Constraints on nuclear gluons at small x

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute", Gatchina, Russia

1

Outline:

- Nuclear gluon distribution at small x: fixed-target DIS, pA@LHC, future EIC and LHeC
- Leading twist nuclear shadowing model
- Gluon nuclear shadowing from coherent J/ ψ photoproduction on nuclei at the LHC

"Opportunities with Heavy Flavor at the EIC", CFNS Ad hoc Workshop, Nov 4-6, 2020

Gluon distributions in nuclei: fixed-target DIS

• Nuclear parton distributions (nPDFs) $f_A(x,\mu^2)$ = densities/distributions of quarks and gluons in nuclei as function of momentum fraction x at resolution μ .

• Due to collinear QCD factorization, nPDFs are universal quantities required for calculations of various hard processes with nuclei at high energies at RHIC, LHC, and future EIC and LHeC/FCC.

• $f_A(x,\mu^2)$ are determined from global QCD fits to data on fixed-target DIS, nuclear Drell-Yan, hard processes in dA (RHIC) and pA (LHC) \rightarrow $f_A(x,\mu^2)$ with significant uncertainties:

 For small x < 0.005, nPDFs are suppressed due to nuclear shadowing: f_A(x,µ²) < A f_N(x,µ²)

Gluon distributions in nuclei: adding dijet and W,Z production in pA@LHC

- One of the goals of the LHC heavy ion program is to better constrain nPDFs.
- However, Run 1 pA data on dijet and W,Z production does not really help
 - EPPS16 includes these data in the fit
 - nCTEQ15 does reweighting

Gluon nuclear shadowing at EIC

• In the future, gluon nuclear shadowing will be constrained at EIC, Accardi et al, EPJ A52 (2016) no.9, 268; LHeC@CERN, LHEC Study Group, J. Phys. G39 (2012) 075001 due to wide Q²-x kinematic coverage, $F_L^A(x,Q^2)$ and $F_2^{charm}(x,Q^2)$ measurements:

Aschenauer, Fazio, Lamont, Paukkunen, Zurita, PRD 96 (2017) 11

Hatched: baseline fit Blue: EIC inclusive Black error: EIC inclusive + charm

a <u>Leading</u> twist nuclear shadowing model

- Combi with Q(shadowing is driven by diffraction for individual partons Frankfurt, Strikman (1999); Frankfurt, Guzey, Strikman, Phys. Rept. 512 (2012) 255
- Double <u>scattering</u> term (N=2) is a model-independent result of unitarity (AGK cutting rules). Higher terms (N > 3) require modeling.
- Graphs for $g_A(x,Q^2)$:

Leading twist nuclear shadowing model-2

$$xf_{j/A}(x, Q_0^2) = Axf_{j/N}(x, Q_0^2) - 8\pi A(A + \eta^2) = B_{diff} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(3)}(\beta, Q_0^2, x_{\mathbb{P}})$$

$$\times \int d^2b \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{p} dz_2 \rho_A(\vec{b}, z_1) \rho_A(\vec{b}, z_2) e^{i(z_1 - z_2)x_{\mathbb{P}}m_N} e^{-\frac{A}{2}(1 - i\eta)\sigma_{soft}^j(x, Q_0^2) \int_{z_1}^{z_2} dz' \rho_A(\vec{b}, z')}$$

proton diffractive PDFs

 Measured in diffractive DIS on proton at HERA, H1, ZEUS

$$F_2^{D(4)}(x, Q^2, x_{\mathbb{P}}, t) = \beta \sum_{j=q, \bar{q}, g} \int_{\beta}^1 \frac{dy}{y} C_j\left(\frac{\beta}{y}, Q^2\right) f_j^{D(4)}(y, Q^2, x_{\mathbb{P}}, t)$$

- One of main HERA results: diffraction in DIS is a leading-twist phenomenon \rightarrow hence the name "leading twist shadowing"
- **Beware**: While extrapolated pQCD fits describe the HERA data well for $Q^2 < 6.5$ GeV², higher-twist effects are potentially large for Q² < 5 GeV², Motyka, Sadzikowski, Slominski, PRD 86 (2012) 111501

- Estimated using two models of photon fluctuations:
 - like in the pion, Blattel et al, 1993
 - like in the dipole model,

McDermott, Frankfurt, Guzey, Strikman, 2000

Leading twist nuclear shadowing model-3

- Predicts form of nuclear PDFs at μ^2 =3-4 GeV² \rightarrow input for DGLAP evolution.
- Magnitude of shadowing is determined by proton diffractive PDFs, ZEUS, H1 2006 \rightarrow naturally predicts large shadowing for $g_A(x,\mu^2)$.
- Presents alternative to small-x extrapolation of nPDFs from global QCD fits.

