Leading Baryon production at HERA W. Schmidke Target Fragmentation

Workshop, 28.09.20

Outline LB proton (LP) and neutron (LN) production:

BNL

- Motivations: LB production, virtual particle exchange, rescattering
- HERA & detectors: LP&LN detectors, resolutions, acceptances
- Data sets: DIS, photoproduction γp (inclusive, D*, dijets); LB yield
- LB in DIS & γp : energy, p_{τ} distributions, LP \leftrightarrow LN rate
- Comparison: LB in MC models, w/o & with virtual particle exchange
- LB production photon virtuality Q² dependences
- Comparison: LN exchange models with rescattering
- Comparison: LN in DIS & γp with hard scale (charm, high E_T dijets)
- Total LB rate \rightarrow EIC

Not discussed here: diffraction, LP with E '≈E

Historical context

- The HERA data are > 13 years old ZEUS LB results from HERA-I, ≥ 20 years old
- The published data compared to models *circa* ~15 years ago, including: meson exchange, rescattering (absorption)
- Some pictures may still be in favor others may be out of fashion or obsolete
- Here: will stick to published interpretations plots with curves easily available

However:

the data are the data and speak for themselves

Also:

- ZEUS published more detailed LB spectra, emphasized here
- I'm more familiar w/ ZEUS results
- H1 had similar results, some also shown here

Deep Inelastic Scattering (DIS)

Photon probe of proton structure:

 10^{-5}

 10^{-6}

 10^{-4}

10 -3

10 -2

 10^{-1}

Х

Pictures: LB production, virtual exchange

LB can come from 'standard'

fragmentation

(baryon # has to go somewhere)

- <u>Compare:</u> LP \leftrightarrow LN (x_L,p_T²) data \leftrightarrow data
- **<u>Compare:</u>** LB (x_L, p_T^2) data to
- MC fragmentation models
 Exchange model parameterizations

- LB can be produced via exchange of virtual particles: isovector (*p*&*n*) and isoscalar (*p* only).
- Cross section factorizes:

 $\sigma_{\text{ep}\rightarrow\text{eNX}}(x_{\text{L}},p_{\text{T}}^{2}) = f_{\pi/p}(x_{\text{L}},p_{\text{T}}^{2}) \otimes \sigma_{\text{e}\pi\rightarrow\text{eX}}$

• Flux $f_{\pi/p}$ params. from low energy hadronic data.

Pictures: Rescattering

For e.g. LN production via π -exchange:

- In DIS γ^* is 'small'; small chance both *n*, π scatter on γ^* : *n* reaches detector
- In photoproduction y 'large'; if *n*-π separation smaller *n* may 'rescatter' on y: *n* kicked to lower x_L & higher p_T (migration) and may escape detection (rescattering loss, absorption)
- Alternative language:

multi-Pomeron exchanges

 γ π χ π p

y or p

n∉

r_{nn}

<u>Compare</u>: data \leftrightarrow data ($x_{L}^{}, p_{T}^{2}$) distributions:

- Vary Q^2 (γ size) in DIS; compare DIS $\leftrightarrow \gamma p$ ($Q^2=0$)
- In γp reintroduce hard scale (charm, high E_{T} dijet)

<u>Compare data</u> ← models: particle exchange w/ rescattering

р

HERA Collider & ZEUS Detector:

LB Detectors:

<u>HERA beamline in *p* direction from ZEUS:</u> Vertical dipole acts as
Analyzing magnet for Leading <u>Proton</u> Spectrometer (LPS) for LP
Sweeping magnet for Forward <u>Neutron</u> Calorimeter (FNC) for LN

Detector acceptances

Data sets, LB measurement

LB are selected from inclusive data sets (i.e. no LB tag): • DIS: Q² > 2-3 GeV², $\langle Q^2 \rangle \approx 13$ GeV²; subsets with various $\langle Q^2 \rangle$ • γp: Q² < 0.02 GeV², e⁺ tagged ⇒ 150<W_{γp}<270 GeV

• γp+D*: Q² < 1 GeV², 130<W_{γp}<280 GeV, |η(D*)|<1.5, p_τ(D*)>1.9 GeV

• γ*p*+dijets: Q² < 1 GeV², 130<W_{γp}<280 GeV, E_τ⁻¹⁽²⁾>7.5(6.5) GeV

LB yields:

