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Leading Baryon production at HERA
W. Schmidke

BNL

Outline LB proton (LP) and neutron (LN) production:

 Motivations: LB production, virtual particle exchange, rescattering

 HERA & detectors: LP&LN detectors, resolutions, acceptances

 Data sets: DIS, photoproduction p (inclusive, D*, dijets); LB yield

 LB in DIS & p: energy, p
T 
distributions, LP↔LN rate

 Comparison: LB in MC models, w/o & with virtual particle exchange

 LB production photon virtuality Q2 dependences

 Comparison: LN exchange models with rescattering

 Comparison: LN in DIS & p with hard scale (charm, high E
T
 dijets)

 Total LB rate → EIC

       Not discussed here: diffraction, LP with E
p
'≈E

p

Target Fragmentation
Workshop, 28.09.20
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Historical context
 The HERA data are > 13 years old
     ZEUS LB results from HERA-I, ≥ 20 years old

 The published data compared to models circa ~15 years ago,
  including: meson exchange, rescattering (absorption)
 Some pictures may still be in favor
  others may be out of fashion or obsolete
 Here: will stick to published interpretations
  plots with curves easily available

However:
 the data are the data and speak for themselves

 Also:
   - ZEUS published more detailed LB spectra, emphasized here
   - I'm more familiar w/ ZEUS results
   - H1 had similar results, some also shown here
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Deep Inelastic Scattering (DIS)

 HERA ~ kinematic range:
- 0 < Q2 < 40000 GeV2

- x > 10-6

 Photon probe of proton structure:

focus
this talk

-p c.m. energy
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Pictures: LB production, virtual exchange

 LB can come from 'standard'

  fragmentation 

  (baryon # has to go somewhere)

N

 LB can be produced via exchange

   of virtual particles: isovector (p&n)

   and isoscalar (p only).

 Cross section factorizes:

  σ
ep→eNX

(x
L
,p

T

2) = f
π/p

(x
L
,p

T

2) ⊗ σ
eπ→eX

 Flux f
π/p

 params. from low energy

   hadronic data.

x
L
=E

N
/E

p N

p
T

 

e.g.
π-xch.

 virtuality Q2:
Q2~0 photoprod. (p)
Q2>1 GeV2 DIS

LB variables:

Compare: LP↔LN (x
L
,p

T

2) data↔data

Compare: LB (x
L
,p

T

2) data to

 MC fragmentation models
 Exchange model parameterizations
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For e.g. LN production via π-exchange:

 In DIS * is 'small'; small chance both n, π

   scatter on *: n reaches detector

 In photoproduction  'large'; if n-π separation 

   smaller n may 'rescatter' on : n kicked

   to lower x
L
 & higher p

T
 (migration) and may

   escape detection (rescattering loss, absorption)

 Alternative language:

    multi-Pomeron exchanges

Compare: data↔data (x
L
,p

T

2) distributions:

 Vary Q2 ( size) in DIS; compare DIS↔p (Q2=0)

 In p reintroduce hard scale (charm, high E
T
 dijet)

Compare data↔models: particle exchange w/ rescattering

 Pictures: Rescattering
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HERA Collider & ZEUS Detector: 
 HERA: 920 GeV p × 27.6 GeV e H1 & ZEUS: 

 General purpose collider detectors:
 - EM & hadronic calorimeter
 - solenoid field tracking
  For these results:
 DIS: scattered e in EM calorimeter
 p: scattered e in tagger
 p+D*: decay products in tracking 
 p+dijets: jets in calorimeter

LB:
fwd. detectors
HERA tunnel
p direction

e tagger
HERA tunnel
e direction
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protons

105 m

ZEUS

H1

� LPS�

 LB Detectors: 
HERA beamline in p direction from ZEUS: Vertical dipole acts as
 Analyzing magnet for Leading Proton Spectrometer (LPS) for LP
 Sweeping magnet for Forward Neutron Calorimeter (FNC) for LN

FNC: Pb-Sci calorimeter @ 0° 105 m from ZEUS
 Energy resolution: σ

E
/E≈0.7/√E

 Sci-hodoscope position detector 1λ
I 
into FNC

LPS: Si-strip detectors
 Resolution: σ

p
/p<1%p
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×

 Detector acceptances

Both LP&LN:
 p

T
 resolution dominated by proton

  beam p
T
 spread;  σ

PT
~ 50-100 x

L
 MeV

 Magnet apertures limit Θ
n
<0.75 mrad

 Scatter plot
       neutron hits:
 Acc. vs Θ

n
:

 p
T

2<0.476 x
L

2 GeV2

 LPS different acceptance
   first/last 3 detector stations
 Acceptance ~ p

T

2<0.5 GeV2 

                                                    for x
L
>0.7
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 Data sets, LB measurement