- LTA shadowing does NOT level off at small x.
- EIC and LHeC are ideal to test these predictions at small x.

Leading twist nuclear shadowing model: b-dep.

 Model also predicts impact parameter dependent nuclear PDFs g_A(x,b,Q²) (GPDs in a special limit):

$$\begin{aligned} xf_{j/A}(x, Q_0^2, b) &= A T_A(b) xf_{j/N}(x, Q_0^2) - 8\pi A(A-1) B_{\text{diff}} \Re e \frac{(1-i\eta)^2}{1+\eta^2} \int_x^{0.1} dx_{\mathbb{P}} \beta f_j^{D(3)}(\beta, Q_0^2, x_{\mathbb{P}}) \\ &\times \int_{-\infty}^{\infty} dz_1 \int_{z_1}^{\infty} dz_2 \,\rho_A(\vec{b}, z_1) \rho_A(\vec{b}, z_2) \, e^{i(z_1-z_2)x_{\mathbb{P}}m_N} e^{-\frac{A}{2}(1-i\eta)\sigma_{\text{soft}}^j(x, Q_0^2) \int_{z_1}^{z_2} dz' \rho_A(\vec{b}, z')} \end{aligned}$$

- Correlations between impact parameter b and x (shadowing is stronger in nucleus center) can be experimentally tested:
 - shift of t-dependence of $\gamma A \rightarrow J/\psi A$ cross section in UPCs
 - oscillations of beam-spin nuclear DVCS asymmetry at EIC and LHeC.

- Resulting shift = **5-11% broadening** in impact parameter space of gluon nPDF, Guzey, Strikman, Zhalov, PRC 95 (2017) 025204
- Similar effect is predicted to be caused by saturation, Cisek, Schafer, Szczurek, PRC86 (2012) 014905; Lappi, Mäntysaari, PRC 87 (2013) 032201; Toll, Ullrich, PRC87 (2013) 024913; Goncalves, Navarra, Spiering, arXiv:1701.04340

Ultraperipheral collisions

• Ions can interact at large impact parameters $b >> R_A+R_B \rightarrow ultraperipheral collisions (UPCs) \rightarrow strong interaction suppressed <math>\rightarrow$ interaction via quasi-real photons, Fermi (1924), von Weizsäcker; Williams (1934)

- UPCs correspond to empty detector with only two lepton/pion tracks from vector meson decay
- Nuclear coherence by veto on neutron production by Zero Degree Calorimeters (ZDCs) and selection of small pt
- Coherent photoproduction of vector mesons in UPCs:

UPCs@LHC = γ p and γ A interactions at unprecedentedly large energies, Baltz *et al.*, The Physics of Ultraperipheral Collisions at the LHC, Phys. Rept. 480 (2008) 1

Exclusive charmonium photoproduction

• In leading logarithmic approximation (LLA) of pQCD and non-relativistic approximation for charmonium wave function (J/ ψ , ψ (2S)), Ryskin, Z. Phys. C57 (1993) 89

$$\frac{d\sigma_{\gamma T \to J/\psi T}(W, t=0)}{dt} = C(\mu^2) \left[x G_T(x, \mu^2) \right]^2$$

$$x = \frac{M_{J/\psi}^2}{W^2}, \qquad \mu^2 = M_{J/\psi}^2/4 = 2.4 \text{ GeV}^2 \quad C(\mu^2) = M_{J/\psi}^3 \Gamma_{ee} \pi^3 \alpha_s(\mu^2) / (48\alpha_{em}\mu^8))$$

• Beyond LLA and NR approximation for charmonium:

n r2

- **k**_T-factorization, Ryskin, Roberts, Martin, Levin, Z. Phys. C76 (1997) 231; Martin, Nockles, Ryskin, Teubner, PLB 662 (2008) 252; Jones, Martin, Ryskin, Teubner, JHEP 1311 (2013) 085: gluon and quark kT \rightarrow additional suppression by factor 1/2; some NLO effects using unintegrated g(x,k_T) reducing to NLO g(x,µ²) + skewness factor to relate GPDs and PDFs \rightarrow successful LO and NLO pQCD description of HERA and LHCb data on charmonium photoproduction

-kT-factorization, Cisek, Schafer, Szczurek, JHEP 1504 (2014) 159: unintegrated gluon distribution with saturation seems to be somewhat preferred by LHCb data on J/ψ photoproduction

- color dipole model framework, Frankfurt, Koepf, Strikman (1998): relativistic effects in charmonium wf are very important; gluon virtualities are much higher than in NR case; Goncalves, Machado 2008-present; Lappi, Mäntysaari (2013): dipole cross section with/without saturation; large dependence on charmonium wf; phenomenological description of HERA and UPC data for proton. For Pb targets, nuclear suppression due to shadowing is generally underestimated.

