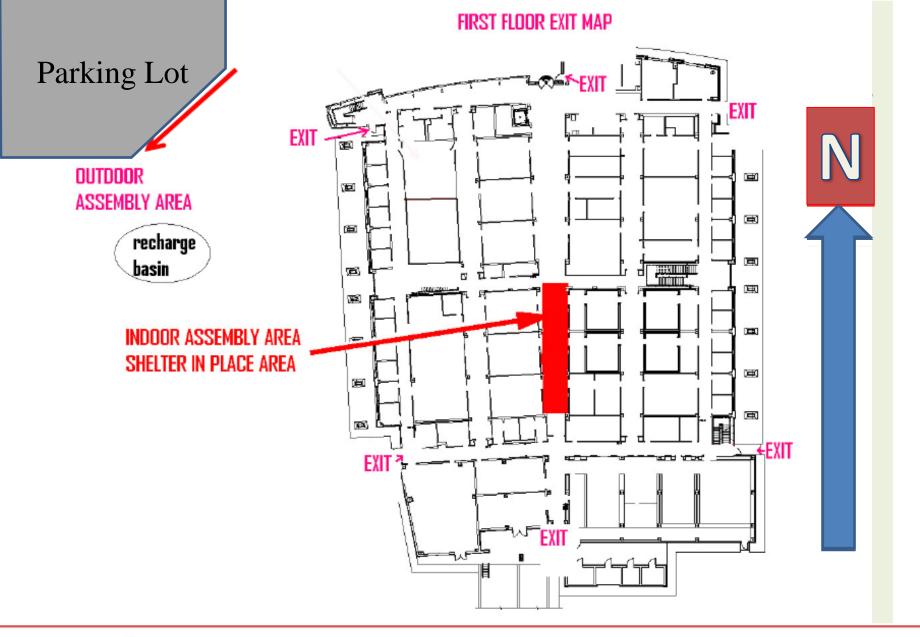
Welcome to The Joint Workshop on Nanoscience and Nanotechnology **Opportunities for Academia**

High Tech Industry


James H. Dickerson II

Center for Functional Nanomaterials

a passion for discovery

Agenda

Welcome to Participants (09:00-09:20)

- Dr. John HILL

The CFN: A User-Oriented Research Center (09:20-09:40)

- Dr. Emilio MENDEZ

The CFN's Facilities and Capabilities (09:40-10:00)

- Dr. James DICKERSON

Control of Light-Matter Interaction Using Dispersion Engineered Structures (10:00-10:40)

- Dr. Vinod MENON

in-situ TEM Observation of Nanobubbles in Supersaturated Solutions (10:40-11:20)

- Dr. Christopher PERREY

Patents, Commercial Licensing, Intellectual Property (11:40-12:10)

- Mrs. Connie CLEARY

Research Partnerships with CFN (12:10-12:30)

- Mr. Michael FUREY

Agenda

How to Become a CFN User (12:30-12:50)

- Ms. Grace WEBSTER

Lunch (12:50-1:30)

Open Discussions with CFN Scientists and BNL Tech Transfer & Tours of the CFN (1:30-3:00)

