Heavy-flavor production with high-precision: NNLO QCD lessons from top production at hadron colliders

Alexander Mitov

Cavendish Laboratory

E UNIVERSITY OF
CAMBRIDGE

Motivation: What can the LHC do for EIC?

- \checkmark HF production in DIS: historically, DIS has been all about inclusive hadron production
- \checkmark State of the art for HF is:
	- \checkmark Full mass dependence at NLO Kretzer, Schienbein (1998)
	- \checkmark Asymptotic behavior for small masses at NNLO and beyond

Buza, Matiounine, Smith, Migneron, van Neerven (1996 -) Blumlein et al

 \checkmark Massive calculation for CC DIS at NNLO

Berger, Gao, Li, Liu, Zhu (2016) Gao (2017)

- \checkmark Differential hadron description is also important. It gives much more detailed insight into the structure of the final state.
	- \checkmark Ex: NuTev: they measured the s-sbar asymmetry thanks to their charm final state tagging
- \checkmark Modern MC generators are capable and can produce maybe not out of the box for all processes – fully differential predictions for HF at NLO in QCD.

Heavy-flavor production with high-precision ...
Alexander Mitov Mitor and Mitor and HF@EIC Workshop, 4 Nov 2020

Motivation: Heavy Flavor Production in DIS

- \checkmark Historically, the main focus was on *inclusive* HF production (due to low statistics and large systematics).
	- Differential measurements (b- and c-fragmentation, etc) were also performed at HERA

See talk by Achim Geiser

- \checkmark However, future machines will demand more and will be able to push in the direction of highprecision physics.
- \checkmark How to deal with this challenge?
	- \checkmark No need to reinvent the wheel turn to the LHC, plenty of lessons!
- \checkmark The LHC has already dealt with this problem in an environment that is at least as problematic as DIS and has been able to achieve great physics results with high precision.
- \checkmark Most of these results translate directly to DIS. I'll explain this in the following.

(Stable) Top quark production at the LHC

- \checkmark Why top?
	- \checkmark Definitely not many tops expected at EIC...
- \checkmark Will use it as the blueprint for HF production at hadron colliders. In fact, this is precisely how modern HF production developed at the LHC.

(Stable) Top quark production at the LHC

- \checkmark Current state-of-the-art for tt_{har} production is NNLO in QCD + NLO EW
	- \checkmark Total cross section known for a long time Czakon, Fiedler, Mitov (2013)
	- \checkmark This is the equivalent of inclusive production in DIS. However, there are differences: it is not directly measurable at hadron colliders – fiducial corrections are important
	- \checkmark It is not directly measurable experimentally but the effects of fiducial phase space are relatively small and can be modelled easily.
	- \checkmark Same result also predicts the total bb_{bar} and cc_{bar} cross-sections in (the 4- and 3-flavor schemes). Fiducial corrections are very large.
- \checkmark How well is the total cross-section known?

Quite well. Main uncertainties:

-
- pdf (at 68% cl) ~ 2-3%
- alpha_S (parametric) $\sim 1.5\%$
- m_{top} (parametric) ~ 3%
- \rightarrow All are of similar size!

(Stable) Differential top quark production at the LHC

- \checkmark Kinematics matters, too!
- \checkmark A famous issue: the top P_T problem
	- NLO MC generators cannot describe the top P_T spectrum well.
	- Description of tails is very important in top physics.
	- The top P_T problem's impact extends beyond top physics (P_T rescaling of generators)

 \checkmark Understanding the top quark P_T spectrum:

Czakon, Heymes, Mitov (2015)

- \checkmark NNLO QCD corrections systematically improve the agreement with CMS data. $data.$
- \checkmark Agreement with ATLAS (not shown) even better. Carlo (MC) generators. Concerning top quark di↵eren-
- \checkmark NNLO does what one normally expects: tial distributions, the description of the description of the description of the description of the $\mathcal P$ late does what one normally die erential measurements in the bulk α
- Convergence $\overline{16}$ regions. First 13 TeV measurements have just 13 TeV measureme
- Decrease of scale error
	- Pdf error not included **PPTHIS SOME THE PARAGE TOP PT**

FIG. 1: Normalised top/antitop *P^T* distribution vs. CMS

unfolding the data may not be accurate enough in the data may not be accurate enough in the second

(Stable) Differential top quark production at the LHC

 \checkmark The theoretical description of top production is much more advanced than that:

- Multidimensional distributions are computed with flexible Monte Carlo programs
- Fixed order QCD combined with EW and with soft/collinear resummation
	- Some examples:

Czakon, Ferroglia, Mitov, Pagani, Papanastasiou, Catani, Devoto, Grazzini, Kallweit, Mazzitelli (2019)