LB are selected from inclusive data sets (i.e. no LB tag):
 DIS: Q2 > 2-3 GeV2, 〈 Q2 〉 ≈ 13 GeV2; subsets with various 〈 Q2 〉
  p: Q2 < 0.02 GeV2, e+ tagged ⇒ 150<Wp

<270 GeV

 p+D*: Q2 < 1 GeV2, 130<Wp
<280 GeV, |η(D*)|<1.5, p

T
(D*)>1.9 GeV

 p+dijets: Q2 < 1 GeV2, 130<Wp
<280 GeV, E

T

1(2)>7.5(6.5) GeV

LB yields:
 DIS, p have very different inclusive cross sections σ

inc

 For sensible comparisons look at LN yields:
                                                                        r

LB
 ≡ σ

LB
 /σ

inc

                                                               e.g.:  r
LB

(x
L
,p

T

2) ≡ 

 
Additional benefit:

          systematic uncertainties of central detector cancel;
           only have LB systematic uncertainties
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 DIS x
L
 distributions: max. p

T
 ranges

 LN yield → 0 at kin. limit  x
L
→1

 Below x
L
≈ 0.7 yield drops

    due to decreasing p
T

2 range

 LN: p
T

2<0.476 x
L

2 GeV2  LP: p
T

2<0.5 GeV2 

 LP yield diffractive peak x
L
→1

 Below x
L
≈ 0.95 yield ~flat
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 DIS x
L
 distributions: same p

T
 range

 Both detectors acceptances
 overlap at low p

T
 

    yield r
LB 

(x
L
) for 0.35<x

L
<0.9:

 LP & LN: p
T

2<0.04 GeV2 

 For pure isovector exchange isospin
   Clebsch-Gordan ⇒ r

LP
= ½ r

LN

 Data: r
LP

 ≈ 2 r
LN

 ⇒ additional exchanges (isoscalar) needed for LP
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 p
T

2 distributions DIS
log

scale

n
o

te
 v

ar
yi

n
g

 L
N

 p
T

2  r
an

g
es

 Intercepts a(x
L
) and slopes b(x

L
) fully characterize (x

L
,p

T

2) dist. 

LN LP

 Described by exponential in p
T

2:

fi
x

ed
 L

P
 p

T

2  r
an

g
e
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 DIS p
T

2 distributions: slopes & intercepts

 LN intercepts a(x
L
):  LB slopes b(x

L
): 

LN

LP intercepts not
shown: ~flat vs. x

L

 LN intercepts fall with x
L
,

   bump/plateau/shoulder 0.4<x
L
<0.8

 LN  slopes rise w/ x
L
,

             turnover x
L
→1

 LP slopes ~flat w/ x
L
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 Model comparisons: DIS LP x
L
 

'Standard fragmentation' MCs:

 MC yields all fall with x
L
 

      (except diff. peak ~1)

 Not flat like data, fail

 MC p
T

2 slopes b smaller

   than data except highest x
L

 Standard fragmentation MCs do not describe LP (x
L
,p

T

2) distributions

log
scale
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 Model comparisons: DIS LP x
L
 

Model with exchanges of

several isoscalars/vectors:

 Different xch's sum to flat

   yield as function of x
L

 Different xch's sum to flat

   slope b as function of x
L

 Model with multiple exchanges describes LP (x
L
,p

T

2) distributions

IR
IPπNπΔ

log
scale
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 Compare to 2 MC models, 2 options:

   - RAPGAP w/ 'std. fragmentation'

   - RAPGAP mixture

      'std. fragmentation' &  π-exchange

   - LEPTO w/ 'std. fragmentation'

   - LEPTO w/ Soft Color Interactions

 Std. frag.: too few n, peak too low x
L

 LEPTO-SCI ~OK in shape, magnitude,

  but slopes too small, ~not x
L
 dependent

 RAPGAP w/ π-xch. closest to data

   normalization and slopes too high

x L d
is

tr
ib

ut
io

n
in

te
rc

ep
ts

sl
op

es

 Model comparisons: DIS LN 
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 Model comparisons: DIS LN 