- BNL STAFF

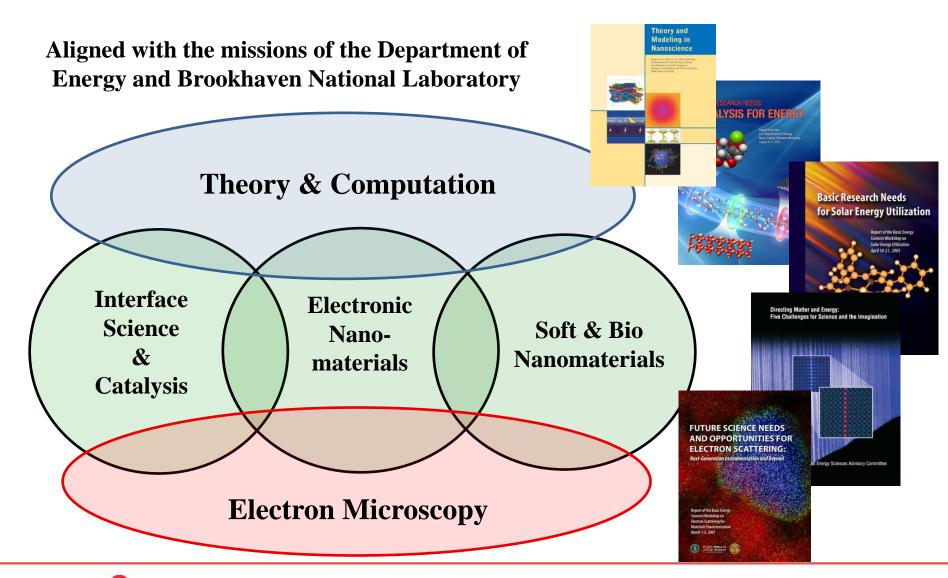
Recommendations for Writing an Effective User Proposal (3:00-3:45)

- Dr. James DICKERSON

Closing Remarks - Seminar Room (3:45-4:00)

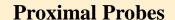
- Dr. James DICKERSON

CFN's Facilities and Capabilities


James H. Dickerson II Assistant Director of CFN

In-House Scientific Program

CFN Facilities: Creating, Characterizing, Understanding

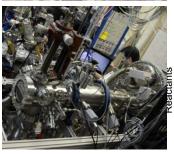

Distinct Multifaceted Competencies and Capabilities

- Block copolymers for energy-related materials
 - DNA-mediated nanostructure self-assembly
 - Comprehensive suite of *in operando* probes
 - Aberration-corrected electron microscopy
 - Specialized set of endstations at NSLS -II

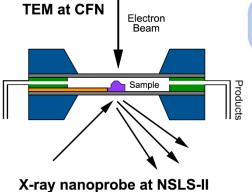
Materials Synthesis

Nanofabrication

Reactor STM

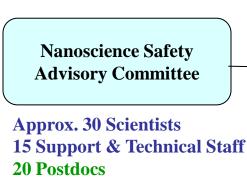


Electron Microscopy


Advanced Optical Spectroscopy & Microscopy

AP XPS

Advanced X-ray and UV Probes


Computer Cluster

CFN Organization Chart

Admin. Support D. Storan

Associate Laboratory Director

Basic Energy Sciences J. Misewich

Science Advisory Committee (SAC)

Users' Executive **Committee** (UEC)

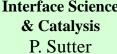
Assistant Director James Dickerson

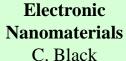
Safety and **Operations** R. Sabatini

Administration G. Webster

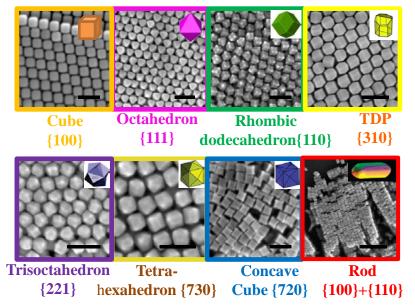
User Program

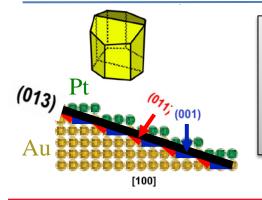
Interface Science & Catalysis P. Sutter




Soft & Bio **Nanomaterials** O. Gang

Theory & **Computation** M. Hybertsen




Nanomaterial Synthesis

Unique aspects of new nanomaterial synthesis program:

- Shape controlled metallic particles
- Surface functionalization
- Atomically smooth facets
- Scientific Impact:
 - Self-assembly
 - Optical (plasmonics, chirality)
 - Catalytic properties
- New materials are available for users

