An All-Si Tracker for Heavy Flavor Measurements at EIC

Xin Dong (Lawrence Berkeley National Laboratory)

In collaboration with:

Reynier Cruz-Torres, Leo Greiner, Samuel Heppleman, Yuanjing Ji, Matthew Kelsey, Sooraj Radhakrishnan, Ernst Sichtermann, Lei Xia, Nu Xu, Feng Yuan, Yuxiang Zhao etc.

HF@EIC CFNS Workshop 11/04-06, 2020

Outline

- Introduction and An All-Si Compact Tracker Concept
 - Introduction and kinematic distributions
 - An all-Si compact tracker and performance studies
- Physics Simulations on Heavy Flavor Measurements at EIC
 - Charm structure function \rightarrow gluon (n)PDF
 - Charm double spin asymmetry \rightarrow gluon helicity
 - $D\overline{D}$ pair azimuth distribution \rightarrow gluon TMDs
 - Charm hadrochemistry \rightarrow hadronization, CNM

Heavy Flavor to Probe Gluon Dynamics at EIC

- EIC is a machine for precision investigation of gluon dynamics in nucleon/nucleus
- Heavy flavor in NC channel sensitive probe to initial gluons

.....

Kinematic Distributions

<u>e + p 18 + 275 PYTHIA 6.4</u>

Tracking Requirements and An All-Silicon Tracker Concept

Full Simulation with Fun4All

Momentum Resolution

All-Si tracker offers a momentum resolution satisfying the physics requirement - superior momentum resolution with a 3T B-field

Pointing & Vertex Resolution

All-Si tracker pointing resolution: $\sigma_{r\phi} \sim 25 \mu m @ 1$ GeV/c ($|\eta| < 1$) - slight/anticipated degradation at higher η

All-Si tracker vertexing resolution: $\sigma_{XYZ} < 20 \mu m$ for HF events

- Satisfying experimental requirements for reconstructing charm/ bottom decays ($c au \sim 60-500 \ \mu m$)

Topological Reconstruction of Heavy Flavor Decays

Ultra-thin Fine-pitch MAPS Technology

ALICE ITS3 aims for 65nm MAPS with extremely low mass

- Ο(10x10 μm)
- 20-40 µm-thick (0.05% X₀)
- stitched, bendable, self-support
- low power consumption (<20mW/cm²)
- short integration time (~200 ns)

very attractive for vertex layers of EIC experiments

EIC Silicon Consortium

- joining and leveraging ITS3 sensor R&D for EIC detector
- other R&D associated with services, support, readout etc.

Benefits of Ultra-thin Fine-pitch MAPS Detector

Low-p_T Cut-off and D* Reconstruction

rrrr

- Introduction and An All-Si Compact Tracker Concept
 - Introduction and kinematic distributions
 - An all-Si compact tracker and performance studies
- Physics Simulations on Heavy Flavor Measurements at EIC
 - Charm structure function \rightarrow gluon (n)PDF
 - Charm double spin asymmetry \rightarrow gluon helicity
 - $D\overline{D}$ pair azimuth distribution \rightarrow gluon TMDs
 - Charm hadrochemistry \rightarrow hadronization, CNM

Momentum Resolution (DM)

