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where the relationships between xN, zN and xBj, zh are Eq. (46) and Eq. (1). After Sec. V, we will assume that the
above approximations apply so that zN, xN and zh,xBj may be used interchangeably. In cases where mass corrections
matter, the exact relations above between qT and qH,T, between zN and zh, and between xBj and xN should be used
instead. Note that the mass corrections have terms proportional to powers of xBjm/(zhQ). Therefore, approximations
like Eq. (57) are only valid if xBj/zh is fixed and not too large.

Note that results like Eq. (57), obtained above for the Breit frame, extend to any photon frame since transverse
momenta and light-cone momentum fractions are boost invariant.

JCC uses the photon and hadron reference frames of the previous subsection, but in the limit that hadron masses
are neglected. Also, the photon frame expressions are written for a general photon frame rather than the Breit frame.
Any photon frame expressions are easily obtained by boosting from the Breit frame.

There are two reference frames used by MOS [? ], the MOS hadron frame and the HERA frame above. The MOS
hadron frame of [? ] is the Breit frame. In the MOS conventions, all hadron masses are neglected, so xN ⇡ xBj and
zN ⇡ zh.

Note: The JCC hadron frame has zero transverse momentum for the produced hadron and non-zero
transverse momentum for the virtual photon, which is opposite the situation in the MOS hadron frame.
The MOS hadron frame corresponds to the JCC photon frame.

MOS define a Lorentz invariant four-vector ([? , Eq. (10)]) that measures the deviation from the back-to-back
configuration. From [? , Eq. (11)] and [? , Eq. (13.104)], the JCC hadron frame q

2
H,T is the same as the MOS q

2
H,T

(assuming massless hadrons).
Restricting to the MOS hadron frame, MOS use [? , Eq. (11)] and [? , Eq. (13)] and P

2
B = 0 to find [? , Eq. (12)],

which in light-cone coordinates is Eq. (37) with M
2
B = 0 and with the MOS qT defined to point along the positive x

direction. In the MOS hadron frame, the transverse part of PB is always in the x direction and is always positive.
Mulders and Tangerman [? , Eqs. (15-17)] give general expressions for four vector components that include the

e↵ects of hadron masses. The reference frames essentially correspond to JCC hadron and/or photon frames. References
such as [? ? ? ] specialize the photon frame to the target rest frame rather than the Breit frame. PB,b,T is invariant,
however, with respect to boosts along the z axis.

IV. CROSS SECTIONS AND STRUCTURE FUNCTIONS

JCC ’s normalization convention for Lµ⌫ and Wµ⌫ [? , Eq. (2.15)] for totally inclusive DIS is

E
0 d�
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2↵2
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tot (61)

where the leptonic tensor is defined as,
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0
⌫ + l

0
µl⌫ � gµ⌫ l · l

0). (62)

MOS [? , Eq. (36)] use a leptonic tensor that di↵ers from JCC by a factor of 1/(2⇡↵em):

L
JCC
µ⌫ =

1

2⇡↵em
L
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µ⌫ (63)

The convention in Eq. (62) appears to match most other authors. MOS write a general Lµ⌫ that includes all electroweak
couplings. In this section we will focus attention on the photon.

The inclusive hadronic tensor following JCC ’s normalization conventions [? , Eq. (2.18)] is
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With this definition for W
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2
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Note that this is di↵erential in exactly xBj, not xN.
There are several common normalization conventions when generalizing the hadronic tensor to the SIDIS case,

which mostly just di↵er by factors of M , 1/2, etc:
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Questions

• Factorization is based on mass/Q expansion. 

• Different factorization theorems for different regions of 
x,z,Q,PT, etc.