 Collinear factorization at NLO, Ivanov, Schaefer, Szymanowski, Krasnikov (2015); Jones, Martin, Ryskin, Teuber (2015): large ~200% NLO corrections and scale dependence

Coherent charmonium photoproduction on nuclei

• Application to nuclear targets:

$$\sigma_{\gamma A \to J/\psi A}(W_{\gamma p}) = \kappa_{A/N}^{2} \frac{d\sigma_{\gamma p \to J/\psi p}(W_{\gamma p}, t = 0)}{dt} \begin{bmatrix} G_{A}(x, \mu^{2}) \\ AG_{N}(x, \mu^{2}) \end{bmatrix}^{2} \Phi_{A}(t_{\min})$$
Small correction k_{A/N} ~ 0.90-95 due to different skewness of nuclear and nucleon GPDs
• Well-defined impulse approximation (IA):
$$\Phi_{A}(t_{\min}) = \int_{-\infty}^{t_{\min}} dt |F_{A}(t)|^{2}$$

$$\sigma_{\gamma A \to J/\psi A}^{\mathrm{IA}}(W_{\gamma p}) = \frac{d\sigma_{\gamma p \to J/\psi p}(W_{\gamma p}, t=0)}{dt} \Phi_A(t_{\min})$$

• Nuclear suppression factor S (like R_{pA} or R_{AA}) \rightarrow direct access to R_{g}

$$S(W_{\gamma p}) = \left[\frac{\sigma_{\gamma P b \to J/\psi P b}}{\sigma_{\gamma P b \to J/\psi P b}^{\text{IA}}}\right]^{1/2} = \kappa_{A/N} \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = \kappa_{A/N} R_g$$

Model-independently from data on UPC@LHC (ALICE, CMS) and HERA, LHCb Abelev *et al.* [ALICE], PLB718 (2013) 1273; Abbas *et al.* [ALICE], EPJ C 73 (2013) 2617; [CMS] PLB 772 (2017) 489

From global QCD fits of nPDFs or leading twist nuclear shadowing model

Guzey, Kryshen, Strikman, Zhalov, PLB 726 (2013) 290, Guzey, Zhalov, JHEP 1310 (2013) 207

SPb from ALICE and CMS UPC data vs. theory

• J/ ψ photoproduction in Pb-Pb UPCs at LHC, Abelev et al. [ALICE], PLB718 (2013) 1273;

Abbas *et al.* [ALICE], EPJ C 73 (2013) 2617; CMS Collab., PLB 772 (2017) 489 → Suppression factor S_{Pb}

• Good agreement with ALICE data on coherent J/ ψ photoproduction in Pb-Pb UPCs@2.76 TeV \rightarrow evidence of large gluon shadowing, Rg(x=0.001) \approx 0.6.

- Also good description using central value of EPS09, EPPS16, large uncertainty.
- Color dipole models generally give too little suppression, Goncalves, Machado (2011); Lappi, Mäntysaari, 2013, but proton shape fluctuations help, Mäntysaari, Schenke, PLB 772 (2017) 681

Summary

- Small-x nPDFs especially the gluon nPDFs are poorly constrained constrained by available fixed-target and Runs 1 and 2 pA LHC data.
- An alternative is leading twist nuclear shadowing model, which connects shadowing and diffraction and predicts large gluon shadowing.
- Photoproduction of J/ ψ in Pb-Pb UPCs at the LHC gives direct evidence of large gluon nuclear shadowing R_g(x=0.001, $\mu^2 \approx 3 \text{ GeV}^2$) =0.6.
- There are several opportunities to extend current theoretical approaches to the calculation of charmonium and dijet photoproduction in UPCs@LHC.
- Challenge: include UPC data in global QCD fits for nPDFs.
- UPCs@LHC = forerunner of measurements of nPDFs at an EIC and LHeC/ FCC-eh, where nPDFs in a wide x-Q2 range will be determined with high precision.