Pointing Resolution

η Region	Resolution (%)	η Region	Detector Matrix (μm)	Stringent (µm)
$\frac{7}{-3.5 < n < -2.5}$	$0.1 \cdot n \oplus 0.5$	$-3.0 < \eta < -2.5$	$30/p_T \oplus 40$	$30/p_T\oplus 10$
-25 < n < -20	$0.1 p \oplus 0.0$ 0.1 m \oplus 0.5	$-2.5 < \eta < -2.0$	$30/p_T\oplus 20$	$30/p_T\oplus 10$
$-2.5 < \eta < -2.0$	$0.1^{\circ}p \oplus 0.5$	$-2.0 < \eta < -1.0$	$30/p_T\oplus 20$	$25/p_T \oplus 10$
$-2.0 < \eta < -1.0$	$0.05 \cdot p \oplus 0.5$	$-1.0 < \eta < 1.0$	$20/p_T \oplus 5$	$20/p_T\oplus 5$
$-1.0 < \eta < 1.0$	$0.05 \cdot p \oplus 0.5$	$1.0 < \eta < 2.0$	$30/p_T\oplus 20$	$25/p_T\oplus 10$
$1.0 < \eta < 2.5$	$0.05{\cdot}p \oplus 1.0$	$2.0 < \eta < 2.5$	$30/p_T\oplus 20$	$30/p_T\oplus 10$
$2.5 < \eta < 3.5$	$0.1{\cdot}p \oplus 2.0$	$2.5 < \eta < 3.0$	$30/p_T \oplus 40$	$30/p_T\oplus 10$
	•	$3.0 < \eta < 3.5$	$30/p_T\oplus 60$	N/A

PID criteria follows the Detector Matrix table guidance (K/ π 3 σ separation up to 7 GeV/c within $|\eta|$ <1)

- Charm and bottom reconstruction using fast simulation smearing of PYTHIA 6.4 output
- Momentum and pointing resolutions taken from detector matrix page as baseline
 - A more stringent pointing resolution also used for comparison

Validation of Fast Simulation w/ Fun4All

Fast simulation reproduces all topological distributions and D⁰ efficiency !

Inclusive Charm -> Gluon nPDF at High x

Nuclear gluon ratio $g_A(x) / [A g_N(x)]$

Proton

 $R_g^{Pb} = f_g^{Pb}(x, Q^2) / f_g^p(x, Q^2)$

rrr

BERKE

gluon probe to short range correlation at "EMC" region

Charm Structure Function $F_2^{c\bar{c}}$

Charm Structure Function $F_2^{c\bar{c}}$

- Charm hadrons from high x_B more populated at higher η region
- More stringent tracking scenario improves uncertainties by 10-20% at x_B>0.1
- QCD analysis needed to evaluate the impact on gluon (n)PDFs

.....

Gluon Helicity $\Delta g/g$

HF - better sensitivity to the gluon dynamics

- complementary to the inclusive measurement
- direct access to $\Delta g/g$ LO $A_{LL} \propto \hat{a}_{LL} \times \Delta g/g$

$D\overline{D}$ Pair - Probe Gluon TMDs

Charm hadron pair in transverse polarized exp. - gluon Sivers functions

Charm hadron pair in unpolarized exp. - linearly polarized Boer-Mulders function

 $\begin{aligned} A_{UT}(\phi_{kS}, k_T) &= \frac{d\sigma^{\uparrow}(\phi_{kS}, k_T) - d\sigma^{\downarrow}(\phi_{kS}, k_T)}{d\sigma^{\uparrow}(\phi_{kS}, k_T) + d\sigma^{\downarrow}(\phi_{kS}, k_T)} \\ &\propto \frac{\Delta^N f_{g/p^{\uparrow}}(x, k_{\perp})}{2f_{g/p}(x, k_{\perp})}, \end{aligned}$

Projection on Gluon Sivers Function

Hadronization and CNM

Charm hadrochemistry

BERKELEY LAB

Cold Nuclear Matter Effect on

light/heavy hadron production

Λ_c^+ Reconstruction

Systematic measurement of Λ_c^+ in ep, pp and AA collisions to understand charm baryon production and hadronization

Decent S/B separation for Λ_c^+ at p_T> 2 GeV/c (potential challenging at lower p_T)

Summary

- EIC is a precision QCD machine! Heavy flavor measurements offer unique sensitivity to study gluon dynamics in QCD.
- An all-Si compact tracker satisfies momentum/pointing/ vertexing requirements and enables these precision heavy flavor measurements.
 - Ultra-thin fine-pitch MAPS detector is essential!