• What are the boundaries to different regions in reality?
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What is the relevant description?
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Large and Small Transverse Momentum
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FIG. 3. Momentum labeling in the partonic subprocess.
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FIG. 4. .

and there is at least one particle kf That hadronizes. The kX momentum labels the total momentum of all other
unobserved partons. We are interested in the kinematics of the ki + q ! kf + kX subprocess and how it matches the
overall P + q ! PB+X subprocess under very general assumptions. Specific realizations of the subprocess are shown
in Fig. 4. As far as the partonic subprocess is concerned, it is only the relative transverse momentum of ki and kf

that matters. So, without loss of generality, we may analyze the subprocess in the Breit frame of the target parton ki

and write

k
b

i
=

✓
Q

x̂N

p
2
,
x̂Nk

2

ip
2Q

,0T

◆
, k

b

f
=

 
k2

f,b,T + k
2

fp
2ẑNQ

,
ẑNQp

2
,kf,b,T

!
. (67)

The b superscript indicates the partonic Breit frame. We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (68)

In the hadron frame, Eq. (31) gives

kf,H,T = �kT + Power Suppressed , (69)

so �kT is good for characterizing an intrinsic relative transverse momentum; in Eq. (67) intrinsic transverse momentum
is �kT when qT = 0. When �kT = 0, the partons are, up to power suppressed corrections, exactly aligned with the

PB
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g(x1) = b g(x0) = b+ a(x0 � x1) (617)

g(x1) = f(x1) = f1 , g(x0) = f(x0) = f0 g(x2) = 0 (618)

x2 = x1 �
x1 � x0

f1 � f0
f1 (619)

Q (GeV) qT = 0, z = .25 qT = 2GeV, z = .25 xBj W (620)

W 2

SIDIS
= (P + q � PK)

2
(621)

xN/xBj zN/z (622)

R1 ⌘ PB · kf
PB · ki

m
2
/Q

2!0

= e��y
(623)

z = .25, ⇣,= .3, ⇠ = .2, m = m⇡ (624)

qT = 0.3 GeV qT = 2.0 GeV (625)

k = kf � q (626)
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The 2 ! 1 partonic kinematics only apply if k
2
/Q

2 ⇡ 0, so define one more ratio

Transverse Hardness Ratio = R2 ⌘ |k2|
Q2

. (91)

R2 is small for 2 ! 1 partonic kinematics. From Eq. (78),

R2 =

�����(1 � ẑN) � ẑN

q
2

T

Q2
� (1 � ẑN)k2

f

Q2ẑN

� �k2

T

ẑNQ2
+

2qT · �kT

Q2

���� ⇡ (1 � ẑ) + ẑ
q
2

T

Q2
. (92)

Note that this suggests qT from Eq. (29) as the most useful transverse momentum for quantifying transverse momentum
hardness relative to Q; if q

2

T
/Q

2 ⇠ 1, then R2 ⇠ 1 for both large and small ẑ while if q
2

T
/Q

2 ⌧ 1 and ⇠ ⇠ zN (as in
the current fragmentation region with TMDs) then R2 ⌧ 1.

If the SIDIS region corresponds to 2 ! 2 hard partonic kinematics, then R2 must be large (⇠ 1). However, then the
ratio k

2

X
/Q

2 must be small since there is only one unobserved parton, and its invariant mass must be small relative
to hard scales to qualify as a single massless parton. So define one more ratio,

R3 ⌘ |k2

X
|

Q2
. (93)

Large R2, but small R3, corresponds to 2 ! 2 parton kinematics. Large R2 and large R3 corresponds to partonic
scattering with three or more final state partons, such as Fig. 4(c).

To see that the size of Eq. (92) reflects the importance of transverse momentum, note that Feynman graphs
corresponding to the inside of the box in Fig. 4 contain propagator denominators of the form:

1

k2 + O (m2)
,

1

k2 + O (Q2)
. (94)

where the denominators with O
�
Q

2
�

are corrections to the virtual photon vertex or propagators from the emission of
wide-angle kX partons. Note also that k ·q ⇠ q ·p = O

�
Q

2
�
. The approximations that can made on these denominators

are representative of the approximations needed in derivations of factorization. If |k2| ⇠ Q
2, the O

�
m

2
�

terms in
the denominators are negligible so that the region in the box can be calculated in perturbative QCD using both Q

2

and k
2 as equally good hard scales. In this case, Fig. 4(b) becomes the relevant picture. However, if |k2| ⌧ Q

2, the
O

�
m

2
�

terms in the first of the denominators in Eq. (94) must be kept. Then, a |k2|/Q
2 ⌧ 1 approximation in the

second denominator can be used, and it is this type of approximation that leads to TMD factorization. This is the
handbag topology in Fig. 4(a). Note that the k line has become the target parton. Using Eq. (78) and Eq. (83) for
k

2 immediately gives Eq. (92).
The lowest order (O (↵s)) contribution to large transverse momentum is the partonic process is 2 ! 2 process.