 Compare to MC models:

   - Color Dipole Model (ARIADNE, in DJANGOH)

   - RAPGAP pure  π-exchange

 Each model alone: wrong x
L
 shape

CDM too low x
L
, RAPGAP-π too high x

L

 Sum of models describes x
L
 shape

 Other DIS, γp std. frag. models also fail: 

 ARIADNE, CASCADE, PYTHIA, PHOJET, ...
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 Compare π-xch. models: DIS LN slopes
 Numerous parameterizations

   of pion flux f
π/p

(x
L
,p

T
) in literature

 Coordinate space r
n-π

 distributions:

  @ lower x
L
=z ⇒ lower mean r

n-π

 ⇒ higher mean p
T
 ⇒ lower slope b

 Compare measured DIS b(x
L
):

 Best agreeing models shown here;

   others wildly off

 All give too large b(x
L
)

 More refinement needed:

    ⇒ rescattering migration & loss

    ⇒ investigate Q2 dependences
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 W
γp

, y, Q2 dependence of LN production

 LN yield increases monotonically w/ Q2

 Consistent w/ rescattering: larger Q2 ⇒ smaller , less rescattering

 DIS kinematic variables, LB yield dependences:
  (detector acceptance induces some variable correlation)

 LN yield independent of:

←  W
γp

                inelasticity y → 
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p open points

 Q2 dependence of LP production

 LP yield increases monotonically w/ Q2

 Consistent w/ rescattering: larger Q2 ⇒ smaller , less rescattering

DIS + p:

 Total yield vs.  Q2, 2 x
L
 ranges:  x

L
 distributions:

zero
suppressed
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 Q2 dependence of LN production
3 Q2 bins DIS + p:

 x
L
 distributions:  slopes b(x

L
): 

 LN yield increases monotonically w/ Q2

 Consistent w/ rescattering:
   larger Q2 ⇒ smaller , less rescattering

 slopes for 3 Q2 bins ~same
 slopes for p significantly larger
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 Compare p/DIS: LN x
L
 distributions

 Combine all DIS Q2>2 GeV2, compare to p x
L
 dist.: ratio

             Ratio p/DIS: ~70% mid-x
L
 

                                   rising higher x
L

Qualitatively consistent w/ rescattering:
 Exchange model: mean n-π

  separation r
n-π

 smaller at lower x
L
=z:

 Or from b(x
L
): @ lower x

L
⇒ lower b-slope ⇒

                                              higher mean p
T
 ⇒ smaller mean  r

n-π

 Smaller  r
n-π 

⇒ more rescattering at lower x
L 
as in data 
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 Compare LN p/DIS: π-xch. w/ rescattering
 Ratio x

L
 dist. p/DIS:

 Qualitatively similar to D' Alesio & Pirner (dashed line):
   - neutron loss through rescattering vs x

L

Also W dependence:
 Know for  (*)p: σ∝Wα  

(W = (*)p c.m. energy)

     σ
p

, σ
DIS-p 

have different α's

 Assume same α's for p→π

  
Also: W2

π
 = (1-x

L
)W2

p

 
LN σ

p
/σ

DIS-p  
inherits

  
x

L 
dependence

   
⇒ scale rescattering factor

      by (1-x
L
)-0.13 (0.13 from different α's)

 Nice agreement with data (solid line)

 Also shown: model of Nikolaev,
   Speth and Zakharov (muliti-Pomeron exchanges)
 Similar, but weaker x

L
 dependence
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normalized
@ p

T

2 =0

 Small but clear difference:
   b(p) > b(DIS) for 0.6<x

L
<0.9

 Qualitatively consistent w/ rescattering:
    more rescat. @ small r

n-π 
 ~ large p

T

    fewer LN @ high p
T
 ⇒ larger slope

 Compare γp/DIS: LN p
T

2 distributions

 
p

T

2

 
distributions: p

T

2

 
slope differences Δb:
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 Compare: π-xch. w/ rescattering loss,
migration, other exchanges

 Work of Kaidalov, Khoze, Martin & Ryskin:

    - start with pure π-xch.

    - some n rescatter on 

    - rescattered n migrate in (x
L
,p

T
)

 p overall ~50% loss from

                           pure π-xch.

