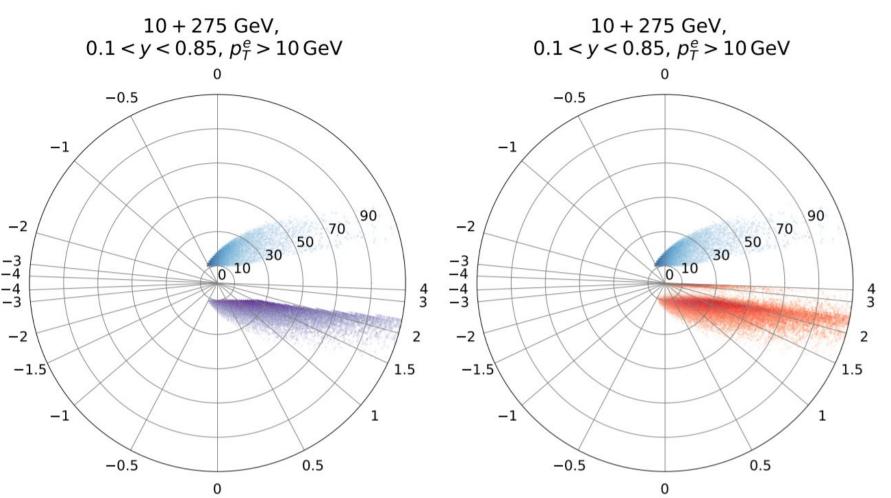
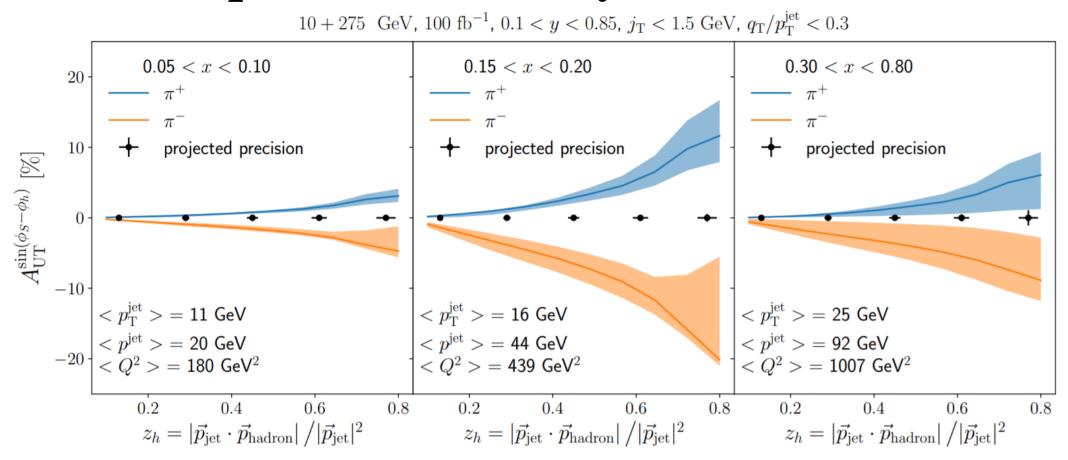

