Regions of DIS and SemiInclusive DIS

Jefferson Lab/Old Dominion University

SIDIS

Variables and Observables

$$
\begin{aligned}
& E^{\prime} \frac{\mathrm{d} \sigma}{\mathrm{~d}^{3} \mathbf{l}^{\prime}}=\frac{2 \alpha_{\mathrm{em}}^{2}}{\left(s-M^{2}\right) Q^{4}} L_{\mu \nu} W_{\mathrm{tot}}^{\mu \nu} \quad \frac{\mathrm{d} \sigma}{\mathrm{~d} x_{\mathrm{Bj}} \mathrm{~d} y \mathrm{~d} \psi}=\frac{\alpha_{\mathrm{em}}^{2} y}{Q^{4}} L_{\mu \nu} W_{\mathrm{tot}}^{\mu \nu} \\
& W_{\mathrm{tot}}^{\mu \nu}(P, q) \equiv 4 \pi^{3} \sum_{X} \delta^{(4)}\left(P+q-P_{X}\right)\langle P, S| j^{\mu}(0)|X\rangle\langle X| j^{\nu}(0)|P, S\rangle
\end{aligned}
$$

$$
\begin{gathered}
4 P_{\mathrm{B}}^{0} E^{\prime} \frac{\mathrm{d} \sigma}{\mathrm{~d}^{3} \mathrm{I}^{\prime} \mathrm{d}^{3} \mathbf{P}_{\mathrm{B}}}=\frac{2 \alpha_{\mathrm{em}}^{2}}{\left(s-M^{2}\right) Q^{4}} L_{\mu \nu} W_{\mathrm{SIDIS}}^{\mu \nu} \quad \frac{\mathrm{d} \sigma}{\mathrm{~d} x_{\mathrm{Bj}} \mathrm{~d} y \mathrm{~d} \psi \mathrm{~d} z_{\mathrm{N}} \mathrm{~d}^{2} \boldsymbol{P}_{\mathrm{B}, \mathrm{~T}}}=\frac{\alpha_{\mathrm{em}}^{2} y}{4 Q^{4} z_{\mathrm{N}}} L_{\mu \nu} W_{\mathrm{SIDIS}}^{\mu \nu} \\
W_{\mathrm{SIDIS}}^{\mu \nu}\left(P, q, P_{\mathrm{B}}\right) \equiv \sum_{X} \delta^{(4)}\left(P+q-P_{\mathrm{B}}-P_{X}\right)\langle P, S| j^{\mu}(0)\left|P_{\mathrm{B}}, X\right\rangle\left\langle P_{\mathrm{B}}, X\right| j^{\nu}(0)|P, S\rangle \\
\sum_{B} \int \frac{\mathrm{~d}^{2} \boldsymbol{P}_{\mathrm{B}, \mathrm{~T}} \mathrm{~d} z_{\mathrm{N}}}{4 z_{\mathrm{N}}} W_{\mathrm{SIDIS}}^{\mu \nu}=\langle N\rangle W_{\text {tot }}^{\mu \nu}
\end{gathered}
$$

Questions

- Factorization is based on mass/Q expansion.
- Different factorization theorems for different regions of x, z, Q, P_{T}, etc.
- What are the boundaries to different regions in reality?

What is the relevant description?

Subregions

Large and Small Transverse Momentum

SIDIS

- NLO study near the valence region. BiaTMD/build/htm/index.ht
B. Wang, J. O. Gonzalez-Hernandez, TR, N. Sato Phys. Rev. D 99, 094029

$$
\begin{aligned}
& \$<z>=0.1 \\
& \$<z>=0.2 \\
& \$<z>=0.3 \\
& \$<z>=0.5 \\
& \$<z>=0.9
\end{aligned}
$$

Solid = NLO Dotted = LO

$q_{\mathrm{T}}>Q$

Bands =
variation of RG
scale

Kinematics And Masses

- Final state momentum fraction

$$
\begin{aligned}
& x_{N}=-\frac{q^{+}}{P^{+}}=\frac{2 x_{B j}}{1+\sqrt{1+\frac{4 r_{2}^{2} M^{2}}{q^{2}}}} \\
& z_{\mathrm{N}}=\frac{P_{\mathrm{B}}^{-}}{q^{-}}
\end{aligned}
$$

$$
\begin{aligned}
z_{\mathrm{N}} & =\frac{x_{\mathrm{N}} z_{\mathrm{h}}}{2 x_{\mathrm{Bj}}}\left(1+\sqrt{1-\frac{4 M^{2} M_{\mathrm{B}, \mathrm{~T}}^{2} x_{\mathrm{Bj}}^{2}}{Q^{4} z_{\mathrm{h}}^{2}}}\right) \\
& =z_{\mathrm{h}}\left(1-\frac{x_{\mathrm{Bj}}^{2} M^{2}}{Q^{2}}\left(1+\frac{P_{\mathrm{B}, \mathrm{~T}}^{2}}{z_{\mathrm{h}}^{2} Q^{2}}\right)+\left(\frac{x_{\mathrm{Bj}}^{2} M^{2}}{Q^{2}}\right)^{2}\left(\frac{P_{\mathrm{B}, \mathrm{~T}}^{2}}{z_{\mathrm{h}}^{2} Q^{2}}-\frac{P_{\mathrm{B}, \mathrm{~T}}^{4}}{z_{\mathrm{h}}^{4} Q^{4}}+2-\frac{M_{\mathrm{B}}^{2}}{z_{\mathrm{h}}^{2} M^{2} x_{\mathrm{Bj}}^{2}}\right)+O\left(\left(\frac{x_{\mathrm{Bj}}^{2} M^{2}}{Q^{2}}\right)^{3}\right)\right)
\end{aligned}
$$

How low in Q?

How low in Q?

FIG. 10: (Color online) The ${ }^{1,2} \mathrm{H}\left(\mathrm{e}, \mathrm{e}^{\prime} \pi^{ \pm}\right) \mathrm{X}$ cross sections at fixed values of $x=0.40$ and $z=0.55$, as a function of Q^{2}. The solid curves are the simple quark-parton model calculations following a high-energy factorized description. Solid symbols are data after events from diffractive ρ production are subtracted (see text).

$$
P_{t}^{2}<0.2(\mathrm{GeV} / c)^{2}
$$

Conclusion

- The question of the where the between different factorizationbased and partonic pictures apply is an open (empirical) question.
- The question can nevertheless be systematized...

