Flavor number schemes, evolution and PDF extraction

Sven-Olaf Moch

Universität Hamburg

Heavy Flavor at the EIC Workshop, Zoom, Nov 04, 2020

Sven-Olaf Moch

Flavor number schemes, evolution and PDF extraction – p.1

Based on work done in collaboration with:

- Heavy-flavor PDF evolution and variable-flavor number scheme uncertainties in deep-inelastic scattering
 S. Alekhin, J. Blümlein and S. M. arXiv:2006.07032
- NLO PDFs from the ABMP16 fit
 S. Alekhin, J. Blümlein and S. M. arXiv:1803.07537
- Parton Distribution Functions, α_s and Heavy-Quark Masses for LHC Run II
 S. Alekhin, J. Blümlein, S. M. and R. Plačakytė arXiv:1701.05838
- Many more papers of ABM and friends ...
 2008 ...

Treatment of heavy-quarks

Light quarks

- Neglect "light quark" masses $m_u, m_d \ll \Lambda_{QCD}$ and $m_s < \Lambda_{QCD}$ in hard scattering process
 - scale-dependent u, d, s, g PDFs from mass singularities

Heavy quarks

- No mass singularities for $m_c, m_b, m_t \gg \Lambda_{QCD}$, no (evolving) PDFs
 - c and b PDFs for $Q \gg m_c, m_b$ generated perturbatively

matching of two distinct theories $\longrightarrow n_f$ light flavors + heavy quark of mass m at low scales $\longrightarrow n_f + 1$ light flavors at high scales

Strong coupling with flavor thresholds

- Solution of QCD β -function for $\alpha_s^{n_l} \longrightarrow \alpha_s^{(n_l+n_h)}$
 - discontinuities for $n_f = 3 \rightarrow n_f = 4 \rightarrow n_f = 5$
- Big picture

Bethke for PDG 2014

Strong coupling with flavor thresholds

- Solution of QCD β -function for $\alpha_s^{n_l} \longrightarrow \alpha_s^{(n_l+n_h)}$
 - discontinuities for $n_f = 3 \rightarrow n_f = 4 \rightarrow n_f = 5$
- Zoom 0.3

Cross sections with flavor thresholds

Fixed flavor number scheme (FFNS) ("fixed order $\ln(Q^2/m^2)$ ")

- Cross section with massive quarks at scales $Q \gg m_c$
 - top-quark hadro-production ($t\bar{t}$ pairs, single top in 4FS or 5FS, ...]
- F_2^c at HERA with u, d, s, g partons and massive charm coeff. fcts.
 - complete NLO predictions Laenen, Riemersma, Smith, van Neerven '92
 - approximations at NNLO Bierenbaum, Blümlein, Klein '09; Lo Presti, Kawamura, S.M., Vogt '12; Behring, Bierenbaum, Blümlein, De Freitas, Klein, Wissbrock '14

Variable flavor number scheme (VFNS) ("resum $\ln(Q^2/m^2)$ ")

- (Smooth) matching of two distinct theories: n_f light + heavy quark at low scales $\longrightarrow n_f + 1$ light flavors at high scales
 - Higgs boson production in bb-annihilation ("Santander matching" Harlander, Krämer, Schumacher '11)
- F_2^c at HERA with ACOT Aivazis, Collins, Olness, Tung '94, BMSN Buza, Matiounine, Smith, van Neerven '98, RT Thorne, Roberts '98, FONLL Forte, Laenen, Nason, Rojo '10
 - model assumptions in matching conditions
 - details of implementation matter in global fits

Sven-Olaf Moch

GM-VFNS implementation (I)

• BSMN prescription for DIS structure function F_2^h for heavy-quark h $F_2^{h,BMSN}(N_f + 1, x, Q^2) =$

 $= F_2^{h,\text{exact}}(N_f, x, Q^2) + \left\{ F_2^{h,\text{ZMVFN}}(N_f + 1, x, Q^2) - F_2^{h,\text{asymp}}(N_f, x, Q^2) \right\}$