On the PID requirements of jets for 3D imaging

Miguel Arratia

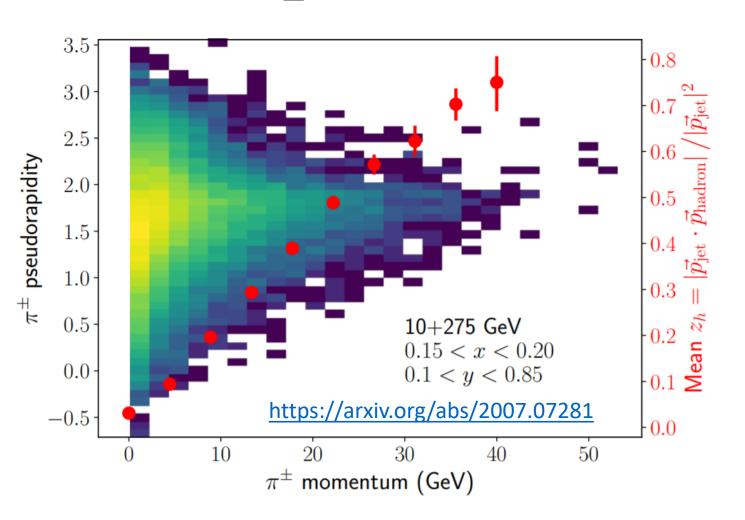


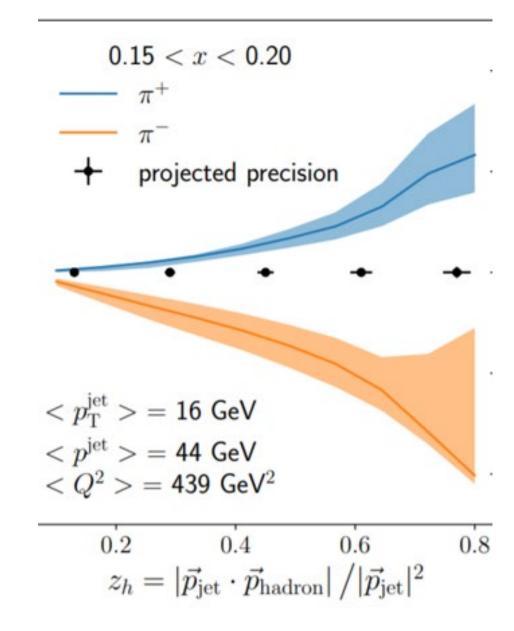
Intro

- 5 minutes is not enough to summarize requirements on PID, tracking, and calorimetry.
- So, in this presentation I will focus on PID.
- You can find much more details in our manuscript: "Jet-based measurements of Sivers and Collins asymmetries at the future Electron-Ion Collider" Miguel Arratia, Zhong-Bo Kang, Alexei Prokudin, Felix Ringer arXiv:2007.07281

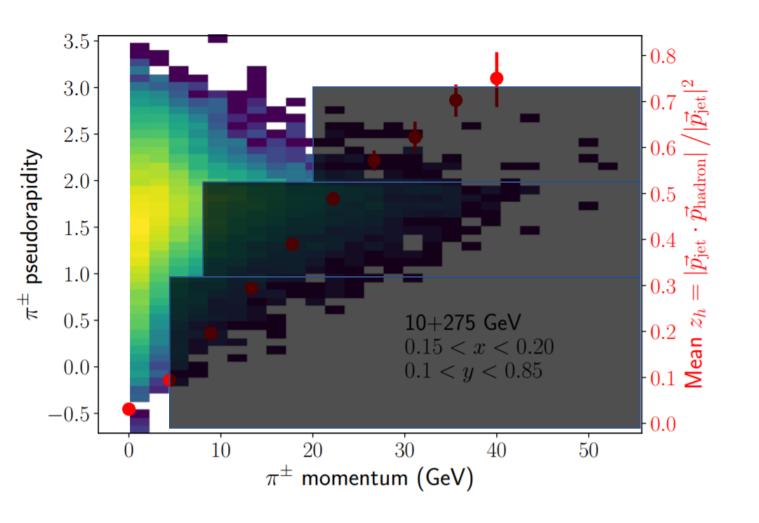

Jet kinematics for 275 GeV beam energy (most stringent PID)

