A_PV Impact Assessment by reweighting NNPDF

Ciprian Gal, Hanjie Liu, and <u>Jinlong Zhang</u> August 18, 2020

Inputs

- Pseudo-data:
 - Y. X. Zhao et al.: Eur. Phys. J. A (2017) 53: 55
- PDF replicas:
 - NNPDF2.3 and NNPDFpol1.1
- Methodology
 - Reweighting: NNPDF collaboration, Nucl. Phys. B849 (2011) 112-143

Pseudo-data

- e-p 10x100, 10x250, 15x100, 15x250; Integral luminosity: 500 fb^-1
- Polarization: 80% for electron, 70% for hadron

Fig. 2: (Color Online) The predicted relative uncertainty for the measured asymmetry vs. x with 10 GeV longitudinally polarized electron on 100 GeV unpolarized proton. The integrated luminosity of 500 fb⁻¹ and electron beam polarization of 80% are assumed.

Fig. 4: (Color Online) The predicted relative uncertainty for the measured asymmetry vs. x with 10 GeV unpolarized electron on 100 GeV longitudinally polarized proton. The integrated luminosity of 500 fb⁻¹ and proton beam polarization of 70% are assumed.

Eur. Phys. J. A (2017) 53: 55

$\log_{10}(Q^2)$ bin	$\log_{10}(x)$ bin	$\langle Q^2 \rangle ~({ m GeV}^2)$	$\langle x \rangle$	y coverage	$\frac{\frac{\sigma_{\gamma Z}}{g_1^{\gamma Z}}}{g_1^{\gamma Z}}$	$\langle g_1^{\gamma Z}\rangle$	$\frac{\sigma_{\gamma Z}}{g_5^{\gamma Z}}$	$\langle g_5^{\gamma Z}\rangle$
(0.0, 0.4)	(-4.0, -3.5)	1.5e+00	2.4e-04	(0.32, 0.81)	-1.1e+02	-7.8e+00	8.4e + 03	1.0e+00
(0.0, 0.4)	(-3.5, -3.0)	1.8e+00	6.0e-04	(0.10, 0.79)	-4.7e+01	-3.6e+00	2.0e+03	4.5e-01
(0.0, 0.4)	(-3.0, -2.5)	2.0e+00	1.4e-03	(0.10, 0.25)	-3.0e+02	-1.5e+00	4.3e + 03	2.0e-01
(0.4, 0.8)	(-4.0, -3.5)	2.5e+00	3.1e-04	(0.79, 0.81)	-1.7e+06	-5.8e+00	1.3e+08	9.2e-01
(0.4, 0.8)	(-3.5, -3.0)	4.0e+00	7.2e-04	(0.25, 0.82)	-5.8e + 01	-2.8e+00	2.6e + 03	5.9e-01
(0.4, 0.8)	(-3.0, -2.5)	4.5e+00	1.9e-03	(0.10, 0.63)	-4.6e+01	-1.1e+00	5.5e + 02	3.9e-01
(0.4, 0.8)	(-2.5, -2.0)	5.2e + 00	4.1e-03	(0.10, 0.20)	-6.6e + 02	-4.1e-01	1.2e + 03	3.7e-01
(0.8, 1.2)	(-3.5, -3.0)	6.9e + 00	9.2e-04	(0.63, 0.82)	-1.1e+03	-2.1e+00	4.3e+04	6.4e-01
(0.8, 1.2)	(-3.0, -2.5)	1.0e+01	2.1e-03	(0.20, 0.84)	-3.2e+01	-9.4e-01	4.5e+02	5.8e-01
(0.8, 1.2)	(-2.5, -2.0)	1.1e+01	5.7e-03	(0.10, 0.50)	-6.3e+01	-2.5e-01	9.6e + 01	5.4e-01
(0.8, 1.2)	(-2.0, -1.5)	1.4e+01	1.2e-02	(0.10, 0.16)	-5.5e+04	-3.2e-03	4.8e + 02	5.9e-01
(1.2, 1.6)	(-3.0, -2.5)	2.0e+01	2.7e-03	(0.50, 0.87)	-1.7e+02	-6.3e-01	1.8e + 03	6.8e-01
(1.2, 1.6)	(-2.5, -2.0)	2.7e+01	6.1e-03	(0.16, 0.90)	-2.7e+01	-1.9e-01	6.1e + 01	6.9e-01
(1.2, 1.6)	(-2.0, -1.5)	2.9e+01	1.7e-02	(0.10, 0.40)	7.2e + 01	6.8e-02	1.8e+01	7.0e-01
(1.2, 1.6)	(-1.5, -1.0)	3.7e + 01	3.4e-02	(0.10, 0.13)	1.2e+03	1.6e-01	3.8e + 02	7.4e-01
(1.6, 2.0)	(-2.5, -2.0)	6.1e + 01	7.9e-03	(0.40, 1.0)	-1.3e+02	-5.5e-02	1.0e+02	8.1e-01
(1.6, 2.0)	(-2.0, -1.5)	7.0e+01	1.9e-02	(0.13, 1.0)	9.3e + 00	1.0e-01	8.4e + 00	8.0e-01
(1.6, 2.0)	(-1.5, -1.0)	7.5e+01	4.9e-02	(0.10, 0.32)	8.7e + 00	1.8e-01	4.5e+00	7.6e-01
(2.0, 2.4)	(-2.0, -1.5)	1.6e+02	2.2e-02	(0.32, 1.0)	6.1e + 00	1.5e-01	1.2e+01	8.7e-01
(2.0, 2.4)	(-1.5, -1.0)	1.7e+02	5.8e-02	(0.10, 0.79)	1.1e+00	2.0e-01	1.5e+00	7.8e-01
(2.0, 2.4)	(-1.0, -0.5)	1.9e+02	1.4e-01	(0.10, 0.25)	3.4e + 00	1.8e-01	2.1e+00	5.6e-01
(2.4, 2.8)	(-2.0, -1.5)	2.8e+02	2.9e-02	(0.80, 1.0)	1.3e+02	1.9e-01	3.5e+02	8.9e-01
(2.4, 2.8)	(-1.5, -1.0)	4.1e+02	6.3e-02	(0.25, 1.0)	5.7e-01	2.1e-01	1.7e+00	7.9e-01
(2.4, 2.8)	(-1.0, -0.5)	4.4e + 02	1.7e-01	(0.10, 0.63)	3.2e-01	1.6e-01	4.5e-01	4.8e-01
(2.4, 2.8)	(-0.5, 0.0)	5.1e + 02	3.8e-01	(0.10, 0.20)	4.1e+00	6.0e-02	2.7e+00	1.6e-01
(2.8, 3.2)	(-1.5, -1.0)	7.6e + 02	8.5e-02	(0.64, 1.0)	3.1e + 00	2.2e-01	1.2e+01	7.2e-01
(2.8, 3.2)	(-1.0, -0.5)	1.1e+03	1.8e-01	(0.20, 1.0)	1.2e-01	1.5e-01	4.2e-01	4.5e-01
(2.8, 3.2)	(-0.5, 0.0)	1.1e+03	4.2e-01	(0.10, 0.49)	3.7e-01	4.7e-02	5.7e-01	1.3e-01
(3.2, 3.6)	(-1.0, -0.5)	2.1e+03	2.5e-01	(0.51, 1.0)	3.2e-01	1.1e-01	1.4e+00	3.0e-01
(3.2, 3.6)	(-0.5, 0.0)	2.7e+03	4.2e-01	(0.20, 1.0)	9.5e-02	4.3e-02	3.7e-01	1.2e-01
(3.6, 4.0)	(-0.5, 0.0)	5.1e + 03	5.7e-01	(0.59, 1.0)	4.6e-01	1.3e-02	2.2e+00	3.4e-02