- $F_2^{h,\text{exact}}$: massive heavy-quark structure function ($m \neq 0$)
- $F_2^{h,\text{ZMVFN}}$: DIS structure function with zero mass (m = 0)
- $F_2^{h,\text{asymp}}$: asymptotic expansion of heavy-quark structure function (logarithms $\ln(Q^2/m^2)$)
- Difference $\{\dots\}$ has to vanish at threshold $Q \simeq m$
- Generation of heavy-quark PDFs $h^{(n_f+1)}$ from light-flavor PDFs
 - heavy-quark operator matrix elements (OMEs) A_{ji} at three loops
 Bierenbaum, Blümlein, Klein '09; Ablinger, Behring, Blümlein, De Freitas, von Manteuffel,
 Schneider '14

 $h^{(n_f+1)}(x,\mu) + \bar{h}^{(n_f+1)}(x,\mu) = A_{hq}(x) \otimes \Sigma^{(n_f)}(x,\mu) + A_{hg}(x) \otimes g^{(n_f)}(x,\mu)$

GM-VFNS implementation (II)

Other variants of GM-VFNS implementations

 $F_2^{h,\mathrm{GM-VFNS}}(N_f+1,x,Q^2) =$

 $= F_2^{h,\text{exact}}(N_f, x, Q^2) + \left\{ F_2^{h,\text{ZMVFN}}(N_f + 1, x, Q^2) - F_2^{h,\text{asymp}}(N_f, x, Q^2) \right\}$

- details of combining $F_2^{h,\text{exact}}$, $F_2^{h,\text{ZMVFN}}$ and $F_2^{h,\text{asymp}}$ differ for other GM-VFNS implementations
- Different approaches to impose vanishing of $\{\dots\}$ at threshold $Q\simeq m$
 - subject to model assumptions
 - ACOT: S-ACOT- χ for slow rescaling $x \to \chi(x) = x \left(1 + \frac{4m^2}{Q^2}\right)$
 - FONLL: suppression of $\{\dots\}$ with damping factor $\left(1 + \frac{m^2}{Q^2}\right)^2$
 - RT: continuity of physical observables in threshold region
- Scale evolution of heavy-quark PDFs $h^{(n_f+1)}$

PDFs with flavor thresholds (I)

- Generate heavy-quark PDFs $h^{(n_f+1)}$ from light-flavor PDFs
 - heavy-quark operator matrix elements (OMEs) A_{ji} at three loops
 Bierenbaum, Blümlein, Klein '09; Ablinger, Behring, Blümlein, De Freitas, von Manteuffel,
 Schneider '14

 $h^{(n_f+1)}(x,\mu) + \bar{h}^{(n_f+1)}(x,\mu) = A_{hq}(x) \otimes \Sigma^{(n_f)}(x,\mu) + A_{hg}(x) \otimes g^{(n_f)}(x,\mu)$

• likewise light-quark PDFs $l_i^{(n_f)} \rightarrow l_i^{(n_f+1)}$ and gluon and the quark singlet PDFs $(\Sigma^{(n_f)}, g^{(n_f)}) \rightarrow (\Sigma^{(n_f+1)}, g^{(n_f+1)})$

Perturbative expansion of OME A_{hg}

$$A_{hg}^{(1)}(x) = \underbrace{a_{hg}^{(10)}}_{=0} + \ln\left(\frac{\mu^2}{m^2}\right) P_{qg}^{(0)}$$

• charm density at leading order with matching $c(x, \mu^2 = m_c^2) = 0$

$$c^{(1)}(x,\mu^2) = a_s(\mu^2) \int_x^1 \frac{dz}{z} \ln\left(\frac{\mu^2}{m_c^2}\right) P_{qg}^{(0)}(z) g\left(\frac{x}{z},\mu^2\right)$$

• higher order matching $c(x, \mu^2 = m_c^2) \neq 0$

$$A_{hg}^{(2)}(x) = \underbrace{a_{hg}^{(20)}}_{\neq 0} + \ln\left(\frac{\mu^2}{m^2}\right) a_{hg}^{(21)} + \ln^2\left(\frac{\mu^2}{m^2}\right) a_{hg}^{(22)}$$