• DIS, γp have very different inclusive cross sections $\sigma_{\rm inc}$

For sensible comparisons look at LN yields:

$$\mathbf{r}_{\text{LB}} \equiv \sigma_{\text{LB}} / \sigma_{\text{inc}}$$

e.g.: $\mathbf{r}_{\text{LB}} (\mathbf{x}_{\text{L}}, \mathbf{p}_{\text{T}}^{2}) \equiv \frac{1}{\sigma_{inc}} \frac{d^{2} \sigma_{LN}}{dx_{L} dp_{T}^{2}}$

Additional benefit:

systematic uncertainties of central detector cancel; only have LB systematic uncertainties

DIS x_i distributions: same p_r range • LP & LN: p₁²<0.04 GeV² ZEUS Both detectors acceptances 0.2 $1/\sigma_{inc} \cdot d\sigma_{LB}/dx_{I}$ ZEUS 12.8 pb⁻¹ \circ ZEUS 40 pb⁻¹ overlap at low p₋ $e^+p \rightarrow e^+Xp$ $e^+p \rightarrow e^+Xn$ $p_{T}^{2}\!\!<\!\!0.04~GeV^{2}$ $p_T^2 < 0.04 \text{ GeV}^2$ yield $r_{IR}(x_{I})$ for 0.35<x_I<0.9: $O^2 > 3 GeV^2$ $O^2 > 2 GeV^2$ 45<W<225 GeV 45<W<225 GeV 0.1

• For pure *isovector* exchange isospin Clebsch-Gordan \Rightarrow r_{LP} = $\frac{1}{2}$ r_{LN} • Data: r_{LP} ≈ 2 r_{LN}

• \Rightarrow additional exchanges (*isoscalar*) needed for LP

• Intercepts $a(x_{L})$ and slopes $b(x_{L})$ fully characterize $(x_{L}^{}, p_{T}^{2})$ dist.

Model comparisons: DIS LP x

'Standard fragmentation' MCs:

MC yields all fall with x.

(except diff. peak \sim 1)

- Not flat like data, fail
- MC p₁² slopes b smaller than data except highest x

Model comparisons: DIS LP x

Model with exchanges of

several isoscalars/vectors:

Different xch's sum to flat yield as function of x

Different xch's sum to flat slope b as function of x

Model comparisons: DIS LN

- Compare to 2 MC models, 2 options:
 - RAPGAP w/ 'std. fragmentation'
 - RAPGAP mixture

'std. fragmentation' & π -exchange

- LEPTO w/ 'std. fragmentation'
- LEPTO w/ Soft Color Interactions
- Std. frag.: too few n, peak too low x,
- LEPTO-SCI ~OK in shape, magnitude, but slopes too small, ~not x₁ dependent
- <u>RAPGAP w/ π-xch.</u> closest to data

normalization and slopes too high

16

Model comparisons: DIS LN

- Compare to MC models:
 - Color Dipole Model (ARIADNE, in DJANGOH)
 - RAPGAP pure π -exchange
- Each model alone: wrong x_{L} shape CDM too low x_{I} , RAPGAP- π too high x_{I}
- Sum of models describes x₁ shape
- Other DIS, γp std. frag. models also fail:
 ARIADNE, CASCADE, PYTHIA, PHOJET, ...

X_F

Compare π-xch. models: DIS LN slopes

 Numerous parameterizations z = 0.50.8 رد: **ل**رد: (ft¹⁻²) (ft¹⁻²) of pion flux $f_{\pi/p}(x_{L},p_{T})$ in literature z = 0.00.2 z = 0.9• Coordinate space $r_{n-\pi}$ distributions: 0.5 @ lower $x_1 = z \Rightarrow$ lower mean r **n-**π ہم 95) (95) \Rightarrow higher mean $p_{\tau} \Rightarrow$ lower slope b 10 ھَ Compare measured DIS b(x,): FMS-dipole 8 Best agreeing models shown here; Holtmann et al 6 Bishar others wildly off 4 All give too large b(x,) 2 • More refinement needed: \Rightarrow rescattering migration & loss 0.3 n 4 \Rightarrow investigate Q² dependences

