

for the collaboration

Studying the QGP/QCD at multiple scales with sPHENIX

Heavy flavor (open or hidden) is a major part of the sPHENIX program

outer HCAL inner HCAL EMCAL

: 🕄

BaBar superconducting solenoid

BaBar high field test at BNL

JIC 1962E2 BN.

nostalgia for Stephen Sekula :-)

sPHENIX Tracking detectors

- Continuous readout TPC (R = 20-78cm)
 shares many concepts with ALICE TPC upgrade
 compact 1/30 of ALICE TPC volume
- Si strip intermediate tracker (R = 6-12cm)
- 3-layer precision vertex tracker (R = 2.3, 3.1, 3.9cm)
 near-copy of ALICE ITS IB detector

b-jet embedded in 200 GeV Au+Au event full GEANT4 detector description full reconstruction of tracks and calorimeters

Upsilon spectroscopy

Sufficient mass resolution to enable clear separation of Y mass states for the first time at RHIC ($\sigma_p/p = 0.2\% \times p \implies \sigma_M|_{Y(1S)} = 100 \text{ MeV/c}^2$)

High rate DAQ + RHIC luminosity \implies multiply differential observables

suppression vs centrality

p_T-dependence for most-central collisions

Open heavy flavor via single hadrons and via jets

sPHENIX will enable precision bottom measurements at RHIC over broad kinematic range First b-jet tagging at RHIC

subtle point: low p_T HF isn't triggerable, challenge to get statistics in pp – sPHENIX uses streaming readout of tracking detectors to do this

Streaming readout means even better HF physics

p+p collision statistics		Year-2024, triggered DAQ per-1kHz M.B. trigger	Year-2024, w/ str. tracker
M.B.	Data	Each 1k Hz M.B.	10% M.B. events
p+p	Mode	trigger w/ 4×10^{-4}	str. recorded
		of M.B. coll. triggered	
	Stats	1 Billion M.B. evts	250 Billion M.B. evts
		$0.026 \text{ pb}^{-1} \text{ recorded}$	6.2 pb^{-1} recorded
Physics	$B ightarrow D^0 ightarrow \pi K$	620 evts	150k evts
Physics Reach	$B ightarrow D^0 ightarrow \pi K$ R_{AA} ref.	620 evts	150k evts
Physics Reach	$B ightarrow D^0 ightarrow \pi K$ R_{AA} ref. $D^0 ightarrow \pi K$ pair	620 evts	150k evts
Physics Reach	$B ightarrow D^0 ightarrow \pi K$ R_{AA} ref. $D^0 ightarrow \pi K$ pair Diffusion of c+ \overline{c}	620 evts	150k evts
Physics Reach	$B ightarrow D^0 ightarrow \pi K$ R_{AA} ref. $D^0 ightarrow \pi K$ pair Diffusion of $c+\overline{c}$ $\Lambda_c ightarrow \pi K p$	620 evts 620 evts 1.3k evts	150k evts 150k evts 310k evts
Physics Reach	$B \rightarrow D^0 \rightarrow \pi K$ R_{AA} ref. $D^0 \rightarrow \pi K$ pair Diffusion of $c+\overline{c}$ $\Lambda_c \rightarrow \pi K p$ Charm hadronization	620 evts 620 evts 1.3k evts	150k evts 150k evts 310k evts
Physics Reach	$B \rightarrow D^0 \rightarrow \pi K$ R_{AA} ref. $D^0 \rightarrow \pi K$ pair Diffusion of $c+\overline{c}$ $\Lambda_c \rightarrow \pi K p$ Charm hadronization Prompt $D^0 \rightarrow \pi K$	620 evts 620 evts 1.3k evts 0.2M evts	150k evts 150k evts 310k evts 50M evts

(co-host Jin Huang is the expert on this!)

Di-b-jet increases sensitivity to physics

Another observable enabled by sPHENIX high rate DAQ + RHIC luminosity

Zhong-Bo Kang, Jared Reiten, Ivan Vitev, and Boram Yoon. *Phys. Rev. D*, 99(3):034006, 2019

SPHE

Heavy flavor as a probe of collectivity, coupling in the medium

Probing the diffusion of the b-quark in the QGP

the b-quark

Charm hadronization in the deconfined medium

<u>Min He</u>, <u>Ralf Rapp</u>, "Hadronization and Charm-Hadron Ratios in Heavy-Ion Collisions", Phys. Rev. Lett. 124 (2020) 4, 042301 Jaroslav, Adam et al. First Measurement of Λ_c Baryon Production in Au+Au Collisions at $\sqrt[4]{s_{NN}=200}$ GeV. Phys. Rev. Lett., 124(17):172301, 2020.