Sven-Olaf Moch

PDFs with flavor thresholds (II)

- Solution of evolution equations between thresholds for $n_f \longrightarrow (n_f + 1)$ with fixed $n_f = 3 \rightarrow n_f = 4 \rightarrow n_f = 5$
 - discontinuities in PDFs across flavor thresholds
 - matching conditions known to NLO; $A_{hg}^{(3)}$ currently unknown

PDFs with flavor thresholds (III)

• Scale dependence of charm quark PDF (here LO)

$$c^{(1)}(x,\mu^2) = a_s(\mu^2) \int_x^1 \frac{dz}{z} \ln\left(\frac{\mu^2}{m_c^2}\right) P_{qg}^{(0)}(z) g\left(\frac{x}{z},\mu^2\right)$$

Fixed-order perturbation theory (FOPT)

• BSMN uses this and corresponding expression at higher orders to determine charm-quark PDF at all scales $\mu \ge m_c$

Evolution at LO, NLO, ...

- Other GM-VFNS prescriptions (ACOT, FONLL, RT) use this as boundary condition for $c(x, \mu^2)$ at $\mu = m_c$ and derive scale dependence with standard QCD evolution equations
- Difference between FOPT and evolution illustrated with scale derivative

$$\frac{dc^{(1)}(x,\mu^2)}{d\ln\mu^2} = a_s(\mu^2) \int_x^1 \frac{dz}{z} a_{hg}^{(11)}(z) g\left(\frac{x}{z},\mu^2\right) + \left(\frac{da_s}{d\ln\mu^2}\right) \frac{c^{(1)}(x,\mu^2)}{a_s} + a_s(\mu^2) \ln\left(\frac{\mu^2}{m_c^2}\right) \int_x^1 \frac{dz}{z} a_{hg}^{(11)}(z) \frac{dg(x/z,\mu^2)}{d\ln\mu^2}$$

second and third term of higher order, but numerically important
 Sven-Olaf Moch
 Flavor number schemes, evolution and PDF extraction – p.10

Difference between FOPT and evolution (I)

• Difference of charm-quark PDFs: $c_{\rm FOPT} - c_{\rm evol}$

- LO (with one loop splitting functions and OMEs)
- NLO (with two loop splitting functions and OMEs)
- NNLO* (with three loop splitting functions; three loop OME A⁽³⁾_{hg} still missing)
- Matching scale $\mu_0 = m_c = 1.4 \text{ GeV}$ with pole mass m_c
- Vertical dash-dotted lines display upper margin of kinematics at HERA

Sven-Olaf Moch

Difference between FOPT and evolution (II)

• Difference of scale derivatives of charm-quark PDFs: $\dot{c}_{\rm FOPT} - \dot{c}_{\rm evol}$

Difference between FOPT and evolution (III)

- Difference of charm-quark PDFs: $c_{\rm FOPT} c_{\rm evol}$
 - NNLO* for FOPT and evolution
 - impact of different matching scales: $\mu_0 = m_c$ and $\mu_0 = 2m_c$

F_2^c structure function (I)

- DIS charm-quark structure function F_2^c with comparison of
 - $F_2^{h, \text{FFN}}$: exact massive heavy-quark structure function
 - $F_2^{h,\text{asymp}}$: asymptotic expansion with logarithms $\ln(Q^2/m^2)$
 - $F_2^{h,\text{ZMVFN}}$: DIS structure function with $m_c = 0$
 - $F_2^{h, BMSN}$: DIS structure function with BMSN prescription of VFNS

F_2^c structure function (II)

- DIS charm-quark structure function F_2^c with comparison of
 - $F_2^{h, \text{FFN}}$: exact massive heavy-quark structure function
 - $F_2^{h, BMSN}|_{FOPT}$: BMSN prescription, FOPT *c*-quark PDFs
 - $F_2^{h, \text{BMSN}}$ BMSN prescription, NLO evolved *c*-quark PDFs
 - $F_2^{h, BMSN}|_{NNLO^*}$: BMSN prescription, NNLO* evolved *c*-quark PDFs

F_2^c structure function (III)