Backup

EMC <-> Short-Range Correlation

HF@EIC CFNS Workshop 11/04-06, 2020

Kinematic Distributions

<u>e + p 18 x 275 PYTHIA 6.4</u>

n n n n n n

BERKELEY LAB

lmì

Primary Vertex Resolution

Full Simulation w/ New Beam Pipe

Impact of Pointing Resolution on D⁰ Significance

- vertex res. assumed to be 20 μm

D⁰ Topological Reconstruction

Comparison between Different Scenarios

$D\overline{D}$ Pair - Probe Gluon TMDs

BERKELEY LAB

Charm hadron pair in transverse polarized exp. - gluon Sivers functions

Charm hadron pair in unpolarized exp. - linearly polarized TMD function

Benefits of Ultra-thin Fine-pitch MAPS Detector

- $D \overline{D}$ pair reconstruction
 - ► res. 30->20 μm
 - significance improved by 20%
 - S/B ratio improved by x2.5

- $\Lambda_c^+ \rightarrow p K^- \pi^+ (c \tau \sim 60 \mu m)$

- extremely short lifetime, multi-prong decay → critical requirement on single track pointing resolution
- D⁰ in the forward region, more sensitive to high x region
 - charm measurement can have the most significant impact on gluon (n)PDF

All-Si Tracker \rightarrow Full Compact Detector at EIC

• A general purpose compact detector can be built based on the all-Si tracker

• The all-Si compact tracker frees more space for other detectors (e.g. PID detector)

ALICE

Specifications

Parameter	ALPIDE (existing)	Wafer-scale sensor (this proposal)	
Technology node	180 nm	65 nm	
Silicon thickness	50 μm	20-40 μm	
Pixel size	27 x 29 μm	O(10 x 10 µm)	
Chip dimensions	1.5 x 3.0 cm	scalable up to 28 x 10 cm	
Front-end pulse duration	~ 5 µs	~ 200 ns	
Time resolution	~ 1 µs	< 100 ns (option: <10ns)	
Max particle fluence	100 MHz/cm^2	100 MHz/cm^2	
Max particle readout rate	10 MHz/cm^2	100 MHz/cm^2	
Power Consumption	40 mW/cm^2	< 20 mW/cm ² (pixel matrix)	
Detection efficiency	>99%	> 99%	
Fake hit rate	< 10 ⁻⁷ event/pixel	$< 10^{-7}$ event/pixel	
NIEL radiation tolerance	$\sim 3 \times 10^{13} 1 \text{ MeV } n_{eq}/\text{cm}^2$	$10^{14} 1 \text{ MeV } n_{eq}/cm^2$	
TID radiation tolerance	3 MRad	10 MRad	

	ALPIDE		MALTA	
Experiment	ALICE ITS		ATLAS ITk pixel Phase II	
	(inner/outer layers)		(outermost layer)	
Technology	TJ 180 nm Cl	s <u>65</u>	nm TJ 180 nm CIS modified	
Substrate resistivity [kOhm cm]	> 1 (epi-layer 18-25 um)			
Collection electrode	small			
Detector capacitance [fF]	<5			
Chip size [cm x cm]	1.5 x 3		2 x 2	
Pixel size [um x um]	28 x 28	O(10)	x10) 36.4 x 36.4	
Peaking time [ns]	2 x 10 ³		20-50	
Time resolution [ns]	N/A	~100	< 5	
Particle rate [kHz/mm ²]	10		10 ³	
Readout architecture	Asynchronous			
Analogue power [mW/cm ²]	5.4		~ 70	
Digital power [mW/cm ²]	31.5/14.8		2.5 (0.84 MHz/mm ²)	
			79.6 (27.2 MHz/mm ²)	
			(matrix only)	
Total power [mW/cm ²]	36.9/20.2	<20	~70 – 150 depending on rate	
NIEL [1MeV n _{eq} /cm ²]	1.7 x 10 ¹³	10 ¹⁴	> 1.0 x 10 ¹⁵	
TID [Mrad]	2.7	10	100	