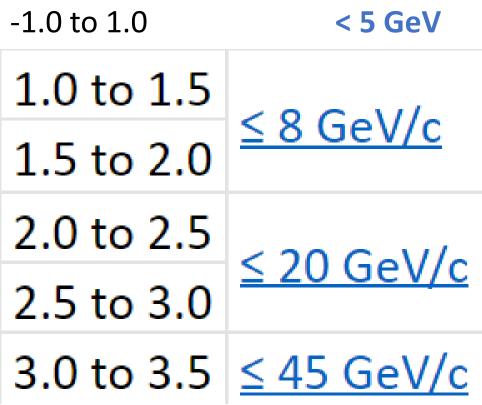
Note that most jets go to 1.0-2.5 eta

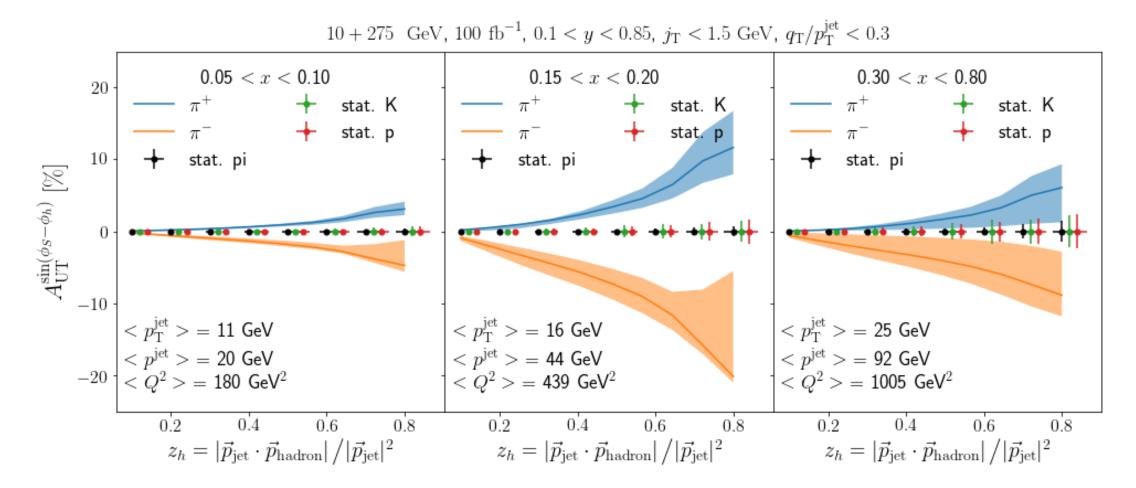

Driver channel:


Collins asymmetries for charged pions https://arxiv.org/abs/2007.07281 to access quark transversity and other TMDs

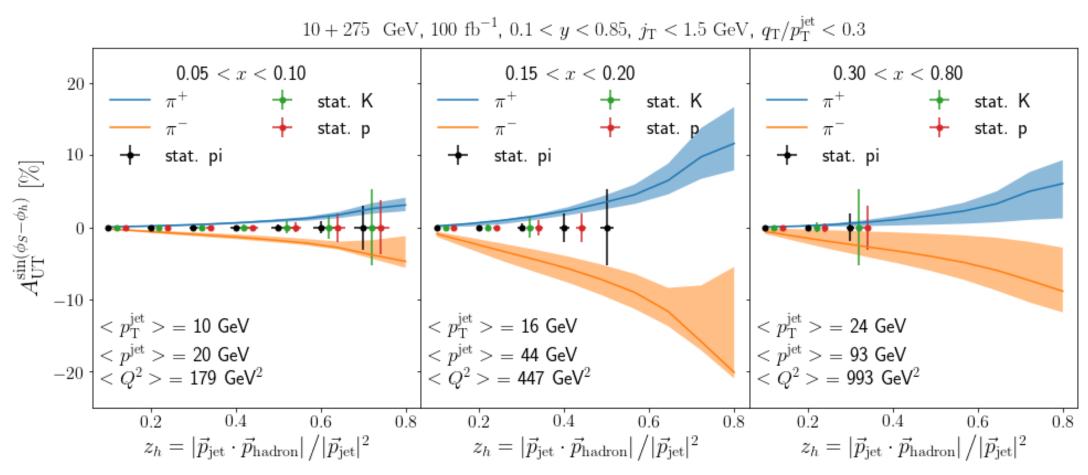
- Note that we want to sample high-z region as well as high-x region, where jet momentum reaches ~100 GeV momentum on average
- Obviously, we also want kaons, predictions not shown because Collins FF is unknown


PID requirements

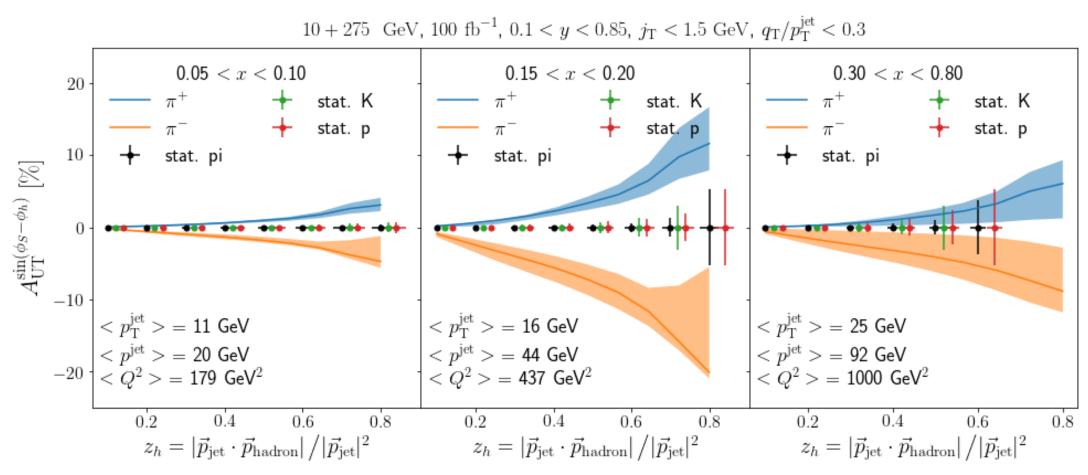



The current matrix has a pi/k/p separation up to 8 GeV in the eta region 1.0-2.0. That is totally inadequate for this measurement