- DIS charm-quark structure function F_2^c with comparison of
 - $F_2^{h, \text{FFN}}$: exact massive heavy-quark structure function
 - $F_2^{h, BMSN}|_{NNLO^*}$: BMSN prescription, NNLO* evolved *c*-quark PDFs
- NNLO* evolution with impact of different matching scales
 - $\mu_0 = m_c$ and $\mu_0 = 2m_c$

Comparision to data σ^{c} (HERA Ru

- Pulls obtained for combined HERA DIS *c*-quark production data in FFNS version
- Comparison of
 - $F_2^{h, \text{FFN}}$
 - $F_2^{h,\mathrm{BMSN}}\Big|_{\mathrm{FOPT}}$
 - $F_2^{h,\mathrm{BMSN}}\Big|_{\mathrm{NLO}}$
 - $F_2^{h,\mathrm{BMSN}} |_{\mathrm{NNLO}^*}$
- Use in all cases PDFs from FFNS fit

Differences for PDFs (I)

• Relative uncertainty in $n_f = 3$ flavor PDFs at scale $\mu = 3$ GeV

- Gluon $xg(x,\mu)$ and sea $xS(x,\mu)$ PDFs from fit with BMSN prescription and FOPT
 - $BMSN|_{FOPT}$: BMSN prescription, FOPT *c*-quark PDFs
 - $BMSN|_{NLO}$: BMSN prescription, NLO evolved *c*-quark PDFs
 - $BMSN|_{NNLO*}$: BMSN prescription, NNLO* evolved *c*-quark PDFs

Differences for PDFs (II)

- Gluon $xg(x,\mu)$ and sea $xS(x,\mu)$ PDFs for $n_f = 3$ at scale $\mu = 3$ GeV
- Now from fit with HERA inclusive DIS data added
 - FFN FFN: FFNS PDFs at NNLO
 - $BMSN|_{FOPT}$: BMSN prescription, FOPT *c*-quark PDFs
 - $BMSN|_{NLO}$: BMSN prescription, NLO evolved *c*-quark PDFs
 - $BMSN|_{NNLO^*}$: BMSN prescription, NNLO* evolved *c*-quark PDFs

Differences for PDFs (III)

• Gluon $xg(x,\mu)$ and sea $xS(x,\mu)$ PDFs for $n_f = 5$ at scale $\mu = 100 \text{ GeV}$

- FFN FFN: FFNS PDFs at NNLO
- $BMSN|_{FOPT}$: BMSN prescription, FOPT *c*-quark PDFs
- $BMSN|_{NLO}$: BMSN prescription, NLO evolved *c*-quark PDFs
- $BMSN|_{NNLO*}$: BMSN prescription, NNLO* evolved *c*-quark PDFs

Two-mass contributions

• Two-mass contribution to DIS structure function $F_{2,c}$ (left) and $F_{2,b}$ (right)

- Feynman diagrams with both heavy charm and bottom loops
- VFNS with simultaneous transition for light flavors $n_f \rightarrow n_f + 2$

$$F_{2,h}^{cb,(2)}(x,Q^2) = -e_h^2 a_s^2(Q^2) \frac{4}{3} x \ln\left(\frac{Q^2}{m_c^2}\right) \ln\left(\frac{Q^2}{m_b^2}\right) \int_x^1 \frac{dz}{z} \left(z^2 + (1-z)^2\right) g\left(\frac{x}{z},Q^2\right)$$

Summary

Big logs aren't always big

- Study of VFNS in BMSN approach (FOPT, evolved at LO, NLO, NNLO)
- Study of charm-quark PDF in FFNS and VFNS (FOPT vs. subsequent evolution)
 - sizable impact of PDF evolution in BMSN prescription of VFNS $\longrightarrow x$ -dependent rather than Q^2 -dependent
 - little impact on resummation of large logarithms on heavy-quark production for realistic kinematics
- Differences in charm-quark PDFs accuracy of evolution equations is intrinsic uncertainties VFNS
- FFNS gives very good description of HERA charm-quark data
 - no need for additional resummation of large logarithms in kinematic range covered by experiment