Jets and Heavy Flavor Detector Requirements Summary

Leticia, Brian, Frank, Ernst, and Ivan PWG Conveners Meeting September 2nd, 2020 All requirements and supporting material can be found on our wiki page: <u>https://wiki.bnl.gov/eicug/index.php/Yellow_Report_Physics_Jets-HF</u>

Tracking: Momentum Resolution

Eta Range	Default Resolution (σP/P)%	Requested (σP/P)%	
-3.5 < η < -2.5	0.1%*P + 0.5%	Same	
-2.5 < η < -2.0	0.1%*P + 0.5%	Same	
-2.0 < η < -1.0	0.05%*P + 0.5%	Same	
-1.0 < η < 1.0	0.05%*P + 0.5%	Same	
1.0 < η < 2.5	0.05%*P + 1.0%	Same	
2 . 5 < η < 3.5	0.1%*P + 2.0%	Same	

Track Momentum Resolution

- In addition to momentum resolution and minimum p_{τ} , it would be good to have some input on potential track efficiencies
- We also worry that in the highest eta bin, the resolution formula overestimates the achievable resolution for high momentum (~20-25+ GeV) tracks

- We also request a field for minimum track transverse momentum be included (several analyses assumed values between 100 and 250 MeV)
- This will be relevant for substructure / global event shape measurements as well as decays from HF mesons
- The soft pion from D* decays is a driver here

Tracking: Vertex Resolution

Eta Range	Default Resolution	Requested Resolution
-3.5 < η < -3.0	TBD	N/A
-3.0 < η < -2.5		σ_{xy} = 30/p _T + 40 µm
-2.5 < η < -1.0		σ_{xy} = 30/p _T + 20 µm
- 1.0 < η < 1.0	σ_{xyz} ~20μm, σ_{xy} ~ σ_z ~ 20μm/p _T + 5μm	Same
1.0 < η < 2.5	TBD	σ_{xy} = 30/p _T + 20 µm
2 . 5 < η < 3.0		σ_{xy} = 30/p _T + 40 µm
3.0 < ŋ < 3.5		σ_{xy} = 30/p _T + 60 µm

- Vertex resolution driven by need to reconstruct charmonium and bottomonium states
- Resolutions listed above enable the high statistics measurements of ReA shown to the right for D and B mesons over a wide pseudorapidity range
- Enhancing (degrading) resolutions will improve (decrease) signal significance and decrease (increase) integrated luminosity needed to reach a given precision

PID

Eta Range	Default Momentum Coverage	Requested Momentum Coverage
-3.5 < η < -1.0	≤ 7 GeV	Same
-1.0 < η < 0.0		≤ 10 GeV
0.0 < η < 0.5	≤ 5 GeV	
0.5 < η < 1.0		≤ 15 GeV
1.0 < η < 1.5		≤ 30 GeV
1.5 < η < 2.0		
2 . 0 < η < 2 . 5		2 50 GeV
2.5 < η < 3.0		≤ 30 GeV
3.0 < η < 3.5	≤ 45 GeV	Can tolerate ≤ ~20 GeV

- PID requirements driven by unpolarized and polarized (Collins asymmetry) hadron-in-jet fragmentation measurements at mid to high z
- Figures to the right show charged particle momentum for different pseudorapidity – inform the eta ranges and momentum requirements above
- Very demanding expansion of PID capabilities important for complementarity discussions

PID

0.4

 $z_h = |\vec{p}_{\text{jet}} \cdot \vec{p}_{\text{hadron}}| / |\vec{p}_{\text{jet}}|^2$

0.2

0.6

0.8

0.2

0.4

 $z_{\hbar} = |ec{p}_{ ext{jet}} \cdot ec{p}_{ ext{hadron}}| \, / |ec{p}_{ ext{jet}}|^2$

0.6

0.8

0.2

0.4

 $z_h = \left| \vec{p}_{\mathrm{jet}} \cdot \vec{p}_{\mathrm{hadron}} \right| / \left| \vec{p}_{\mathrm{jet}} \right|^2$

0.6

0.8

Requested Coverage: j_T Vs z

Default / Requested Ratio

Calorimetry: Electromagnetic

EMCal Energy Resolution			
Eta Range	Default Resolution ($\sigma E/E$)	Requested (σE/E)	
-4.5 < η < -2.5	2%/√E	Same (1-3% constant term acceptable)	
-2.5 < η < -2.0	2%/√E	Same (1-3% constant term acceptable)	
-2.0 < η < -1.5	7%/√E	Same (1-3% constant term acceptable)	
-1.5 < η < -1.0	7%/√E	Same (1-3% constant term acceptable)	
-1.0 < η < 4.5	10-12%/√E	Same (1-3% constant term acceptable)	

- Default ECal energy resolutions were found to be sufficient for our needs – even with the addition of realistic constant terms of 1 to 3%
- As with tracker, would like guidance on minimum cluster energy
- Would also like estimate on achievable cluster position resolution and separation
- Can the ECal actually extend to eta of 4.5?

- Also looked at the effect of a service gap (eta = 0.1 or 0.3) on jet reconstruction
- Advocate for the most complete coverage possible

Calorimetry: Hadronic

Eta Range	Default Resolution ($\sigma E/E$)	Requested (σE/E)
-3.5 < η < -1.0	50%/√E	Same (~10% constant term is acceptable)
-1.0 < η < 1.0	N/A	85%/√E + 10%
1.0 < η < 3.0	E00/ //	50%/√E + 10%
3.0 < η < 3.5	50%/NE	
3.5 < η < 4.0	N/A	5U70/ NE + 570

- Barrel HCal requested for missing transverse energy measurements in CC events (also for Jaquet-Blondel), measurement of neutral hadrons
- 100%/VE sufficient for missing energy, but seen that better resolution needed for accurate jet reconstruction toward smaller eta values
- Request coverage extension up to eta = 4 to gain access to higher x values – constant term of 5% for eta > 3 (constant term dominates at these energies) keeps jet energy resolutions at required levels for measurements such as lepton-jet Sivers
- More study of position resolution / potential cluster separation needed as being able to select jets with no neutral hadron shows possibility of greatly improving jet energy resolution, especially at low eta / p_T / x

Calorimetry: Hadronic

 Plot of different HCal stochastic and constant term combinations shows that constant term dominates at large energy (high eta)

- Improving resolution of barrel HCal can reduce bias in jet energy scale at low eta caused by poorly reconstructed neutral hadrons as seen in left plot below
- Using HCal as a 'neutral hadron veto' can substantially improve jet energy resolution and reduce scale bias as seen in the right plot below