Currently in the detector matrix, "pi/K/p separation"



Ideal PID coverage

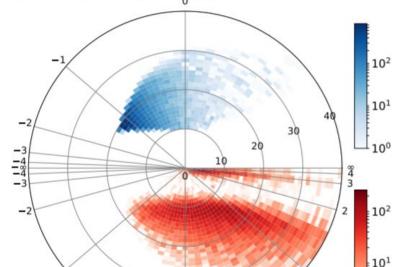

Detector Matrix as it is now

This shows data unbinned in Q2, so is biased towards the lowest Q2,

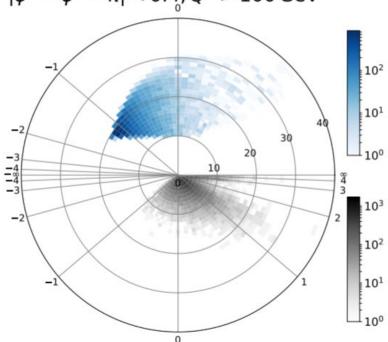
-> the least demanding

With proposed PID coverage

This shows data unbinned in Q2, so is biased towards the lowest Q2,


-> the least demanding

For 100 GeV (highest e-A), barrel region is critical


PID critical for cold-nuclear matter studies with light-,strange-, and charm-jets. Jet fragmentation studies

Phys. Rev. C 101, 065204 (2020)

$$0.1 < y < 0.85, 10 < p_T^{electron} < 30 \,\text{GeV/c}$$

 $|\phi^{jet} - \phi^e - \pi| < 0.4, Q^2 > 100 \,\text{GeV}^2$

 $0.1 < y < 0.85, 10 < p_T^{electron} < 30 \text{ GeV/c}$ $|\phi^h - \phi^e - \pi| < 0.4, Q^2 > 100 \text{ GeV}^2$

Current detector matrix goes to 5 GeV up to eta=+1.0, when jets go to 30 GeV!!

~8 GeV from 0 to +1.0, ~15 GeV from 0.5 to +1.0

Jets, R=1.0

Hadrons

Nutshell:

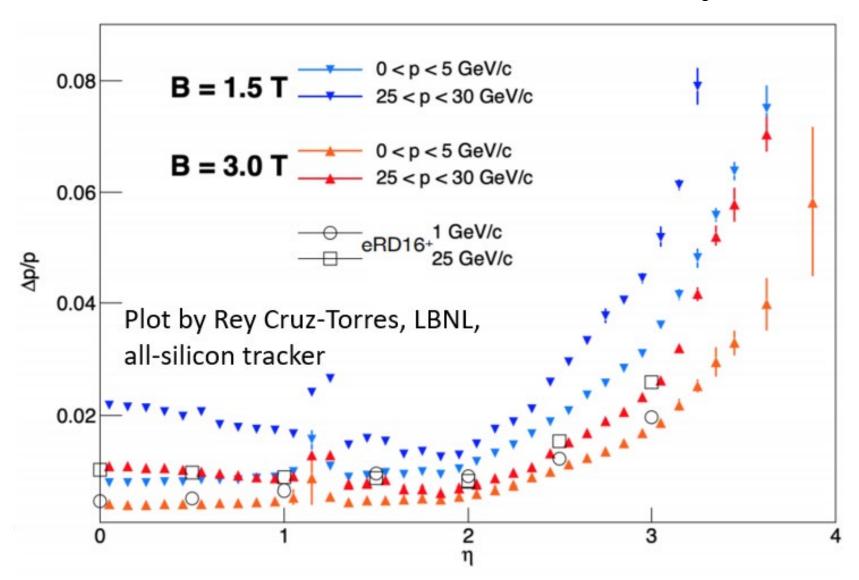
In summary, without PID coverage eta region +1.5 to +2.0 up to \sim 40-50 GeV and in the eta region 1.0-1.5 up to \sim 25-30 GeV, we would totally compromise measurements of Collins asymmetries with hadron-in-jets at Q2>100 GeV2, x>0.01

Not having such PID would also limit other jet-substructure measurements like the sea-tagged jet-Sivers measurement and many others yet to be invented.