Table 7: Anticipated sensitivities of $g_1^{\gamma Z}$ and $g_5^{\gamma Z}$ functions for individual bins in the (Q^2, x) plane. The projections are for the 10 GeV unpolarized electron beam on the 250 GeV longitudinally polarized proton beam. The first two columns define the $(\log_{10}(Q^2), \log_{10}(x))$ two dimensional bins. The $\langle Q^2 \rangle$ and $\langle x \rangle$ are the $f^2(Q^2)$ weighted (as discussed in Sec. 3) mean values in each bin. The y coverage for the bin is also tabulated. The $\langle g_1^{\gamma Z} \rangle$ and $\langle g_5^{\gamma Z} \rangle$ are the predicted mean values for the structure functions. The $\frac{\sigma_{g_1^{\gamma Z}}}{g_1^{\gamma Z}}$ and $\frac{\sigma_{g_5^{\gamma Z}}}{g_5^{\gamma Z}}$ are the projected relative uncertainties. The cuts mentioned in Sec. 3 are applied to the data.

Reweighting NNPDF replicas

NNPDF collaboration, Nucl. Phys. B849 (2011) 112-143

- Assess impact of new (pseudo-)data by commonly used reweighting methods
 - Observables replicas from PDF replicas
 - Pseudo-data central value smeared
- Challenge: only limited number of replicas available

$$\mathcal{P}(f|y)\mathcal{D}f = rac{\mathcal{P}(y|f)}{\mathcal{P}(y)}\mathcal{P}(f)\mathcal{D}(f)$$

y: EIC (pseudo-) data f: PDFs

$$\omega_k = \mathcal{N}_{\chi}(\chi_k^2)^{(n-1)/2} e^{-\frac{1}{2}\chi_k^2}$$

$$\mathcal{N}_{\chi} = \frac{1}{N} \sum_{k=1}^{N} (\chi_k^2)^{(n-1)/2} e^{-\frac{1}{2}\chi_k^2}$$

$$\chi_k^2$$
: between pseudo-data and prediction from PDFs

$$\chi^2(y,f) = \sum_{i,j=1}^n (y_i - y_i[f])\sigma_{ij}^{-1}(y_j - y_j[f]).$$

A_{PV}^e : Impactful vs non-impactful bins

Red line: central value; blue lines: uncertainties from Yuxiang's table

A_{PV}^h : Impactful vs non-impactful bins

Best only few

Mean -0.0572 **RMS** 0.0039 15 15 10 10 5 5 -8.68 0 -0.04 0.05 -0.06 -0.05 -0.0 $A_{PV}^{h} Q2 = 70, x = 0.0190$ Entries 101 Mean -0.0000 30 20 RMS 0.0000 15 20 10 10 5 10 0 0 0.2 -0.2 -0.40 -5 A^h_{PV} Q2 = 12, x = 0.0150 $g1^{YZ} Q2 = 12 x = 0.0150$ Entries Mean -0.0000 60 RMS 0.0000 40 40 20 20

0.2

A^h_{PV} Q2 = 2800, x = 0.4200

Entries

101

Entries

RMS

20

0

-40

-20

0

Mean 0.6274

0.6036

40

101

Entries

Mean 0.0321 RMS 0.0024

101

Normal

Useless but a lot

0

-0.2

Chi2 and weights

Unpolarized PDFs

Polarized PDFs

Summary

- Impact assessment for EIC pseudo-data from Yuxiang Zhao et al.'s paper. Parameters are different from YR baseline.
- Unpolarized PDF: ~30% improvement at lower x range (~10^-3), from NNPDF2.3, by including A_{PV}^e at EIC
- Polarized PDF: no visible improvement by including A_{PV}^h at EIC