, y, Q² dependence of LN production • DIS kinematic variables, LB yield dependences: (detector acceptance induces some variable correlation) ZEUS r (%) **Forward Neutrons** $0.1 < Q^2 < 0.74 \text{ GeV}^2$ $0.2 < x_1 < 0.64$ 0.3 0.25 0.25 0.2 0.2 **H1** H1 Data correlated uncertainty LEPTO 3 CDM 0.2 RAPGAP-1 LN yield independent of: $0.64 < x_{L} < 0.82$ 0.15 3 W 0.1 2 γp 0.05 inelasticity $y \rightarrow$ $0.82 < x_1 < 1.0$ 0 100 150 200 1.5 ZEUS W [GeV] 1 (%) 1 0.5 0 0.1 0.7 0.2 0.5 3 0.3 0.6 ZEUS 95-97 2.5 $0.64 < x_1 < 0.82$ 2 10-2 10-3 10 -1 • LN yield increases monotonically w/ $Q^2 < Q^2 > GeV^2$ 19 • Consistent w/ rescattering: larger $Q^2 \Rightarrow$ smaller γ , less rescattering

Q² dependence of LP production

<u>DIS + γ</u>*p*:

• LP yield increases monotonically w/ Q^2 • Consistent w/ rescattering: larger $Q^2 \Rightarrow$ smaller γ , less rescattering ₂₀

Q^2 dependence of LN production <u>3 Q² bins DIS + χp </u>:

Compare LN γp/DIS: π-xch. w/ rescattering

• Ratio x₁ dist. γp/DIS:

Qualitatively similar to D' Alesio & Pirner (dashed line):

- neutron loss through rescattering vs x

Compare $\gamma p/DIS$: LN p_{τ}^2 distributions

Compare: π-xch. w/ rescattering loss, migration, other exchanges

- start with pure π -xch.
- some *n* rescatter on γ
- rescattered *n* migrate in (x_1, p_T)
- γp overall ~50% loss from

pure π -xch.

- Reasonable agreement with LN in γp :
- Subsequent work of
 - Khoze, Martin & Ryskin:
 - add (ρ ,a₂) exchanges (motive next slide)
- Again reasonable agreement with LN in γp

Compare: π-xch. w/ rescattering loss, migration, other exchanges

- Rescattering loss+migration with pion exchange alone does not describe slopes; too high in magnitude, no turnover @ high x_L, Δb ~ OK
- Addition of (ρ,a₂) exchanges gives good
 description of both slope magnitudes
 and x₁ dependence, Δb still OK

Compare LN in γp +D*, DIS & inclusive γp

- We have seen clear effects consistent with rescattering going hi-Q²→lo-Q²→γp
- Going from hard→soft scale increase in rescattering
- Suppose in γp we reintroduce a hard scale by requiring heavy flavor: γp+D* with LN:
- Yield γp +D* ~ DIS,

clearly higher than inclusive γp :

• Hard scale (charm) in γp , small photon, no clear rescattering

Compare LN in γp +jj, DIS & inclusive γp

Suppose in *γp* we reintroduce a hard scale by requiring high E_T dijet: *γp*+jj with LN:
LN x_L in *γp*+jj very different from DIS, inclusive *γp* suppression @ high x_L, not low x_L
Kinematics of high E_T dijets?

 Interpretation complicated by kinematics, but to 1st order: Hard scale (dijet) in γp, small photon, no clear rescattering

More details on extra slides, ZEUS LN+jj publication

Total LB rate in DIS

• ~ Exponential p_{τ}^{2} distributions observed in LB detector acceptance • Extrapolate to $p_{\tau}^{2} \rightarrow \infty$: LB rate in exponential peak

Total LB rate in DIS

Sum for total LB rate in exponential peak: • $r_{LB}(x_{L}>0.32) = 0.469 \pm 0.009$ (stat.) ± 0.014 (syst.)

- Nearly $\frac{1}{2}$ final state baryons in exp. p_{τ}^{2} peak
- Impressive that these low-acceptance detectors account for ~half of baryons
- Where are the rest?

Total LB rate: HERA→EIC acceptance

 EIC will accept wider angle LN: Θ_{max} 0.75 → 4.5 mrad
 Factor ~2 greater p_T range ~4 greater p_T² range

• EIC LP 3 detector systems:

1st magnet spectrometer, off momentum detector, Roman pots

- Coverage to $p_{\tau} \sim 5 \text{ GeV}$ @ high x
- Vast improvement over HERA, address total LB rate

Info from Alex Jentsch, see his talk Wed.

