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Introduction

* | will describe motivations for high-Q2 jet measurements with PID and
describe requirements.

| will divide my presentation in three parts.

1) Hadron-in-jet Collins asymmetry measurements
2) Jet probes of cold-nuclear matter
3) Charm-jet tagging in charged-current DIS



Jet-based measurements of Sivers and Collins asymmetries
at the future Electron-lon Collider arXiv:2007.07281

3.4,5,1 6,2, 1

Miguel Arratia,’*?'* Zhong-Bo Kang, Alexei Prokudin, and Felix Ringer” %
-

e+ p(5r) — e+ (jet(gr) h(zn, j7)) + X .
e Focuses on high Q2 region, to probe quark-TMDs, as well as their TMD evolution.
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Concentrate on this beam configuration, as we
need both high luminosity and high energy.

-Luminosity is required as it is a highly
differential measurement, jet-Collins
measurement has two more dimensions than
traditional SIDIS (additional qT vector)

e +p(3r) — e+ (jet(@r) h(zn, j)) + X .

-Energy is required to reach high Q2, crucial to
constrain TMD evolution



Jet kinematics for 275 GeV beam
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Note that most jets
go to 1.0-2.5 eta
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So most of the high Q2 events look like:

i.e. in the barrel-to-endcap transition.
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Hadron-in-jet Collins asymmetries 220070721
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* Note that we want to sample high-z region as well as high-x region, where jet

momentum reaches ~100 GeV momentum on average
e Obviously, we also want kaons, predictions not shown because Collins FF is unkndown
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7+ pseudorapidity

PID requirements

104275 GeV
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The current matrix has a pi/k/p separation up to 8 GeV in the eta region
1.0-2.0. That is totally inadequate for this measurement ’
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7+ pseudorapidity

Currently in the detector matrix, “pi/K/p separation”
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Even more stringent, up to 50 GeV for 1.5-2.0

Beyond x =0.3 (no data currently exists)
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Ideal PID coverage
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Detector Matrix as it 1s now
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This shows data unbinned in Q2, so is biased towards the lowest Q2,
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With proposed PID coverage
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Take-home message

For the hadron-in-jet Collins measurements, which
probe mid-to-large x and mid-to-large Q2,

(i.e roughly x>0.01 and Q2>100 GeV?2)

we would need the PID up to ~50 GeV

already at eta=+1.0 to +2.0. No very stringent
requirement beyond eta = +2.5.

Note this is vastly different from low Q2 SIDIS
measurements. Perhaps this is an opportunity for
detector complementarity. Perhaps one can
optimize a PID system for low-Q2 SIDIS and
another for high-Q2 jets.
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“Why can’t you do this with lower beam energies, which
have less stringent PID requirements?”
“Why can’t you pursue this physics with low-Q2 SIDIS?”

* We need to make sure that we can probe highest Q2 available at EIC,
which come at the highest proton-beam energies.

* We need to probe the entire x, Q2 phase space available
(imagine a detector optimized for inclusive DIS for only Q2<10 GeV?2)

* Jets at high Q2 allow us to cleanly separate TMD PDF and TMD FF. (see
https://arxiv.org/abs/2007.07281)

* Constrain TMD evolution requires low and high Q2 EIC data.

* Test universality and factorization by comparing to RHIC jet
measurements at similar kinematics.

» Benefit from jet-substructure advances for spin/TMD physics.


https://arxiv.org/abs/2007.07281

PHYSICAL REVIEW C 101, 065204 (2020)

Jets as precision probes in electron-nucleus collisions at the future Electron-Ion Collider

tag

q probe
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We need high Q2 jet measurements, not just
low-Q2 hadron measurements
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PID critical for cold-nuclear matter studies with light-,strange-, and charm-jets; jet
fragmentation and other substructure studies; and nuclear TMDs! 18



For 100 GeV nucleon beam (highest for e-A)
the barrel region is critical

Phys. Rev. C 101, 065204 (2020)
0.1 <y<0.85,10 < pelectron < 30GeV/c 0.1 <y < 0.85, 10 < pglectron < 30 GeV/c
|/t — ¢© — | < 0.4, Q? > 100 GeV? |¢" — ¢ — 11| < 0.4,0? > 100 GeV?

Current detector matrix
a goesto 5 GeVupto
1o eta=+1.0, but jets go to
10° 30 GeV.
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107 would need PID up to

100 ~8 GeV from 0 to +1.0,
and up to ~15 GeV

JEtS’ R=1.0 Hadrons from 0.75to +1.0
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Charm jets as a probe for strangeness at the future Electron-Ion Collider

Miguel Arratia,''? Yulia Furletova,? T. J. Hobbs,* 4 Fredrick Olness,® and Stephen J. Sekula3:*
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PID, Kaons in particular, can help improve
charm-tagging efficiency significantly
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We show in arXiv:2006.12520

That adding PID increases tagging from
~20% (purely displaced vertex) to ~30%.
Multi-variate approaches would likely
bring that number to ~40-50%
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Key channel to constrain strange at EIC

arXiv:2006. 12520 CT18Z NNLO
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Luminosity hungry measurement, significantly higher efficiency with PID would
enable a significant measurement with less beam time (potentially a factor of of ~2) »
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Jet kinematics are similar to those in NC DIS

CC-DIS, 10GeVx275GeV, Q% > 100GeV?
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Cross-sections drops fast in Q2 and z...
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So 1 think your proposed fractional coverage metric
requires binning in Q2 AND x AND z
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Otherwise one is completely dominated by low Q2, and low z region.



Conclusions

- PID requirements for high Q2 events (= jet events) are
more demanding toward more central region of the
detector. The barrel-to-endcap region is critical, the very
forward region is not so important.

- There are plenty of good reasons to aim for PID for high
Q2, including but not limited to hadron-in-jet Collins,
strange-tagged jet-Sivers, strange PDF,
jet fragmentation in cold nuclear matter, etc.

- If one cannot optimize for entire eta range, this might offer
a possibility of complementarity: one detector optimized
for Q2>100 GeV2 and another for Q2<100 GeV2
i.e a PID system for a jet detector and another for a SIDIS
detector

05<n<4 1.0 < 10-15 GeV
4 B < 25 GeV

) < 50 GeV
20 < 1< +2.5 < 20 GeV
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