- Many other observables and studies performed specific to top quarks
- Finally, decays of tops are also included at NNLO (although this is specific to the top quark and not of direct interest to b- and c- production)

 \checkmark The calculation of tt_{bar} production can be directly extended (in 4-flavor scheme) to bb_{bar}:

Heavy-flavor production with high-precision ... Alexander Mitov HF@EIC Workshop, 4 Nov 2020

From quarks to observables

- \checkmark Both calculations shown: tt_{bar} and bb_{bar} are in some sense incomplete
	- Predictions are at the level of bare quarks. These are not observable
- \checkmark This is OK for top quarks because they never hadronize; one needs to account for their weak decay (at quark level) to W+b. The top quark is basically on-shell when decays and this description works very well for top. tt_{bar} production + decay fully known through NNLO in QCD

Behring, Czakon, Mitov, Papanastasiou, Poncelet (2019-)

- \checkmark However: for HF (b- and c-) production one needs predictions for either b/c jets or B/D mesons.
	- This is one essential difference between top and b-/c-production.
- \checkmark Luckily, there is a lot of progress on precision (NNLO) predictions for HF jets and mesons at the LHC.
	- Top quark production physics is again among the main drivers: top decays to b-quarks \sim 100% of the time so adequate description of b-final states is needed:
		- \triangleright B-mesons (discussed next)
		- \triangleright B-jets
	- Progress in other LHC processes, too

 $\overline{9}$

See also talks by:

- Achim Geiser
- Ingo Schienbein

B-meson production in top quark decays and other processes

What is b-fragmentation?

- \checkmark What is b-fragmentation?
	- The non-perturbative process of formation of B-flavored hadrons (most of the time mesons) from QCD partons.
- \checkmark It is process independent as long as QCD factorization applies, i.e. there is a hard scale. Examples:
	- For open B production: P_T of the B
	- B production in top decay: m_{top}
	- B production at LEP (Z-pole): m_Z
- \checkmark How do we describe b-fragmentation? Two approaches:
	- Fragmentation as used in MC event generators: uses a model that is tuned to data which 'decides' how at low scales the partons resulting from the shower are organized into hadrons. This is the case for heavy as well as light hadrons.
	- Analytic approach (used in this work): the transition $b \rightarrow B$ at low energy is described in terms of an explicit non-perturbative function "Fragmentation function". This function is the exact equivalent of pdfs in the description of collider processes. It is also:
		- \triangleright Non-perturbative
		- \triangleright Process independent
		- Ø Extracted from experiment (typically e+e- ; will discuss LHC later on)

 \checkmark The essence of the non-perturbative aspect was understood long ago (late 1970's)

Kartvelishvili, Likhoded, Petrov (1978) Peterson, Schlatter, Schmitt, Zerwas (1983) …

- \checkmark The heavy-flavored hadron B is produced at a scale $\mu \sim m_B$ by the non-perturbative fragmentation of the b-quark $D_{b\rightarrow B}(z)$.
	- Here z is the fraction of b's momentum carried by B: $p_B = z p_b$.
- \checkmark The description of b-quark production down to scales $\mu \sim m_B$ can be described in perturbation theory. The modern framework was laid down 30 years ago as is known as the **Perturbative Fragmentation Function** approach

Mele, Nason (1991)

 \checkmark The idea is based on factorization and properly accounts for the separation of processindependent and process-dependent corrections as well as short- from long-distance physics.

PFF formalism

 \checkmark In the Perturbative Fragmentation Function approach an observable for a meson B can schematically be written as:

Mele, Nason (1991)

PFF formalism: main features

- \checkmark The formalism applies to the small-mass limit m $<<$ Q.
	- \checkmark Power corrections (m/Q)ⁿ are neglected
	- \checkmark All logarithmic terms Logⁿ(m/Q) are included correctly, as well as mass independent terms
	- \checkmark At large Q (example: large P_T) the formalism correctly resums all collinear logs
	- \checkmark It is not applicable at small Q (i.e. small P_T) where missing corrections m/Q~1 become sizable
		- \triangleright For this regime one needs to supplement the PFF predictions with dedicated fixed order calculations that contain all mass dependence (but no resummation).
	- \checkmark This matching is the basis for the so called FONLL approach at NLO

Cacciari, Greco, Nason, Oleari,… (1990's)

Heavy flavor production: past work

- \checkmark Many FONLL applications exist:
	- e^+e^-
	- Hadron colliders (remember the b-saga at the Tevatron?)
	- DIS
	- Top decay
- Works on heavy flavor production by many groups

