Probing QGP by semi-inclusive γ +jet measurement in STAR

Nihar Ranjan Sahoo Shandong University, Qingdao, China

BNL Nuclear Physics Seminar Sep 15, 2020

Nihar Sahoo (SDU)

Jet quenching at RHIC

RHIC early measurements

- Suppression of inclusive charged/neutral hadrons at high-p_T
- No suppression of vector-bosons (γ , whereas W and Z at the LHC)
- Away-side jet suppression

Indication of hot-dense QCD medium (QGP)

RHIC scientific mission

Two central goals:

1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales

2) Map the phase diagram of QCD

Jet probes for the Quark-Gluon Plasma

- Underlying mechanisms of jet-quenching at RHIC energy
- Microscopic structure of the QGP as a function of the resolution scale

Inclusive hadron p _T spectrum Jet Fragmentation Functions R _{CP} Jet geometry engineering I _{CP} Jet shape Dihadron correlations R _{PA} Jet v ₂ Dijet acoplanarity Dijet imbalance Jet-like correlation Quark/gluon jet Jet Ouenching Jet splitting
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Some perceptive inquiries on jet quenching:

- Quantitative evaluation of parton energy loss
- Redistribution of lost energy inside the medium
- RHIC vs. LHC [reduction of jet-medium coupling α_s]
- Jet quenching in a small system
- Modification of jet shape inside QGP
- Large angle deflection of recoil jet in QGP

γ +jet in heavy-ion collisions

[[]Dai et al., PRL 110, 142001]

- γ does not interact strongly in QGP \rightarrow recoil jet is a "tomographic probe" However, NLO effects generate $p_{\rm T}$ -imbalance; calculable
- Comparison of γ +jet at RHIC and the LHC: a valuable tool to explore jet quenching
- Comparison between γ+jet and π⁰+jet
 q/g recoil jets and vary recoil mean path length

Jet-like γ +hadron and π^0 +hadron correlations measurements

[STAR, PLB 760 (2016) 689]

STAR: jet-like correlation measurement

Lost energy reappears predominantly at low transverse momentum, regardless of trigger energy

Jet-like γ +hadron and π^0 +hadron correlations measurements

[STAR, PLB 760 (2016) 689]

Theoretical development (CoLBT-hydro)

W. Chen et al., PLB 777 (2018) 86-90

STAR: jet-like correlation measurement

Lost energy reappears predominantly at low transverse momentum, regardless of trigger energy

Jet transport and jet-induced medium excitation in CoLBT-hydro simulations. 10² a+a Au+Au jet+j.i.m.e 10 Au+Au jet-only Au+Au jet+j.i.m.e(visc-cor $(\widetilde{\widetilde{v}})^{10^{0}}$ 10-2 $\Delta \mu + \Delta \mu (0.12\%) = 200 \text{ GeV}$ $\tau = 2.0 fm/$ < 20GeV/c: $|\Delta c$ 10 y-jet + Medium Excitation y-iet + Medium iet+i.i.m.e jet-only 1.5 jet+j.i.m.e(visc-cor STAR $I_{AA}(z)$ 0.5 0.0 0.6 0.8 0.2 0.4 10 z

Depletion of soft hadrons in γ direction
→ Diffusion wake left behind by the jet in QGP
Data can be well reproducible by this model

A differential measurement by reconstructing recoil jet is needed to understand jet quenching.

γ +jet measurement in STAR

STAR Experiment Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ Apr 06, 2014 09:22:51 EDT Run Number: 15096026 Event ID: 2056716 γ + jet event E_T: 17.6 GeV

Nihar Sahoo (SDU)

Two major challenges:

- Discrimination of γ/π^0 trigger events
- Uncorrelated jets

Two major challenges:

- Discrimination of γ/π^0 trigger events
- Uncorrelated jets

Two major challenges:

- Discrimination of γ/π^0 trigger events
- Uncorrelated jets

Need to subtract normalized ME uncorrelated jet spectrum from that of SE

Semi-inclusive h+jet: Unbiased

Two major challenges:

- Discrimination of γ/π^0 trigger events
- Uncorrelated jets

Other corrections:

Event-by-event correction

• Uncorrelated background energy density (ρ)

$$p_{\text{T,jet}}^{\text{reco,ch}} = p_{\text{T,jet}}^{\text{raw,ch}} - \rho \times A;$$

$$\rho = \text{median}\{\frac{p_{\text{T,jet}}^{\text{raw}}}{A_{\text{jet}}}\}; \quad \text{A: Area of the jet}$$

Ensemble-level correction

- Jet Energy Scale (JES) smearing correction: Unfolding
 - Factorize instrumentation and background fluctuation effects
 - Unfolding: SVD; iterative Bayesian