Again, all partons are massless and on-shell, and the picture is Fig. 4(b). Since there is only one unobserved massless
parton in this region, it correspond to k

2

X = 0. To see that it is the ratio in Eq. (93) that must be small in this region,
consider how the size of k

2

X a↵ects the denominators in Eq. (94) at fixed ẑ, x̂, large qT, and Q
2 by expressing |k2

/Q
2|

in terms of k
2

X instead of ẑ:
����
k

2

Q2

���� =
1

1 � x̂ + x̂q2

T
/Q2


q
2

T

Q2
+ x̂

k
2

X

Q2

✓
1 � q

2

T

Q2

◆�
(95)

To get a simple form, we have already assumed here that k
2

i
and k

2

f
are negligible. In propagators, therefore, the size

of k
2 is independent of k

2

X at large k
2

T
if k

2

X/Q
2 ⌧ 1 and x̂ is not too close to 1. Otherwise, if Eq. (93) becomes large,

the 2 ! 3 or greater cases are likely the more applicable partonic subprocesses. In pQCD this means that O
�
↵

2

s

�
or

higher calculations are needed.
Di↵erent combinations of sizes for the above ratios correspond to other regions. For example, the target fragmen-

tation region corresponds to small R0, small R2, but large R1.
All of the above approximations are intertwined in potentially complicated ways, especially when Q is not especially

large and mass e↵ects may be non-negligible. This can make even crude, order-of-magnitude estimates of their e↵ects
nontrivial, although the influence of model assumptions should diminish rapidly at large Q.

A choice concerning the acceptable ranges of R0, R1, R2, and R3 translates into a choice about the range of possible
reasonable values for all the components of ki and kf . In practice, this might be more conveniently stated in reverse.
That is, one starts with general expectations regarding the sizes of the partonic components of ki and kf based on
models and/or theoretical considerations. The question then becomes whether the resulting R0, R1, R2, and R3 are
consistent with a particular region of partonic kinematics (hard, current region, large transverse momentum, etc).
Our aim is not to address any particular theoretical framework for estimating intrinsic properties of partons, or to
estimate exactly acceptable ranges for the above ratios, but only to demonstrate how, once these choices are made,
they fix the relationship between external kinematics and the region of partonic kinematics.
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the curves in Fig. 3 are reproduced.) The data are from
recent COMPASS measurements for charged hadron pro-
duction [30]. Neither leading order nor next-to-leading
order calculations give reasonable agreement with the
measurements, even for moderate x, z, and qT > Q, as
both systematically undershoot the data, most significantly
at the more moderate values of x close to the valence region.
At smaller x, the disagreement lessens, as might be expected
given the trend in Fig. 3. To highlight the valence region
(x ≥ 0.1) at the larger values ofQ, we have plotted the ratio
between data and theory in Fig. 5 for three particular
kinematic bins from Fig. 4. Even including the Oðα2sÞ
correction, the deviation is typically well above a factor of 2,
even for qT significantly larger than Q. In this context, it is
also worth considering Fig. 8 of Ref. [25], which is for
kinematics similar to those in Fig. 3 but for charged hadrons
measured at ZEUS [31]. The next-to-leading order K factor
is ≳1.5 for large transverse momentum. At least one other
set of SIDIS data at somewhat different kinematics exhibits
the same trend. This is the set of HERMESmeasurements of
πþ multiplicities [32] shown in Fig. 6. Note that the
kinematics very much correspond to the valence region
for the target. Figure 7 shows that the failure to match the
data is even more pronounced than in the COMPASS case.
Even for Q > 3 GeV and qT > Q, the difference is nearly
an order of magnitude.