Cacciari, Mangano, Nason (1990's -) Binnewies, Kniehl, Kramer (1997 -) Kniehl, Kramer, Schienbein, Spiesberger (2004 -) Kniehl, Kramer, Moosavi Nejad (2012)

• A lot of work in the context of Nuclear Collisions:

• The only existing NNLO application is in QED: electron spectrum in muon decay

Anastasiou, Melnikov, Petriello (2005)

Heavy-flavor production with high-precision ... Alexander Mitov HF@EIC Workshop, 4 Nov 2020

PFF formalism: "new" developments (i.e. beyond NLO)

- \checkmark How to go beyond NLO?
- \checkmark A number of ingredients are needed at NNLO (all already known):
	- PFF @ NNLO

Melnikov, Mitov (2004)

• Time-like NNLO splitting functions

Mitov, Moch, Vogt (2006) Almasy, Moch, Vogt (2012)

 \cdot e⁺e⁻ coefficient functions (for fits of the non-perturbative FF)

Rijken, van Neerven (1996) Mitov, Moch (2006)

• Fits of FF at NNLO (no applications yet!)

Fickinger, Fleming, Kim, Mereghetti (2016) Salajegheh, Nejad, Khanpour, Kniehl, Soleymaninia (2019)

- \checkmark The only missing piece [by far the most complicated one!] for a complete NNLO application are the coefficient functions at NNLO
	- In this talk: First NNLO application: b-production in tt_{bar} production at the LHC

NNLO corrections to B production in tt_{bar} production

- tt_{bar} is the natural first application in view of top mass applications (mainly using m_{Bℓ}) Kharchilava (1999) ATLAS CERN-THESIS-2020-105 (2020)
- \checkmark Past work at NLO
	- Top decay Cacciari, Corcella, Mitov (2001) Corcella, Drollinger (2005) Corcella, Mescia (2009) Moosavi Nejad, Soleymaninia, Khorramian, Maktoubian, Balali, Abbaspour (2012 -) Kniehl, Kramer, Moosavi Nejad (2012)
	- Top production and decay in the NWA

Biswas, Melnikov, Schulze (2010)

- \checkmark In this work we:
	- 1. Produce NNLO fragmentation functions using previous NP FF extractions

Cacciari, Nason, Oleari (2005) Fickinger, Fleming, Kim, Mereghetti (2016)

- 2. Calculate NNLO corrections to massless parton production in t_{bar} production and decay
	- \triangleright Use the STRIPPER framework $Czakon (2010)$ with additional subtraction in final state
	- \triangleright Upon convoluting (2.) with our FF (1.) we have a fully differential MC calculation for one B-hadron + anything else. Extension to other processes is straightforward.

A note on the fragmentation function

 \checkmark As a basis for our study we take the fragmentation function from

• In principle it is ideal for us since it is:

Fickinger, Fleming, Kim, Mereghetti (2016)

- 1. Extracted at NNLO (from e+e-)
- 2. Soft gluon resummation (using SCET) at NNLL
- 3. LHAPDF grids available from authors upon request
- In practice there are some differences which do not allow us to reuse them directly:
	- 1. Only b-initiated contribution included (specifically, the Non-Singlet $b-b_{bar}$)
	- 2. DGLAP evolution is affected by soft-gluon resummation/matching. Does not match the factorization scale dependence of our partonic calculation.
- \checkmark Our resolution: some ambiguity remains; we build two "variants" of it and compare them
	- 1. Construct FF set with "correct" DGLAP evolution: take their b->B FF, evaluate it at low scale (this maintains soft-gluon resummation for PFF), then evolve it upwards ourselves with standard DGLAP. Include all other partonic contributions i -> B.
	- 2. Reuse their resummed NS component at all scales and supplement it with the other partonic components evolved with "correct" DGLAP evolution.

Heavy-flavor production with high-precision ... Alexander Mitov HF@EIC Workshop, 4 Nov 2020

A note on the fragmentation function

 \checkmark We have also produced LHAPDF grids based on the NLO NP FF from

Cacciari, Nason, Oleari (2005)

- 1. Implemented our own NLL soft-gluon resummation on top
- 2. Added NNLO DGLAP
- 3. Added all partonic channels

 \triangleright In principle the perturbative part is equivalent to the one constructed recently in

Ridolfi, Ubiali, Zaro (2019)

 \checkmark We have not utilized the NNLO Non-Perturbative FF extracted in

Salajegheh, Nejad, Khanpour, Kniehl, Soleymaninia (2019)

 \triangleright it does not utilize the Perturbative Fragmentation Function framework and is therefore not directly compatible with our calculation

Comparison of the fragmentation functions

 \checkmark NNLO comparison of our 3 fragmentation functions (bands: FF uncertainty)