Statistical and unfolding precisions are acutely related

Solved

Main contributions to systematic uncertainties

- Instrumentation effects [Unfolding]
- Direct photon purity

- $\gamma_{\text{rich}} = \gamma_{\text{dir}} + \pi^0$ decays photons; γ_{dir} purity $\rightarrow 65-88\%$ between $E_{\text{T}}^{\text{trig}}$: 9-20 GeV
- π^{0}_{rich} :~95% pure
- $E_{\rm T}^{\rm trig}$ bins in this measurement: 9-11, 11-15, 15-20 GeV

Two major challenges:

- Discrimination of γ/π^0 trigger events
- Uncorrelated jets

Other corrections:

Event-by-event correction

• Uncorrelated background energy density (ρ)

$$p_{\text{T,jet}}^{\text{reco,ch}} = p_{\text{T,jet}}^{\text{raw,ch}} - \rho \times A;$$

$$\rho = \text{median}\{\frac{p_{\text{T,jet}}^{\text{raw}}}{A_{\text{jet}}}\}; \quad \text{A: Area of the jet}$$

Ensemble-level correction

- Jet Energy Scale (JES) smearing correction: Unfolding
 - Factorize instrumentation and background fluctuation effects
 - Unfolding: SVD; iterative Bayesian

Statistical and unfolding precisions are acutely related

Solved

Main contributions to systematic uncertainties

- Instrumentation effects [Unfolding]
- Direct photon purity

- $\gamma_{\text{rich}} = \gamma_{\text{dir}} + \pi^0$ decays photons; γ_{dir} purity $\rightarrow 65-88\%$ between $E_{\text{T}}^{\text{trig}}$: 9-20 GeV
- π^{0}_{rich} :~95% pure
- $E_{\rm T}^{\rm trig}$ bins in this measurement: 9-11, 11-15, 15-20 GeV

γ and π^0 trigger event statistics

Year 2014 Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

- high-p_T Lumi. 9.9 nb⁻¹
- We also have roughly the same statistics from 2016

- $\gamma E_T > 20 \text{ GeV} \rightarrow 1.4 \text{k events [not analyzed]}$
- Certainly, it can be measured with higher lumi.

γ +jet measurement: *p*+*p* reference

 γ_{dir} +jet and π^{0} +jet p+p reference (ongoing)

- STAR data: insufficient statistical precision for this analysis at present
 - Year-2009 with 26 pb⁻¹ (ongoing and will be finalized soon)
 - Proposed plan for 2024 p+p run: 235 pb⁻¹ (huge impact on our p+p baseline)
- Use PYTHIA validated by STAR measurements

Two versions of PYTHIA:

- PYTHIA8 Tune 4C
- PYTHIA6 Perugia 2012 STAR tune: validation by STAR p+p data [STAR, Phys. Rev. D 100, 052005 (2019)]

Both references to illustrate the differences

For γ_{dir} +jet:

- R=0.2: negligible differences
- R=0.5: 10-40% differences

Semi-inclusive γ_{rich} +jet p_T spectra in heavy-ion collisions

Recoil jet contribution dominates over background at high- $p_{T,iet}^{reco,ch}$ and the same for π^{0+} jet.

γ_{dir} +jet and π^0 +jet p_T spectra

Recoil jet yield suppression for R=0.2 and 0.5

$$_{AA}(p_{T,jet}^{ch}) = \frac{Y(p_{T,jet}^{ch})^{Au+Au}}{Y(p_{T,jet}^{ch})^{p+p}}$$

 $Y(p_{T,jet}^{ch}) \rightarrow Per trigger recoil$ jet yield as a function $p_{T,jet}^{ch}$

p+*p* reference: PYTHIA-8

Systematic (lighter band) and statistical (darker band) uncertainties

- γ_{dir} +jet and π^{0+} jet show a similar level of suppression
- No significant trigger $E_{\rm T}$ dependence
- Larger recoil jet yield suppression for R=0.2 than R=0.5

Recoil jet yield suppression: PYTHIA-6 STAR vs PYTHIA-8

γ_{dir} +jet: $15 < E_{T}^{trig} < 20 \text{ GeV}$

PYTHIA-6 STAR tune vs PYTHIA-8:

- R=0.2: negligible change
- R=0.5: significant shift in central value but consistent within other systematic uncertainties

Systematic (lighter band) and statistical (darker band) uncertainties

Recoil jet yield suppression: Data vs. Model

Jet-fluid: jet shower + medium response LBT: coupled LBT+hydro Vitev: Soft Collinear Effective Theory [Chang, et al., PRC 94 (2016), 024902] [Chen, et al., PLB 777 (2018) 707] [Sievert, et al., PLB 795 (2019) 502]

Measurement of jet radial profile

- Ratio of recoil jet yields R=0.2/R=0.5
- LHCp+p Jet radial profile in vacuum requires ratio < 1 in pp collisions (PYTHIA)
- In-medium modification of jet shape? Compare p+p and Au+Au

- γ_{dir} +jet consistent with PYTHIA-6 STAR tune
 - would indicate no significant in-medium broadening
- Quantitative difference: PYTHIA-6 STAR tune vs. PYTHIA-8

Jet-quenching: jet p_T-spectrum shift

Jet-quenching observables:

