The Role of Micro-Pattern Gas Detectors in a Hybrid EIC Tracking System

Matt Posik Temple University

Opportunities with Heavy Flavor at the EIC - a CFNS Ad hoc Workshop

Nov. 6, 2020

Outline

Detector Overview

A Hybrid Detector

- □ MPGDs in the Central Region
- □ MPGDs in the Endcap Regions
- Photo-Sensitive MPGDs

G Summary

This presentation will focus on EIC MPGD R&D work being carried out within **eRD6** by

- 1. Brookhaven National Lab (BNL)
- 2. CEA Saclay (Saclay)
- 3. Florida Inst. Of Technology (FIT)
- 4. INFN
- 5. Stony Brook University (SBU)
- 6. Temple University (TU)
- 7. University of Virginia (UVa)
- 8. Yale University (YU)

And eRD22

- 1. Jefferson Lab (JLab)
- 2. TU
- 3. UVA

EIC R&D: https://wiki.bnl.gov/conferences/index.php/EIC_R%25D

EIC Kinematics

E. .C. Aschenauer – Yellow Report, March 2020

EIC Detector Envelope Concepts

4 working EIC envelope place holders: BeAST
 (BNL), ePHENIX (BNL), JLEIC (JLab), TOPSide
 (ANL)

- $\circ~$ Common features
 - vertex + central + forward/backward endcap
 - 4π hermetic acceptance to few degrees from beamline
 - Require low material budgets
 - Good momentum resolution
 - Solenoidal field

□ Ideally EIC would have 2 detectors

T telenol aryents to types electrons hadrons electrons interview of the second second

BeAST

ePHENIX

JLEIC

TOPSIDE

Where can MPGDs fit in?

Central Region

Central tracking detector configurations

- Si vertex + TPC
- Si Vertex + MPGD Barrel

E. .C. Aschenauer - Yellow Report, March 2020

6

Central Region

- Compact: radial volume = 60 cm
 - STAR 150 cm, ALICE 162 cm
- $\,\circ\,$ Samples many space points to provide
 - Particle momentum and charge ID
 - dE/dx for PID important for EIC
- Low material in tracking volume
- $\circ~$ Paired with Si vertex tracker

Heavy Flavor Workshop: Nov. 4th-6th 2020

Central Region - TPC R&D

TPC MPGDs

- MPGD based avalanche structure with zigzag readout for TPC
- Variety of zigzag patterns tested
- Tests provide a baseline measure of performance for each avalanche scheme and reveal optimal parameter sets
- \circ Not exhaustive test
 - gas mixtures were not tested
 - Field configuration not optimized

Central Region - TPC R&D

TPC MPGDs

- Investigation into IBF and dE/dx in Hybrid MPDG based TPC readout
 - Minimize IBF and maximize dE/dx

Central Region

Central tracking detector configurations

○ Si vertex + TPC
 ➢ Fast cylindrical MPGDs
 ○ Si Vertex + MPGD Barrel

E. .C. Aschenauer - Yellow Report, March 2020

Barrel: Fast Cylindrical MPGDs

□ Fast Cylindrical *µRWELL* layer

- Located just before and after the PID detector (DIRC)
- Improved angular resolution of the track can be used to increase PID separation of hadrons (π/K)

□ In a TPC + MAPS configuration

- Aid with correcting TPC distortions and calibration
- Provide fast timing for TPC and MAPS

e/m calorimet

3T solenoid cryostat

iron yoke

DIRC

electrons

up to 9.0m

GEM tracker

Barrel: Fast Cylindrical MPGDs

 $\pi, \theta = 43^{\circ}$

• TPC

5

0

Δ

\Box Cylindrical $\mu RWELL$ layer assisting PID (simulation)

- Simulated detectors: SVTX, TPC, and 0 $\mu RWELL$ cylindrical layers
- Angular resolutions compare projected track to Ο truth value
- Preliminary simulations show clear improvement in Ο angular resolution

2

.8

1.6

1.4

1.2

0.8

0.6

0.4⊟

0.2E

0

2

0

3

TEMPLE

Prelim. results suggest some improvement if Ο $\mu RWELLS$ are operated in μTPC mode