- High-index nanoparticle surfaces for catalysis: activation of Pt monolayer (20x activity) on Au(013) was observed
- Proposed: Systematic studies on shaped particle
 Imaging of particle/catalyst surfaces
 (TEM, E. Stach, D. Su; STM, P. Sutter; Theory, D.Lu)

Electron Microscopy Facilities

JEOL 1400 Low voltage TEM (new in 2011 – ARRA)

Soft & biological materials through cryo-microscopy

JEOL 2100F Analytical electron microscope

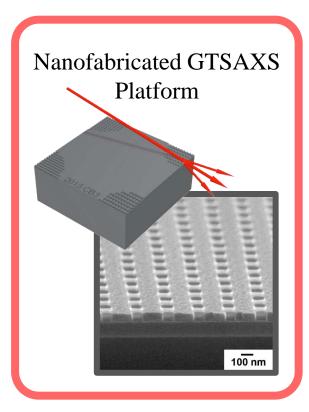
Versatile analytical & in-situ experimentation

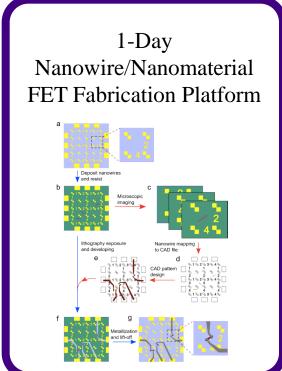
Probe corrector

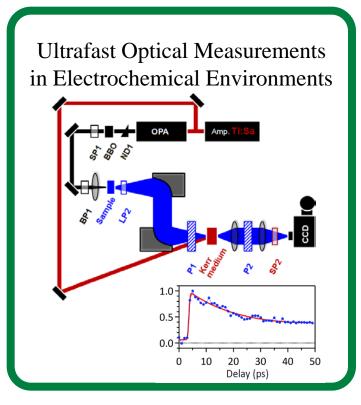
Forefront analytical instrument

Titan 80-300 - ETEM Image corrector

Environmental & in-situ studies







New Scientific Capabilities

Goal: Combine state-of-the art scientific capabilities to create new/unique processes for Users and Staff

Theory & Computation Facilities

Staff Expertise

- Phenomena, theory & method development
- Support for widely used packages
- Outreach: workshops
- One third of open user projects include staff collaboration

Future Development

- New techniques: e.g. accurate energetics for heterogeneous catalysis
- Computer refresh: \$250k/yr on ave.
- Adopt new approaches: GPUs
- Leverage BNL Comp. Sci. Ctr: Robert Harrison, head

Hardware:

Aggregate > 2200 cores Infiniband networks Supporting storage

Software & Packages:

VASP, QE, Gaussian, ... LAMMPS, Reactive MD, ...

Computer

BNL ITD machine room & system admin.

Resource Allocation:

60% Peer reviewed users (12 million core-hrs, F2013)

15% Internal research15% Facility development

10% Downtime, friction, ...

(Relative to 24x7)

Connection with other BNL Programs and Facilities

- Synergy with NSLS/NSLS-II
- Close interaction with BNL's core programs in
 - Chemistry
 - Condensed Matter Physics/Materials Science
 - Sustainable Energy Technologies
- Strong interaction on Big Data with RHIC-ATLAS Computing Facility
 - Coordination with NSLS-II on solutions to User needs
- Important participation in Stony Brook-BNL's EFRC on "Molecular to Mesoscale"
- Key role in BNL's Integrated Centers for Energy Science

BES Core Programs

A Key Partnership with NSLS / NSLS II

Tool/Technique	Application	NSLS	NSLS II	Operational	Mitigation
AP-XPS	Catalysis CO ₂ capture	X1A1	CSX-2	2015	
LEEM/PEEM	Electronic structure	U5UA	ESM	2017	Intense table-top UV source
GISAXS	Structure & dynamics of soft matter	X9	CSM IXS SMI	2015 2015 2017	Intense table-top X-ray source