Summary

- $_{\bullet}$ HERA measured leading baryon x $_{_{\rm I}}$, p $_{_{\rm T}}$ distributions in DIS, $_{\gamma}p$
- MC models with 'standard' fragmentation do not describe the data
- Models with virtual particle exchange much better
- Pure π -xch. does not fully describe LN data: slopes wrong
- Evolution hi-Q² \rightarrow lo-Q² \rightarrow γp : evidence for rescattering of LB in large γ
- More refined calculations w/ π-xch.+rescattering loss+migration: for LN reasonable x₁ shape, magnitude; slopes still off
- Addition of (ρ ,a₂) exchanges: \Rightarrow good agreement with LN data
- Reintroduce hard scale in γp : LN rescattering reduced
- Total LB rate: $\sim \frac{1}{2}$ of baryons accounted for; more @ EIC...

Partial bibliography

HERA data

data on most plots in tables in papers

boldface: bulk of results shown here

- ZEUS LN in DIS & γ*p*: Nucl. Phys. B 637 (2002) 3-56
- ZEUS LN in D* γ*p*: Phys. Lett. B 590 (2004) 143-160
- ZEUS LN in DIS & yp: Nucl. Phys. B 776 (2007) 1-37
 data on most plots in computer readable acsii: https://www-zeus.desy.de/zeus_papers/ZEUS_PAPERS/DESY-07-011-table.txt

• ZEUS LP in DIS: JHEP 06 (2009) 074

- ZEUS LN in dijet γp: Nucl. Phys. B 827 (2010) 1-33 data on most plots in computer readable acsii: https://www-zeus.desy.de/zeus_papers/ZEUS_PAPERS/DESY-09-139-table.txt
- H1 LN in DIS: Eur.Phys.J.C68 (2010) 381
- H1 LN & forward photons in DIS: Eur.Phys.J.C74 (2014) 2915

Partial bibliography

Scattering / absorption papers

Older:

- N.N. Nikolaev, J. Speth and B.G. Zakharov, hep-ph/9708290
- U. D'Alesio and H.J. Pirner, Eur. Phys. J. A 7, 109 (2000)

'Durham group':

- A.B. Kaidalov, V.A. Khoze, A.D. Martin and M.G. Ryskin, Eur. Phys. J. C 47, 385 (2006)
- V.A. Khoze, A.D. Martin and M.G. Ryskin, Eur.Phys.J.C 48, 797 (2006)

Compare LN in yp+jj & DIS

- We have seen effects consistent with rescattering going hi-Q²→lo-Q²→γp
- Going from hard→soft scale increase in rescattering
- Suppose in γp we reintroduce a hard scale by requiring high E_τ dijets:

Compare LN in γp +jj & DIS : p_{τ}^2 & x, dist.

Still ~same as DIS:
 ⇒ same production mechanism
 Statistics limit further conclusions

• But the x, dist. strikingly different!

Compare LN in γp +jj & DIS : x, dist.

<u>Compare to RAPGAP MC with:</u>
π-xch. and full event kinematics
NO rescattering

 RAPGAP DIS normalization high
 But shapes are described: dijets suppressed @ hi x_L

- Normalize each MC set to data
- Take ratio of x₁ distributions:

RAPGAP with π-xch., full event kinematics describes different shapes x distributions

LN in yp+jj & DIS : kinematic constraints

• Now consider LN x_{L} distributions in X_{BP} bins Σ

LN in γp +jj & DIS : x_{L} in X_{BP} bins

- In bins of X_{BP} the x_L dist.
 for γp+jj, DIS are ~same both normalization, shape
- <u>Universality</u>: for a given X_{BP} , LN x_{L} dist. is same regardless of process (at least γp +jj vs. DIS)
- So different overall x_L dist.
 for γp+jj vs. DIS explained by different event kinematics (as seen with MC)

LN in γp +jj & DIS : x₁ in X_{BP} bins

• In $X_{_{RP}}$ bins: bin-by-bin reweight DIS $x_{_{I}}$ distribution

by ratio X_{BP} distributions γp +jj / DIS, sum x₁ distributions

• Accounting for kinematic constraints: shape & normalization ~same • No clear sign of suppression in γp with high E_{τ} jet scale

EPS07 contribution: https://zeusdp.desy.de/physics/diff/pub/eps07/lnjj.ps 41

LN x_L in γp , γp +jj & DIS :

- Large suppression @ low x_L seen in inclusive γp w/o jet requirement, consistent with rescattering, is not seen in γp+jj
- Conclusion (tentative): introducing a hard scale via high jet E_T reduces/removes rescattering effects
- But complications of event kinematics prevents a firm conclusion
- Needed: input from theoretical community...