I_{AA} or R_{AA} at fixed jet $p_T \rightarrow I_{AA}(p_{T,jet}^{ch}) = \frac{Y(p_{T,jet}^{ch})^{Au+Au}}{Y(p_{T,jet}^{ch})^{p+p}}$ Convolute the effect of energy loss with spectrum shape

Another way to quantify jet-quenching:

Jet p_T shift ($\Delta p_{T,jet}^{ch}$)

 $\Delta p_{T,jet}^{ch} = (\Delta p_{T,jet})_{p+p} - (\Delta p_{T,jet})_{Au+Au}$

Initial parton energy loss can also be characterized by jet p_T shift

Jet p_T-spectrum shift : RHIC vs. LHC

Characterization of average out-of-cone parton energy loss

π⁰ PHENIX δp_T : ~2-3 GeV/c within p_T :10-18 GeV/c
 Similar to STAR jet measurements [PHENIX, PRC 87, 034911 (2013)]

Indication of smaller in-medium energy loss at RHIC than the LHC

Microstructure of QGP: Jet Probes

https://indico.bnl.gov/event/7881/

Section

2.4 Exploring the Microstructure of the QGP (Run-23 and Run-25 Au+Au)

One of the questions...

What are the underlying mechanisms of jet quenching at RHIC energies? What do jet probes tell us about the microscopic structure of the QGP as a function of resolution scale?

> With detectors: BEMC: $|\eta| < 1$ EEMC: $1 < \eta < 2$ TPC (iTPC) : $|\eta| < 1.5$ Forward Tracking: $2.5 < \eta < 4$

Future projection: γ +jet measurement in STAR

1. High precision I_{AA} measurement with extended jet p_T and at higher E_T^{trig} [to resolve theory predictions]

year	minimum bias $[\times 10^9 \text{ events}]$	high-p all vz	vz < 70 cm	$\begin{array}{c} \text{osity } [\text{nb}^{-1}] \\ \text{vz} < 30 \text{cm} \end{array}$
$\begin{array}{c} 2014 \\ 2016 \end{array}$	2	26.5	19.1	15.7
2023	10	43	38	32
2025	10	58	52	43

- Precision measurement for p+p reference
- Full jet measurement using BEMC
- Also mid- and forward-rapidity measurement in p+Au collisions [cold-QCD matter effect]

Large angle deflection measurement
 [to explore microstructure of QGP]

3. γ+jet p_T-balance [to study jetquenching more differential way]

Future projection: γ +jet measurement in STAR

1. High precision I_{AA} measurement with extended jet p_T and at higher E_T^{trig} [to resolve theory predictions]

year	minimum bias $[\times 10^9 \text{ events}]$	high-p all vz	vz < 70 cm	$\begin{array}{c} \text{osity [nb^{-1}]} \\ vz < 30 \text{cm} \end{array}$
$\begin{array}{c} 2014\\ 2016 \end{array}$	2	26.5	19.1	15.7
2023	10	43	38	32
2025	10	58	52	43

- Precision measurement for p+p reference
- Full jet measurement using BEMC
- Also mid- and forward-rapidity measurement in p+Au collisions [cold-QCD matter effect]

Large angle deflection measurement [to explore microstructure of QGP]

3. γ +jet p_T-balance [to study jetquenching more differential way]

Summary and outlook

- Developed all the methods and techniques in recent years for semi-inclusive γ +jet measurement in STAR
- The current challenge is high precision p+p reference (and also Au+Au data)
 - Aim for the year 2024 p+p data taking (235 pb⁻¹)
 - p+p reference: PYTHIA-6 STAR tune *vs*. PYTHIA-8
- Preliminary results show:
 - Recoil jet yield suppression: similar magnitude for γ_{dir} +jet and π^0 +jet
 - Theoretical calculations do not reproduce p_T dependence
 - R-dependence of suppression
 - Jet energy loss at RHIC: indication of being smaller than the LHC

Run23-25 heavy-Ion (along with Run24 p+p) runs would be crucial for definitive and incisive conclusion on our observation in STAR...

Thank you!

Backup

Extraction of γ_{dir} +jet from γ_{rich} +jet

Per trigger jet yield of γ_{dir} at a given jet p_T :

$$\mathcal{D}_{\gamma_{\text{dir}}}(\mathbf{p}_{\text{T}}) = \frac{\mathcal{D}_{\gamma_{\text{rich}}}(\mathbf{p}_{\text{T}}) - R_{\text{impurity}} \cdot \mathcal{D}_{\pi^{0}}(\mathbf{p}_{\text{T}})}{1 - R_{\text{impurity}}}$$

 $\mathscr{D}_{\gamma_{rich}}(p_T)$: per trigger jet yield of γ_{rich} at a given jet p_T $\mathscr{D}_{\pi^0}(p_T)$: per trigger jet yield of π^0 at a given jet p_T $R_{impurity}$: π^0 impurity in γ_{rich} sample

Search for the large angle deflection

MGyulassy QM2019

dN/dø