∆ θ (mrad)

Heavy Flavor Workshop: Nov. 4th-6th 2020

eRD6: TU

Barrel: Fast Cylindrical MPGDs – R&D

Mechanical Support structure mockup for fast cylindrical μRWELL layers

- Kapton foils
- \circ 3D printed frames
- Nylon stretching rods
- Total Length: 60.3 cm
- o Inner Kapton diameter: 16.2 cm
- Outer Kapton diameter: 19.6 cm

Support area for connectors & cables

Central Region

Central tracking detector configurations Si vertex + TPC Si Vertex + MPGD Barrel Micromegas

E. .C. Aschenauer - Yellow Report, March 2020

TEMPLE UNIVERSITY®

14

Barrel: Si Vertex + Cylindrical MPGD Barrel

Qinhua Huang, et al: CEA Saclay

□ Micromegas Barrel Tracker

- Two barrel configurations are being studied
- o Radius: 20-80 cm
- Material budget for TPC and micromegas barrels meet $\frac{\chi}{\chi_0} < 5\%$ central region requirement

6 equidistant layers

6 layers arranged as 3x2

6-layer 2D RO MPGD tracker

TEMPLE UNIVERSITY®

Yellow Report Workshop – March 2020

Barrel: Si Vertex + Cylindrical MPGD Barrel

Preliminary performance comparisons (simulations)

- Momentum and angular resolutions compared at r = 81.5 cm from beamline
- \circ $\,$ Simulation includes:
 - SVTX: $\sigma(R / \phi/Z) = 5\mu m$
 - TPC: $\sigma(\phi) = 200 \ \mu m, \sigma(Z) = 500 \ \mu m$
 - Micromegas: $\sigma(\phi/Z) = 150 \ \mu m$
- \circ $\,$ TPC has slightly better momentum resolution
- Angular resolutions are comparable
- Potential improvement of operating in μTPC mode ongoing

Qinhua Huang, et al , CEA Saclay

Yellow Report Workshop – March 2020

Scalay

TEMPLE

Endcap Region

Endcap tracking detector configurations

- O Si + MPGD disks
- Si disks + MPGD-TRD

E. .C. Aschenauer - Yellow Report, March 2020

Endcap: Si + MPGD Disks

Si + MPGD disks

TPC.

i tracke

- $\circ~$ Small Si disks in barrel region
- $\circ~$ Medium MPGD disks in endcap
- $\circ~$ Large GEMs behind the RICH
 - Improve angular resolution
 - Provide additional information to aid in Cerenkov ring reconstruction

RICH

3T solenoid cryosta

hadrons

Endcap Region (MPGDs)

9.0m

GEM trackers

up

Endcap: Si + MPGD Disks

Simulated Detectors

- Impact of outer forward GEM trackers on RICH ring reconstruction still under investigation.
- Preliminary effects from FIT on momentum resolution have been studied.
 - Simulated detectors include
 - Vertex, silicon, and GEM trackers
 - TPC
 - RICH volume
 - Magnetic Field = 1.5 T

Endcap: Si + MPGD Disks

Endcap Outer GEMs (simulation)

- Significant improvement is seen at
 - Large momentum
 - Small angle

eRD6: FIT

Endcap Regions: GEM Trackers – R&D

eRD6, FIT, TU, UVa

Developed common 1 m long GEM foil

• All electronics, HV, and gas

connections outside of active area

- Opening angle of 30.1°
- 8 HV sectors along r (inner)
- \circ 16 HV sectors along ϕ
- \circ HV area = ~107 cm²
- \circ Active area ~2,584 cm^2

Endcap Regions: GEM Trackers – R&D

Low mass detector prototype

- All GEM foils, drift cathode, and U-V readout layer Kapton foils
- No rigid PCB or honey comb material in active area
- All connectors at outer radius