Note that these requirements differ from those expressed by the SIDIS group, which seem to be focusing on low Q2 region/low beam energies.

Note that these requirements are like those being expressed by SIDIS group, unsurprisingly since high Q2 SIDIS = jets.

Table 1: Channels listed are increasingly demanding. For every row consider all requirements above as well. The (x, Q^2) dependence of the observables is omitted for brevity. These measurements mostly focus on high Q^2 region, high-x > 50-100 GeV², x > 0.01). Date: August 17, 2020, Miguel Arratia

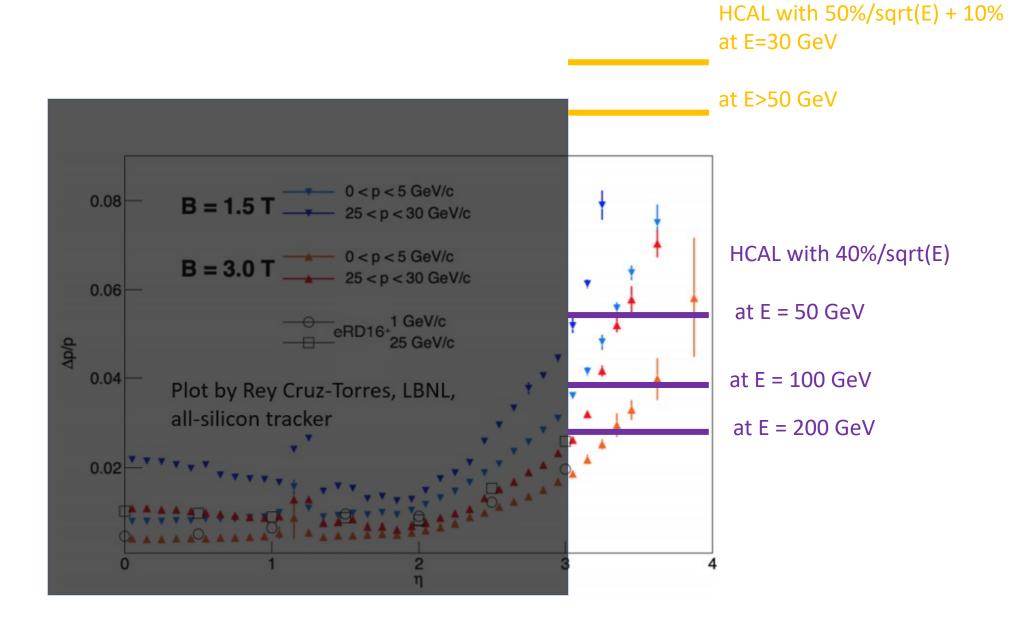

Channel	Observable	Goal	Physics-driven requirement	Category	numbers
e-jet (NC) 100 fb ⁻¹	$d\sigma, A_{UT}(q_T) \\ A_{UT}(\Delta\phi)$	k_T -dependence of quark Sivers	$\sigma(q_T) << ext{intrinsic width}$ $\sigma(q_T) < 0.5 ext{ GeV}$ $\sigma(\Delta\phi) << ext{intrinsic width}$ $\sigma(\Delta\phi) < 0.02 ext{ rad}$	Jet energy res.	ECAL&HCAL $dE/E < 60\%/\sqrt{E}$ + energy flow
			$R = 1.0 \rightarrow \text{had. corr. } O(1)\%$ energy-flow reco	Acceptance Granularity	2π , $-1.0 < \eta < +4.0$ HCAL and ECAL endcap $\Delta \phi \times \Delta \eta \le 0.05 \times 0.05$
h-in-jet (NC) 100 fb ⁻¹	$d\sigma, A_{UT}(z_h, j_T)$	q-transversity	dp/p at high $z < jet dE/E\pi/K/p separation$	Tracker PID (3-σ)	$dp/p < 5\%$ at $p = 50$ GeV, up to $\eta = +2.5$ $-1.0 < \eta < +1.0 < 8$ GeV $+1.0 < \eta < +1.5 < 25$ GeV $+1.5 < \eta < +2.0 < 50$ GeV $+2.0 < \eta < +2.5 < 20$ GeV
ν-jet (CC) 100 fb ⁻¹	$d\sigma,A_{UT}$	u Sivers	$\Delta \phi << 0.3 \text{ rad}$ E_T^{miss} down to 10 GeV Bkg. rej. to phot and NC $>70\%$ survival prob. for 5 bins per-decade in x, Q^2	E_T^{miss} res. Acceptance ${ m Jet}/E_T^{miss} { m res.}$	$dE_T^{miss}/E_T^{miss} < 15\%$ 2π , $-1.0 < \eta < +4.0$ HCAL and ECAL E>100 MeV thres. ECAL E>400 MeV thres. HCAL $p_T > 100$ MeV tracker dx/x < 20%, $dE_T^{miss}/E_T^{miss} < 15\%$
h-in-jet (CC) 100 fb ⁻¹	$d\sigma, A_{UT}(z_h, j_T)$	u-transversity		_	
c-jet (CC) 100 fb ⁻¹	$d\sigma$, A_{LL}	s PDF& helicity	charm-jet tagging $\epsilon > 30\%$ (<0.5% mis-tagging)	Tracker PID	$\sigma(d_0)$ and $\sigma(z_0) < 20 \ \mu \text{m}$ in $-1.0 < \eta < +3.0$ $\approx 100\%$ tracking eff. Same as hadron-in-jet
h-in- <i>c</i> -jet (CC) 100 fb^{-1}	$d\sigma, A_{UT}(z_h, j_T)$	s-transversity	_	_	_
c -jet $(e^+ \text{ CC})$ 100 fb ⁻¹	$d\sigma, A_{LL}$	s/\bar{s} asymmetry	positrons	_	

Backup slides

"Why can't you do this with lower beam energies, which have less stringent PID requirements?" "Why can't you pursue this physics with low-Q2 SIDIS?"

