
YR DWG Calorimetry: Complimentarity Questions

Geometrical Constraints Dominate the Selection of Options

Light-collecting calorimeters Implementation is challenging Charged collecting (LAr) not considered

- HCAL both arms: ΔZ=87 cm very short (or too short) Fe/Sc sandwich
- HCAL barrel: no practical constraint?
- ECAL electron arm: ΔZ=50 cm OK for 3 technologies: crystals, W/ScFi, W-Shashlyk, Pb-Shashlyk
- ECAL hadron arm: ΔZ=38 cm OK for 2 technologies: W/ScFi, W-Shashlyk
- ECAL barrel: ΔR=30 cm?: OK for 2 technologies: W/ScFi, W-Shashlyk

Table.5 Calorimetry for EIC													
η	ECAL								HCAL				
	Total depth, cm	Depth, RL	Energy resolution σΕ/Ε, %	Spacial resolution σX, mm	Granularity, mm ²	Min. photon energy, MeV	PID e/π, π suppression	Technology examples*	total depth, cm	Energy resolution σE/E, %	Spacial resolution σX, mm	Granularity, mm ²	Technology examples
-3.5:-2.0	38	22	2.2/√E⊕1.0	3/√E⊕1	20×20	20	100	PbWO ₄ crystals	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc
-2.0:-1.0	38 38 50 50 (65)**	20 20 22 13* 16*	8.0/√E⊕1.5 12/√E⊕2 (7-8)/√E⊕1.5 ? 5.0/√E⊕1.5	3/√E⊕1 3/√E⊕1 6/√E⊕1 6/√E⊕1 6/√E⊕1	25×25 25×25 40×40 40×40 40×40	50 50 50 30 30	100	W/Sc Shashlyk W powder/ScFi Pb/Sc Shashlyk SciGlass SciGlass	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc
-1.0:1.0	30	18 18 6	12/√E⊕2 14/√E⊕3 ?	3/√E⊕1 3/√E⊕1 6/√E⊕1	25×25 25×25 40×40	100	100	W/Sc Shashlyk W powder/ScFi SciGlass	110	100/√E⊕10	50/√E⊕30	100×100	Fe/Sc
1.0:3.5	38 38 (50)** (65)**	20 20 22 16*	8.0/√E⊕1.5 12/√E⊕2 10.0/√E⊕1.5 5.0/√E⊕1.5	3/√E⊕1 3/√E⊕1 6/√E⊕1 6/√E⊕1	25×25 25×25 40×40 40×40	100 100 100 30	100	W/Sc Shashlyk W powder/ScFi Pb/Sc Shashlyk SciGlass	105	50/√E⊕10	50/√E⊕30	100×100	Fe/Sc

^{*} A non-PMT readout is assumed, occupying <15cm longitudinal

** If more space than in the current layout is allocated.

Questions

- Would the complementary designs naturally be associated with different choices of solenoid field, centre of mass energy, luminosity or beam polarisation?
 Not directly
- How might a second detector differ in technology choices and what (dis)advantages might that bring in terms of kinematic coverage, resolution on reconstructed variables, radiation hardness, dominating systematics etc?
 - More space would improve the performance (HCAL in hadron arm) and reduce risks
- Are there wider implications for other parts of the detector eg due to material budgets? Material in front of ECAL degrades the resolution and e/π
- Are there any limitations in the performance of your sub detector technologies for very small bunch spacing < 9ns?
 Are there any rate limitations?
 - Likely no, but depends on the readout electronics
- Are there any limitations in the performance of your sub detector technologies for very small bunch spacing < 9ns?
 Are there any rate limitations?
 - Likely no, but depends on the readout electronics

Questions

- Is +/- 4.5 m enough longitudinal space to fit the detector
 - Depends on the physics goals: luminosity vs detector performance
- Are there any issues we should be aware of in terms of cost, technology readiness, or time required to construct the detector?
 - Crystals delivery, performance with SiPM, engineering issues
- Might it be possible to combine more than one function into your detector(s)?

 No
- Do your detector technologies have any impact on the design of the interaction region?
 No
- What studies need to be done (or have been done already) to make fully quantitative statements?
 - Depends on the accuracy required