IV. DISCUSSION

We have argued that there is tension between existing
fixed order pQCD calculations and at least two sets of large
transverse momentum measurements where those calcu-
lations should be reasonably accurate and that this disagree-
ment is too large to be attributable to qT being too small.
Thus, it appears to us to be a genuine mystery that needs

attention, especially for TMD phenomenology. The TMD
formalism relies on approximations that apply only in the
qT=Q → 0 limit, so it is critical to have an alternative
approach to describe the transition to very large transverse
momentum. If standard fixed order collinear pQCD is not
adequate for this, then something new is needed.
It is worth pointing out that one encounters similar

problems in Drell-Yan scattering, where a lowest order
calculation with current PDF sets is easily found to
undershoot the lowest available Q data by very large
factors. It is less clear how to interpret the disagreement
here, however, since most of the existing data for lower Q
regions are close to the threshold region and including
threshold resummation introduces extra subtleties.
The observations of this article have focused on unpo-

larized cross sections, but the implications extend to spin
and azimuthally dependent cross sections, since the key
issue is the relevance of different types of transverse
momentum dependence.
There are a number of possible resolutions that deserve

further investigation. An interesting one is that the hadroni-
zation mechanism is different in high-transverse-momentum
SIDIS from the usual picture in terms of universal FFs.
Models used in Monte Carlo event generators might be a
source of ideas regarding this possibility. In the context of this
possibility, it is noteworthy that much of the data for SIDIS
transverse momentum dependence is describable in a
Gaussian model of TMDs [35,36]. In pQCD, there are also
arguments that certain higher twist correlation functions
actually dominate over leading twist functions. In this picture,
the qq̄ pair that ultimately forms the final state is directly
involved in the hard part [32,37].
It is possible that threshold effects are important [38,39].

If that is the case, then there are serious implications for
TMD studies, because additional nonperturbative effects

FIG. 6. Calculation analogous to Fig. 4 but for πþ production measurements from Ref. [32].
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How low in Q?
“What is the MINIMUM value of Q (in GeV) for which 
collinear QCD factorization applies to inclusive DIS?”
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A large set of cross sections for semi-inclusive electroproduction of charged pions (π±) from both
proton and deuteron targets was measured. The data are in the deep-inelastic scattering region
with invariant mass squared W 2 > 4 GeV2 (up to ≈ 7 GeV2) and range in four-momentum transfer
squared 2 < Q2 < 4 (GeV/c)2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The
fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect
to the virtual-photon direction, P 2

t < 0.2 (GeV/c)2. The invariant mass that goes undetected, Mx

or W ′, is in the nucleon resonance region, W ′ < 2 GeV. The new data conclusively show the onset
of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy
factorization ansatz of electron-quark scattering and subsequent quark → pion production mecha-
nisms. The x, z and P 2

t dependences of several ratios (the ratios of favored-unfavored fragmentation
functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π+ and π−)
have been studied. The ratios are found to be in good agreement with expectations based upon a
high-energy quark-parton model description. We find the azimuthal dependences to be small, as
compared to exclusive pion electroproduction, and consistent with theoretical expectations based on
tree-level factorization in terms of transverse-momentum-dependent parton distribution and frag-
mentation functions. In the context of a simple model, the initial transverse momenta of d quarks
are found to be slightly smaller than for u quarks, while the transverse momentum width of the
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found the background originating from π0 production
and its subsequent decay into two photons and then
electron-positron pairs, or e+e−γ directly, negligible. In
addition, a small ∼ 2% correction was made to the deu-
terium data to account for a small Final-State Interaction
effect of the pions traversing the deuterium nucleus [88].

B. Model Cross Section and Monte Carlo
Simulations

We added the possibility of semi-inclusive pion electro-
production to the general Hall C Monte Carlo package
SIMC [89], using Eq. (1). The CTEQ5 next-to-leading-
order (NLO) parton distribution functions were used to
parametrize qi(x,Q2) [90], and the fragmentation func-
tion parameterization for D+

qi→π(z,Q
2) +D−

qi→π(z,Q
2),

with D+ (D−) the favored (unfavored) fragmentation
function, from Binnewies et al. [18]. The remaining un-
knowns are the ratio of D−/D+, the slope b of the Pt

dependence, and the parameters A and B describing the
φ dependence. Both the D−/D+ ratio [91] and the b-
value [92] are taken from HERMES analysis. The latter
is chosen for consistency with the comparisons shown in
our earlier publication [13], but closely coincides with the
averaged value for all data. We will study the detailed
Pt-dependence of our data later on in Section VIIF.
When analyzing our data as a function of Pt, we found

that the Q2-dependence of the cross sections needed to
be altered slightly from the factorized high-energy expec-
tation [93] to obtain a smooth Pt dependence. This is not
too surprising, as the (low) energies of our semi-inclusive
pion production measurements are beyond the region
where the BKK fragmentation functions were shown to
describe existing data. Hence, we introduced an addi-
tional Q2-dependent multiplicative term in the model
cross section in the form