 Reasonable agreement with LN in p:

 Subsequent work of

   Khoze, Martin & Ryskin:

    - add (ρ,a
2
) exchanges (motive next slide)

 Again reasonable agreement with LN in p

p
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 Rescattering loss+migration with 

   pion exchange alone does not describe

   slopes; too high in magnitude,

   no turnover @ high x
L
, Δb ~ OK

 Addition of (ρ,a
2
) exchanges gives good

   description of both slope magnitudes

   and x
L
 dependence, Δb still OK

 Full model with multiple exchanges, rescattering best describes LN

 Compare: π-xch. w/ rescattering loss,
migration, other exchanges
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 We have seen clear effects consistent
   with rescattering going hi-Q2→lo-Q2→p
 Going from hard→soft scale 
           increase in rescattering
 Suppose in p we reintroduce a hard scale

   by requiring heavy flavor: p+D* with LN:

 Yield p+D* ~ DIS,
   clearly higher than inclusive p: 

 Hard scale (charm) in p, small photon, no clear rescattering

 Compare LN in p+D*, DIS & inclusive p
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 Suppose in p we reintroduce a hard scale
                    by requiring high E

T
 dijet: p+jj with LN:

 LN x
L
 in p+jj very different from DIS, inclusive p

  suppression @ high x
L
, not low x

L

 
Kinematics of high E

T
 dijets?

 

 Interpretation complicated by kinematics, but to 1st order:
    Hard scale (dijet) in p, small photon, no clear rescattering

   More details on extra slides, ZEUS LN+jj publication

 Compare LN in p+jj, DIS & inclusive p

 Reweight DIS distribution,
  account for dijet/DIS
  kinematic constraints
 After reweight:
 shape & normalization ~same

data → reweighted DIS
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Total LB rate in DIS
 ~ Exponential p

T

2 distributions observed in LB detector acceptance

 Extrapolate to p
T

2→∞: LB rate in exponential peak

log
scale

Integrate over x
L
:

 r
LP

(x
L
>0.32) = 0.310 ± 0.003 (stat.) ±0.008 (syst.)

 r
LN

(x
L
>0.32) = 0.159 ± 0.008 (stat.) ±0.012 (syst.)

 r
LB

(x
L
>0.32) = 0.469 ± 0.009 (stat.) ±0.014 (syst.)



30

higher p
T
?

lower x
L
?

Total LB rate in DIS
Sum for total LB rate in exponential peak: 
 r

LB
(x

L
>0.32) = 0.469 ± 0.009 (stat.) ±0.014 (syst.)

 Nearly ½ final state baryons in exp. p
T

2 peak

 Impressive that these low-acceptance detectors
  account for ~half of baryons
 Where are the rest?

higher p
T
?

Open question, address @ EIC?
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Total LB rate: HERA→EIC acceptance
 EIC will accept wider angle LN:
   Θ

max
 0.75 → 4.5 mrad

 Factor ~2 greater p
T
 range

            ~4 greater p
T

2 range

 EIC LP 3 detector systems:
   1st magnet spectrometer, off momentum detector, Roman pots
 Coverage to p

T
 ~5 GeV @ high x

L

 Vast improvement over HERA, address total LB rate

Info from Alex Jentsch, see his talk Wed. 

EIC
HERA
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 Summary

 HERA measured leading baryon x
L
, p

T
 distributions in DIS, p

 MC models with 'standard' fragmentation do not describe the data

 Models with virtual particle exchange much better

 Pure π-xch. does not fully describe LN data: slopes wrong

 Evolution hi-Q2→lo-Q2→p: evidence for rescattering of LB in large 

 More refined calculations w/ π-xch.+rescattering loss+migration:

   for LN reasonable x
L
 shape, magnitude; slopes still off

 Addition of (ρ,a
2
) exchanges: ⇒ good agreement with LN data

 Reintroduce hard scale in p: LN rescattering reduced

 Total LB rate: ~½ of baryons accounted for; more @ EIC...



