XYZ spectroscopy

Justin Stevens

XYZ states

- Many new states observed in the last ~decade
- Not predicted by the standard charmonium models
- Many models for interpretation: resonant states, meson molecules, re-scattering effects, etc.

$$e^+e^- \to \pi^+\pi^- J/\psi \ (4260 \ {\rm MeV})$$

elSpectro generator: Z_c , π exchange

Both cross section and virtual photon flux dominated at threshold

elSpectro generator: Y(4220)

Cross section increases with W, while virtual photon flux largest at threshold

Summary

- * New theoretical predictions from JPAC for exclusive XYZ photoproduction
- * elSpectro event generator convolutes JPAC predictions with virtual photon flux
- * What's next: compare with PYTHIA backgrounds for purity and statistical precision estimates
 - * Electron ID requirements remain critical for J/ψ identification: may drive e/π in detector matrix
 - Tracking resolutions in forward direction will impact mass resolution: tracking WG expected to provided updated parametrizations

Backup

elSpectro generator: X(3872), ρ/ω exch.

Both cross section and virtual photon flux dominated at threshold

Old background studies: e/π requirements

- * First background study with normalized
 - * 10M inclusive Pythia events: $\sigma \sim 10 \ \mu b$
 - * 10k Z_c events: $\sigma \sim 10$ nb, (optimistic?) model prediction
- * e/π separation required to identify J/ ψ (ad-hoc, not in eic-smear)
- No exclusive requirement yet (low-Q² tagger or neutron in ZDC)

Old background studies: e/π requirements

- * First background study with normalized
 - * 10M inclusive Pythia events: $\sigma \sim 10 \ \mu b$
 - * 10k Z_c events: $\sigma \sim 10$ nb, (optimistic?) model prediction
- * e/π separation required to identify J/ ψ (ad-hoc, not in eic-smear)
- * No exclusive requirement yet (low-Q² tagger or neutron in ZDC)