F (Q2) = 1 + C1 · ln(Q2) +
C2

Q2
+

C3

Q4
. (14)

The parameters C1, C2 and C3 were adjusted in such a
way that the calculated yields from the SIMC simula-
tion match the experimental data. To accomplish this,
the ratio of experimental and SIMC yields were calcu-
lated in a number of Q2 bins, and the model cross sec-
tion was iterated until the ratios approach unity. A vari-
ety of fits, with different combinations of data included,
more complicated fit functions (including φ-dependent
terms with additional binning in φ and Pt) rendered
parameters Ci that remained reasonably stable, within
±10− 20%. As average “best values” for the fit parame-
ters, we adopted C1 = 0.889, C2 = -2.902 and C3 =3.050.
Recall that for most of the cross section results (at Pt ≈
0.05 GeV/c) we neglected the φ-dependence and kept the
parameters A and B at 0, in accordance with both theo-
retical expectations (discussed in subsection III B ), and
our own findings (see subsection VIIA ).

TABLE X: Corrections and systematic uncertainties.

Source of correction Range (%) Systematics (%)
Detector inefficiencies 5-10 1-2

Target wall contribution 2-3 1.0
Accidentals 10-20 1-2

Pion absorption 1-2 1.0
Pion decay 2-10 1.0

Kaon contamination 0.2-2.0 0.5 (z < 0.7)
Radiative corrections 5-10 1-2

Exclusive tail 5-15 0.5-2.5 (z < 0.8)
Pions from diffractive ρ 5-15 0.5-2.5
Computer Dead Time 5-25 0.2
Coincidence blocking 1-4.5 0.1

Čerenkov detector blocking 2-4 ≤1
Other corrections 1-2 1.0

Total 15-40 3.5-7.5

VI. SYSTEMATIC UNCERTAINTIES

As part of the analysis, several systematic studies were
performed on the data to verify that the measured cross
sections and ratios are not biased by the detector, event
selection and background correction effects. The level of
corrections applied to the experimental data and related
systematic uncertainties are listed in Table X.
For absolute cross sections we have added all system-

atic uncertainties in quadrature. Note, that in practice
the range of applied corrections and related systematic
errors are slightly different for π+ and π−. For exam-
ple, the Čerenkov blocking is clearly far larger for π−.
Part of the corrections (such as radiative, pion decay, de-
tector inefficiencies) are nearly identical for π+ and π−

and cancel in the ratios, hence related systematic uncer-
tainties are much smaller for the ratios. Below we will
discuss the most dominant sources of systematic uncer-
tainties related with pions from the radiative tail from
exclusive pion electroproduction and pions from the de-
cay of diffractive ρo mesons.

A. Uncertainties related to the exclusive pion tail

The model used in SIMC for exclusive pion electropro-
duction mainly focused on parallel kinematics (with the
outgoing pion along the direction of the virtual photon)
for the purpose of understanding the z-scan data. To
estimate the possible systematic error that arose from
ignoring the LT and TT interference terms, and to test
the absolute magnitude of the correction, we extracted
simulated yields for the exclusive radiative tail calculated
using our nominal, empirical parameterization as well as
the MAID model.
Figures 5, 6 and 7 show the results of these simula-

tions (MAID = red circles, SIMC= blue squares). The
yields from each model [top panel] as well as the ratio
between the two [bottom panel] are plotted versus θpq.
While the two calculations differ in the absolute mag-



Conclusion

• The question of the where the between different factorization-
based and partonic pictures apply is an open (empirical) 
question.

• The question can nevertheless be systematized… 


