_{T} > 100 \text{ MeV}$

Test 1 1. PWs of modulation with h(x) $p_{T} > 300 \text{ MeV}$

Test 33. All |L,1> modulations

 $p_{T} > 0$ MeV (control)

Results identical to Test 2, all |L,0> modulations

Test 33. All |L,1> modulations

р_т > 100 MeV

Results identical to Test 2, all |L,0> modulations

Test 3 3. All |L,1> modulations

р_т > 300 MeV

Results identical to Test 2, all |L,0> modulations

General Conclusions:

- Very little difference between 100 MeV limit and control test
- Between 100 MeV and 300 MeV limits, statistical uncertainties increase by ~50%

Handbook PID Limits

 $\pi/K/p$ PID momentum limits for >3 σ separation

For the following plots, pion p_T >100 MeV cut is used

Beam energies 18x275

Goal: assess losses at high (x,Q²) from regions where PID separation is less than 3σ

Test event generation cut levels:

- $Q^2 > 1 \text{ GeV}^2$
- Q² > 100 GeV²
- Q² > 1000 GeV²

For 10 fb⁻¹ of data with $Q^2 > 1$ GeV², we get:

- 0.08 fb⁻¹ with Q²>100 GeV²
- 0.0016 fb⁻¹ with $Q^2 > 1000 \text{ GeV}^2$

(x,Q2) Planes

NOTE: Q² cuts are applied on Pythia, separately for each case, and different numbers of events were generated for each case (limited by available computation time);

The generated luminosities are:

1.1e-3 fb⁻¹ 1,000,000 events 1.0e-4 fb⁻¹ ~90,000 events 6.8e-5 fb⁻¹ ~60,000 events ²²

$π^+$ η vs. Q² distributions (from $π^+π^-$ dihadrons)

$Q^2 > 1 \text{ GeV}^2$

 $Q^2 > 100 \text{ GeV}^2$

$Q^2 > 1000 \text{ GeV}^2$

• Tendency toward central production at high Q², where PID limits are tightest

$π^+$ η vs. p distributions (from $π^+π^-$ dihadrons)

$Q^2 > 1 \text{ GeV}^2$

 $Q^2 > 100 \text{ GeV}^2$

$Q^2 > 1000 \text{ GeV}^2$

- Vertical lines denote PID p limits
- Majority of Q^2 >1000 GeV² data will have less than 3σ PID separation

Asymmetry Projections and Partial Waves

- Very little difference between p_{τ} >100 MeV limit and control test with no p_{τ} cut
- Between 100 MeV and 300 MeV $p_{_{\rm T}}$ limits, statistical uncertainties increase by ~50%
- PID studies at high Q²
 - Majority of Q²>1000 GeV² data will have less than 3σ PID separation

backup

Test 1 1. PWs of modulation with h(x) $p_T > 100 \text{ MeV}$ With

Test 1 1. PWs of modulation with h(x) $p_T > 300 \text{ MeV}$