HF in cold QCD with sPHENIX

Gluon Sivers TMD TSSA in direct- γ and heavy-flavor production

Zhong-Bo Kang, Jian-Wei Qiu, Werner Vogelsang, and Feng Yuan. "Accessing tri-gluon correlations in the nucleon via the single spin asymmetry in open charm production." *Phys. Rev. D*, 78:114013, 2008

sPHENIX run plan 2023 – 2025

				-	
Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	
		[GeV]	Weeks	Weeks	
2023	Au+Au	200	24 (28)	9 (13)	
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	C
					4.
2024	p^{\uparrow} +Au	200	_	5	
2025	Au+Au	200	24 (28)	20.5 (24.5)	

141 billion Au+Au events with |z| < 10 cm recorded

sPHENIX as a path to EIC? A number of possible answers.

- Physics connections e.g., measurements in spin polarized pp and pA, can seed state in AA in EIC can inform RHIC analyses
- select detectors
- •
- jet structure analysis, b/c-jet tagging
- Collaboration many sPHENIX institutions identify EIC as key reason for joining •

interactions with theory community prior to EIC; validation of saturation picture of initial

• Equipment and infrastructure – e.g., BaBar solenoid, flux return, carriage, cryogenic connection to RHIC, gas mixing and handling facilities, electronics (e.g., ATLAS FELIX),

Data acquisition – streaming readout infrastructure capable of handling EIC needs

 Software – battle-tested framework, simulations with full GEANT and highly performant track reconstruction (based on ATLAS ACTS code), increasing number of EIC specific detectors, KFParticle for state-of-the-art topological decay reconstruction, sophisticated

An EIC detector project will be more complex than sPHENIX

- integrated with accelerator
- In comparison, sPHENIX has had it easy! Still ...
 - PHENIX "removal and repurposing": summer 2016 to summer 2019 (with interruptions): three years
 - BaBar solenoid acceptance: early 2015 to early 2018: three years •
 - cryogenic hookup to RHIC: three years of design, procurement, installation
 - beam tests in support of directed R&D: three years
 - summer 2019: one year

• EIC detector: many more sub-detectors than sPHENIX (x3?), more hermetic, more tightly

optimization of silicon pixel and silicon strip detector configuration: summer 2018 to

Have there been studies?

February 3, 2014

2014

SPHE

sPHENIX-note sPH-cQCD-2018-001

An EIC Detector Built Around The sPHENIX Solenoid

A Detector Design Study

Christine Aidala, Alexander Bazilevsky, Giorgian Borca-Tasciuc, Nils Feege, Enrique Gamez, Yuji Goto, Xiaochun He, Jin Huang, Athira K V, John Lajoie, Gregory Matousek, Kara Mattioli, Pawel Nadel-Turonski, Cynthia Nunez, Joseph Osborn, Carlos Perez, Ralf Seidl, Desmond Shangase, Paul Stankus, Xu Sun, Jinlong Zhang

> For the EIC Detector Study Group and the sPHENIX Collaboration

> > October 2018

sPHENIX detector

EICUG Detector Discussion Meeting, Temple Univ., November 2017

tracking solenoid | and flux return/HCal precision vertexing

barrel EMCal

in extremis

cf. later presentation by Xin Dong on silicon tracker

cryogenic chimney electronics rack support platform instrumented flux return magnetic flux containment doors superconducting solenoid EM calorimeter time projection chamber

 $\begin{array}{c} & & p/A \\ \text{luminosity monitor} \\ \text{low } Q^2 \text{ electron tagger} \end{array}$

EM calorimeter

forward particle ID

forward tracking -

barrel particle ID

detector support carriage

https://indico.bnl.gov/event/8552/contributions/43193/

Focus: selectively repurpose equipment and infrastructure at EIC IP8 to realize a fully capable EIC detector ready to deliver science when the accelerator delivers collisions

AANL/Armenia, Academia Sinica/Taiwan, BGU/Israel, BNL, CU Boulder, CUA, Charles U./Prague, Columbia, FIU, GWU, GSU, IJCLab-Orsay/France, ISU, JLab, Kentucky, LANL, LLNL, Lehigh, MIT, National Cheng Kung University/Taiwan, National Central University/Taiwan, National Taiwan University/Taiwan, National Tsing Hua University/Taiwan, ODU, Ohio University, ORNL, Rice, Rutgers, SBU, TAU/ Israel, UConn, UIUC, UNH, UVA, Vanderbilt, Wayne State, and WI/Israel.

Call for Expressions of Interest for Potential Cooperation on the EIC Experimental Program

Summary

- in "hot" QCD but also in pp and pA
- Excellent magnet still in its youth! and detectors, many based on LHC developments provide capabilities for array of HF observables
- High luminosity from RHIC is matched by the high rate sPHENIX DAQ
- Heavy flavor simulations, analyses, and software can be used by the community
- sPHENIX and its extensive infrastructure potentially provide an advanced starting point for realizing an EIC detector

Heavy flavor is a <u>major</u> component of the sPHENIX science program – not just