Heavy-flavor production with high-precision ...
Alexander Mitov Mitov HF@EIC Workshop, 4 Nov 2020

A note on the fragmentation function

 \checkmark Few comments on the extracted FF's:

- Our predictions are for $B+B_{bar}$
- Besides the differences in their definitions, the 3 FF's are compatible
- The low-x region is not very relevant, especially here, since we do not include power corrections in m_b
- The end-result strongly depends on its consistent implementation. In particular soft-gluon resummation at large x:
	- \triangleright An application of a FF should match its extraction!
- Heavy-flavor FF's is a great place for practicing all the bells and whistles of soft-gluon resummation.
- An old issue: the available LEP data used for b-FF's is not separated into different hadron species, i.e. the predictions are for averaged B-production.
	- \triangleright Can we use the LHC data to start producing new fits on b-fragmentation? More later.

Heavy-flavor production with high-precision ... Alexander Mitov HF@EIC Workshop, 4 Nov 2020

B-production in top decay at NNLO

- \checkmark First application: B-production in the decay of unpolarized top quark
- \checkmark Some defaults:
	- \triangleright $\mu_{Fr} = m_t$
	- $\geq a_S(m_Z)=0.118$
	- \triangleright Scale uncertainty: standard 7-point variation
	- \triangleright m_t=172.5 GeV
	- For applications in top-pair production we will use:
	- \triangleright $\mu_F = \mu_R = m_t/2$
	- \triangleright NNPDF3.1 pdf set
	- \triangleright P_T and rapidity cut on the B
	- \triangleright B mesons inside b-jets:
		- \circ all jets are defined as light flavorless jets $(Important!)$
			- \triangleright We plot the distribution of the jet in which the B is found.
			- \triangleright This makes sense since in the perturbative calculation b-quark (and b_{bar}) enter on equal footing with all other partons.

B-production in tt_{bar} + decay at NNLO

 \checkmark B- μ invariant mass (observable of main interest; extract m_{top} etc)

Heavy-flavor production with high-precision ... Alexander Mitov HF@EIC Workshop, 4 Nov 2020

Czakon, Generet, Mitov, Poncelet; to appear

B-production in tt_{bar} + decay at NNLO

- \checkmark Extraction of non-pert B-fragmentation from LEP has its limitations. Use the LHC?
-

ü Meson-in-jet observable: Czakon, Generet, Mitov, Poncelet; to appear

Heavy-flavor production with high-precision ... Alexander Mitov HF@EIC Workshop, 4 Nov 2020

Flavored jets (b- and c-) at NNLO

Flavored jets

- \checkmark HF jets are present in all colliders
	- Nuclear Collisions

Vitev et al (2013 -) Senzel, Uphoff, Xu, Greiner (2016)

- DIS, LEP, LHC
- \checkmark In the following I'll focus on hadron colliders and on NNLO precision. The leads to a new feature:
	- \triangleright As was pointed out long ago, flavor-tagging of jets breaks the IR safety of standard flavorless jet algorithms Banfi, Salam, Zanderighi (2006)
- \checkmark A decent theory activity on this; practically no exp measurements have used this
- \checkmark An explosion of recent theory developments that are finally face this problem head-on:
	- Higgs decay to bb_{bar} Gauld, Gehrmann-De Ridder, Glover, Huss, Majer (2019)
	- \cdot Z+b Gauld, Gehrmann-De Ridder, Glover, Huss, Majer (2020)
	- W+c Czakon, Mitov, Pellen, Poncelet (2020)
	- tt $(t\rightarrow b+W)$ Czakon, Mitov, Poncelet (2020)
- \checkmark In each case above the treatment is somewhat different. Numeric differences between algorithms are not small. Many developments are to be expected here soon…

Conclusions

 \checkmark There has been tremendous progress in HF production at hadron colliders:

- \checkmark Top quark production is firmly at NNLO in QCD
- \checkmark Bottom and charm were until recently "neglected" but they also start to catch up:
	- \checkmark New NNLO results have just appeared for both direct and associated production
- \checkmark Still, many things need to be done:
	- Flavored jets at NNLO needs to develop
	- Production of identified HF hadrons at NNLO is only now beginning
	- \checkmark However, I have no doubt, these will see tremendous progress in the very near future
- \checkmark How can LHC help EIC?
	- \checkmark Direct translation of applications: for example, the most advanced NNLO HF calculation at CC DIS is a (simplified) version of single top production at the LHC…
	- \checkmark One important aspect not covered here is the interplay between pp methods and Nuclear Collisions. HF is a major probe and it is mandatory to explore synergies between the two

Heavy-flavor production with high-precision ... Alexander Mitov HF@EIC Workshop, 4 Nov 2020