Heavy Flavor Workshop: Nov. 4th-6th 2020

Endcap Regions: GEM Trackers – R&D

Low Mass Large Area GEM Tracker Beam Test

- UVa tested GEM tracker with FNAL proton
 beam
- Detector radiation length = 0.41%
- Excellent X-Y resolution measured
 - $\sigma_x = 426 \, \mu m$
 - $\sigma_y = 115 \ \mu m$

roton

Spatial resolution with U-V strip readout (FNAL data)

Large GEM Setup in MT6.2b Area at FTBF (June-July 2018)

Heavy Flavor Workshop: Nov. 4th-6th 2020

TEMPLE UNIVERSITY®

Endcap Region

Endcap tracking detector configurations

Si + MPGD disks
Si disks + MPGD-TRD

E. .C. Aschenauer - Yellow Report, March 2020

24

Endcap Region

Endcap tracking detector configurations

- Si + MPGD disks
- Si disks + MPGD-TRD

Physics

- Secondary electron identification will be critical and plays a role in many process and physics
 - \succ D and B meson, and J / ψ production
 - Spectroscopy
 - Beyond standard model physics ... etc.
- High granularity tracker with e/π discrimination would be ideal

Endcap: Si + MPGD-TRD

GEM-TRD Tracker

- TR allows π/e discrimination via dE/dx
- $\circ~$ ID electrons (p ~ 1-100 GeV) from pions
- Triple-GEM based TRD detector
- Operates in a μTPC mode providing tracking information (21 mm drift)
- \circ Located in the hadron endcap (behind the RICH)
- $\circ~$ Beam test at JLab with 3-6 GeV electron beam

Nucl. Instrum. Meth. A 942, 162356 (2019).

Heavy Flavor Workshop: Nov. 4th-6th 2020

TEMPLE UNIVERSITY®

Endcap: Si + GEM-TRD

PID of GEM TRD Tracker

- Clear measurement of TR
- Good agreement between data and simulation
- Several data analysis and machine learning approaches were used to estimate e/π rejection factor.

eRD22: Jlab, TU, UVa

 MC suggests the prototype achieved a rejection factor of ~5-8

Heavy Flavor Workshop: Nov. 4th-6th 2020

It's All Coming Together

Integrated hybrid detector configurations are added to common simulation framework (Fun4All)

- \circ TPC + Si disks + Si vertex
 - Including end cap material
- MPGD barrel + Si vertex
- Triple-GEM disks
 - Based on SBS GEMs
- $\circ~$ All Si detector
- \circ $\;$ Ability to study various detector integrated configurations

All Si

Photo-Sensitive MPGDs: TPCC Tracker

TPCC Tracker

- Tested at Fermilab test beam facility
- \circ CF₄ gas
- \circ Tracking
 - $10 \times 10 \times 10 \text{ cm}^3$ field cage
 - 10 x 10 cm² 4-GEM
 - 50 x 10 mm long zigzag anodes
 - Arranged in 10 pad-rows
- o PID
 - 10 x 10 cm² readout plane
 - Segmented in 3x3 pads

29

• Plan to study high pressure Ar radiator with Capacitive-sharing and large-pad anode readout

Photo-Sensitive MPGDs: Hybrid MPGD RICH

Hybrid MPGD RICH

- Single-photon detection with for high-momentum Ο RICH (above 6-8 GeV)
- Resistive thick GEM-MicroMegas hybrid detector Ο
- Radiator gas is the detector gas Ο
- Based on Compass design Ο

Heavy Flavor Workshop: Nov. 4th-6th 2020

Photo-Sensitive MPGDs: Hybrid MPGD RICH

eRD6: INFN

- A Shutter between detector and radiator OPEN
- B Shutter between detector and radiator CLOSED
- A-B : Only photon ring remains

Summary

Integration of MPGDs and silicon detectors can provide a high precision, large acceptance, and cost effective EIC tracking system.

□ Many preliminary simulation studies have been done.

Work is continuing to evolve as gas and silicon hybrid detector configurations are being added to common simulation framework

- Allows for a consistent comparison between various studies
- Material budgets and resolutions are being made more realistic
- □ Many R&D efforts being carried out in parallel to simulations
- Developing photo-sensitive MPGDs
 - RICH MPGDs