- We need to make sure that we can probe highest Q2 available at EIC, which come at the highest proton-beam energies.
- We need to probe the entire x, Q2 phase space available (imagine a detector optimized for inclusive DIS for only Q2<10 GeV2)
- Jets at high Q2 allow us to cleanly separate TMD PDF and TMD FF. (see https://arxiv.org/abs/2007.07281)
- Constrain TMD evolution requires low and high Q2 EIC data.
- Test universality and factorization by comparing to RHIC jet measurements at similar kinematics.
- Benefit from jet-substructure advances for spin/TMD physics.

Realistic simulations show tracking performance deteriorates fast beyond eta = 3.0



Realistic simulations show tracking performance deteriorates fast beyond eta = 3.0, but currently the detector matrix states:

1.U to	1.5		,		
17 1.5 to	2.0		<u>σp/p</u> ~0.05%×p+1.0		
18 2.0 to	2.5	<u>Forward</u>	0.05%×p+1		
19 2.5 to	3.0	Detectors	<u>σp/p ~</u>		
20 3.0 to	3.5		0.1%×p+2.09		

Totally unrealistic requirements in detector matrix?

- Are we misleading ourselves to wrongly conclude HCAL has little impact on jet and missing-energy measurements beyond eta=3.0?
- Given realistic performance, can PID even work beyond 3.0 up to 50 GeV, as currently stated in matrix?.

HCAL forward calorimeter performance limited by **space** and **material in front**.

Table shown by A. Bazilevsky,

Pavia meeting		Detector Matrix for the calorimeters					shown)			wn)	
η	Nomenc lature	EmCal						HCal			
		Energy resolution %	Spatial resolution mm	Granul arity cm^2	Min photon energy MeV	PID e/π πsuppre ssion	Technology solution	Energy resolution %	Spatial resoluti on mm	Granula rity cm^2	Technolog y solution
-3.5 : -2	backward	2/√E ⊕ 1	3/√E ⊕ 1	2x2	50	100	PbWO ₄	50/√E ⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc
-2:-1	backward	7/√E ⊕ 1.5	3(6)/√E ⊕ 1	2.5x2.5 (4x4)	100	100	DSB:Ce glass; Shashlik; Lead glass	50/√E⊕10	50/√E ⊕ 30	10x10	Fe/Sc
-1:1	barrel	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5	100	100	W/ScFi	100/√E⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc
1:3.5	forward	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5 (4x4)	100	100	W/ScFi Shashlyk, glass	50/√E⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc

Technology selection depends on the space available Several other technologies are under consideration Material in front will affect the resolution

Note 10% constant term matches stochastic term at E= 25 GeV. Not great for a beam energy of 275 GeV...