Extras
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Partial bibliography
HERA data
     data on most plots in tables in papers

 ZEUS LN in DIS & p: Nucl. Phys. B 637 (2002) 3-56

 ZEUS LN in D* p: Phys. Lett. B 590 (2004) 143-160

 ZEUS LN in DIS & p: Nucl. Phys. B 776 (2007) 1-37
   data on most plots in computer readable acsii:
    https://www-zeus.desy.de/zeus_papers/ZEUS_PAPERS/DESY-07-011-table.txt

 ZEUS LP in DIS: JHEP 06 (2009) 074

 ZEUS LN in dijet p: Nucl. Phys. B 827 (2010) 1-33
   data on most plots in computer readable acsii:
    https://www-zeus.desy.de/zeus_papers/ZEUS_PAPERS/DESY-09-139-table.txt

 H1 LN in DIS: Eur.Phys.J.C68 (2010) 381

 H1 LN & forward photons in DIS: Eur.Phys.J.C74 (2014) 2915

boldface: bulk of
results shown here
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Partial bibliography
Scattering / absorption papers

Older:

 N.N. Nikolaev, J. Speth and B.G. Zakharov, hep-ph/9708290

 U. D'Alesio and H.J. Pirner,
  Eur. Phys. J. A 7, 109 (2000)

'Durham group':

 A.B. Kaidalov, V.A. Khoze, A.D. Martin and M.G. Ryskin,
    Eur. Phys. J. C 47, 385 (2006)

 V.A. Khoze, A.D. Martin and M.G. Ryskin, 
    Eur.Phys.J.C 48, 797 (2006)
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 We have seen effects consistent
   with rescattering going hi-Q2→lo-Q2→p
 Going from hard→soft scale increase in rescattering
 Suppose in p we reintroduce a hard scale

   by requiring high E
T
 dijets:

 Still signs of rescattering?
 Or eliminated by high E

T
 scale?

 LN in p+jj results...

 Compare LN in p+jj & DIS

jet E
T
>7.5

jet E
T
>6.5
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 The p
T

2 dist. in p+jj again

   exponentials w/  slope b:

 Compare LN in p+jj & DIS : p
T

2 & x
L
 dist.

 Still ~same as DIS:
   ⇒ same production mechanism
 Statistics limit further conclusions

 But the x
L
 dist. strikingly different!

 Opposite trend in 
    hi-Q2→lo-Q2→p w/o jet requir.
 There suppression @ low x

L

 Here suppression @ high x
L

 Kinematic suppression?
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 Compare LN in p+jj & DIS : x
L
 dist.

Compare to RAPGAP MC with:
 π-xch. and full event kinematics
 NO rescattering

 RAPGAP DIS normalization high
 But shapes are described:

            dijets suppressed @ hi x
L

 Normalize each MC set to data
 Take ratio of x

L
 distributions:

RAPGAP with π-xch., full event
kinematics describes different
shapes x

L
 distributions

 ratio p+jj/DIS
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 The requirement of high-E
T
 dijets

   exacts a price on the phase space
   available for LB production, seen in MC

Can also investigate w/ data alone:
 We can quantify kinematics w/ energy

   measurement in the central detector:
    X

BP
 = E + P

z

          = fraction p-energy available
             for LB down beam-pipe (BP)
   → kinematic constraint: x

L
<X

BP

      
 Very different for distributions DIS & p+jj:

   - DIS typically >80% p-energy available
   - in p+jj much less available

 Now consider LN x
L
 distributions in X

BP
 bins ➘

 LN in p+jj & DIS : kinematic constraints
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 In bins of X
BP

 the x
L
 dist.

  for p+jj, DIS are ~same
  both normalization, shape

 Universality: for a given X
BP

,

   LN x
L
 dist. is same regardless

   of process (at least p+jj vs. DIS)

 So different overall x
L
 dist.

   for p+jj vs. DIS explained
   by different event kinematics
   (as seen with MC)

 LN in p+jj & DIS : x
L
 in X

BP
 bins
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 In X
BP

 bins: bin-by-bin reweight DIS x
L
 distribution

                    by ratio X
BP

 distributions p+jj / DIS, sum x
L
 distributions

 LN in p+jj & DIS : x
L
 in X

BP
 bins

data → reweighted DIS

 Accounting for kinematic constraints: shape & normalization ~same
 No clear sign of suppression in p with high E

T
 jet scale

EPS07 contribution: https://zeusdp.desy.de/physics/diff/pub/eps07/lnjj.ps
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 Large suppression @ low x
L
 seen

   in inclusive p w/o jet requirement,
   consistent with rescattering,
   is not seen in p+jj

 Conclusion (tentative):
   introducing a hard scale via
   high jet E

T
 reduces/removes

   rescattering effects

 But complications of event kinematics
  prevents a firm conclusion

 Needed: input from theoretical community...

 LN x
L
 in p, p+jj & DIS :
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