Far-Forward Detectors in the EIC

EIC CFNS Target Fragmentation Workshop

+ Sept. $28^{\text {th }}-30^{\text {th }}, 2020$
Alex Jentsch (BNL)
Co-Convener for YR FF Subgroup
Electron lon Collider

Layout of Full IR

FF region

- $\sim 9 \mathrm{~m}$ around the IP is reserved for the central detector
- But the far forward and far backward detector components are distributed along the beam line within $\pm 35 \mathrm{~m}$
- FF detectors constrained by machine design.

Layout of Far-Forward Region

$$
x_{L}=\frac{p_{z, \text { nucleon }}}{p_{z, \text { beam }}}
$$

| Detector | Detector Position (x, z) |
| :---: | :---: | :---: |
| ZDC | $(0.96 \mathrm{~m}, 37.5 \mathrm{~m})$ |

Angular	
Acceptance	Notes
$\boldsymbol{\theta}<5.5 \mathrm{mrad}$	About 4.0 mrad at φ^{\sim}
$.0^{*}<\boldsymbol{\theta}<5.0 \mathrm{mrad}$	$0.65<\mathrm{x}_{\mathrm{L}}<1.0$ 10σ cut

Off-Momentum Detectors	$(0.8,22.5 m) \&(0.85 m, 24.5 m)$	$0.0<\boldsymbol{\theta}<5.0 \mathrm{mrad}$	Roughly 0.4 < $\mathrm{X}_{\mathrm{L}}<0.6$
BO Sensors (4 layers, evenly spaced)	$x=0.19 \mathrm{~m}, 5.4 \mathrm{~m}<\mathrm{z}<6.4 \mathrm{~m}$	$5.5<\boldsymbol{\theta}<20.0$ mrad	Could change a bit depending on pipe and electron quad.

Roman pots

 (inside pipe)Off-Momentum
Detectors

Q2pf quadrupole
Q1bpf quadrupole
Q1apf quadrupole BOapf dipole

Hadron beam coming from IP
 BOpf dipole

BO Silicon
Detector

What has been studied so far?

- e+p DVCS events with proton tagging.
- e+d exclusive J/Psi events with proton or neutron tagging.
- e+Au events with neutron tagging to veto breakup and photon acceptance.
- Meson structure with neutron tagging $\left(e p \rightarrow(\pi) \rightarrow e^{\prime} n X\right)$.
- Currently in progress
- e+He3 with spectator proton tagging
- Meson structure with Lambda decays ($\Lambda \rightarrow \mathrm{p} \pi{ }^{-}$and $\Lambda \rightarrow \mathrm{n} \pi^{0}$)
- e+He4 coherent He4 tagging.

Aside: B0 Detector

BO detector

- Acts as a conventional spectrometer - allowing for tracking of charged particles in a dipole field.
- Can also be used for photon detection with pre-shower.
- 1.2 meters of total available longitudinal space - potential space for both a silicon tracker and EMCAL.
- Detects particles that are scattered with high enough angle to leave the beam pipe.
- Limitations include beam pipe size and spatial asymmetry.

Aside: Roman Pots

$$
\sigma(z)=\sqrt{\varepsilon \cdot \beta(z))}
$$

- $\beta(z)$ is the RMS transverse beam size.
- $\sigma(z)$ is the Gaussian width of the beam, ε is the emittance.
- General rule of thumb is to keep Roman Pot sensors at $\sim 10 \sigma$ distance from beam to limit exposure.
- $275 \mathrm{GeV}-1 \sigma=1.79 \mathrm{~mm}(\mathrm{HA}) / 3.58 \mathrm{~mm}$ (HD)
- $100 \mathrm{GeV}-1 \sigma=2.45 \mathrm{~mm}(\mathrm{HA}) / 5.13 \mathrm{~mm}$ (HD)
- $41 \mathrm{GeV}-1 \sigma=6.14 \mathrm{~mm}$
10σ cut places a limit on low- p_{T} acceptance.

Aside: Off-Momentum Detectors

- Needed for measuring protons from nuclear breakup.
- Another set of sensors on the other side can be used to detect negative pions from lambda decay.

- No low- p_{T} cutoff - sensors are outside the beam pipe.
- Very off-momentum particles can be lost in the quads.

Zero－Degree Calorimeter（ZDC）

－For detecting neutral forward－going particles（neutrons and photons）
－Acceptance limited by bore of magnet where the neutron／photon cone has to exit．

Geometric Acceptances

Neutrons:

- Assume uniform acceptance for $0<\theta<4.5 \mathrm{mrad}$
- Limited by bore of magnet where the neutron cone has to exit.
- Up to 5.5 mrad on one side of the aperture.
- Resolutions (ZDC)
- Assume an overall energy resolution of $\sigma_{-} E / E=(50 \%) / \sqrt{ } E \oplus 5 \%$
- Assume angular resolution of $\sigma_{-} \theta=(3 \mathrm{mrad}) / \sqrt{ } \mathrm{E}$

Geometric Acceptances

Neutrons:

- Assume uniform acceptance for $0<\theta<4.5 \mathrm{mrad}$
- Limited by bore of magnet where the neutron cone has to exit.
- Up to 5.5 mrad on one side of the aperture.
- Resolutions (ZDC)
- Assume an overall energy resolution of $\sigma_{-} E / E=(50 \%) / \sqrt{ } E \oplus 5 \%$
- Assume angular resolution of $\sigma_{-} \theta=(3 \mathrm{mrad}) / \sqrt{ } \mathrm{E}$

Protons:

- Assume uniform acceptance for $6<\theta<13$ mrad (20mrad on the other side) - "B0 spectrometer"

Neutrons:

- Assume uniform acceptance for $0<\theta<4.5 \mathrm{mrad}$
- Limited by bore of magnet where the neutron cone has to exit.
- Up to 5.5 mrad on one side of the aperture.
- Resolutions (ZDC)
- Assume an overall energy resolution of $\sigma_{-} E / E=(50 \%) / \sqrt{ } E \oplus 5 \%$
- Assume angular resolution of $\sigma_{-} \theta=(3 \mathrm{mrad}) / \sqrt{ } \mathrm{E}$

Protons:

- Assume uniform acceptance for $6<\theta<13$ mrad (20mrad on the other side) - "B0 spectrometer"
- For protons with p_z/(beam momentum) > 0.6 - "Roman pots"
- 275 GeV : Assume uniform acceptance for $0.5<\theta<5.0 \mathrm{mrad}$
- 100 GeV : Assume uniform acceptance for $0.2<\theta<5.0 \mathrm{mrad}$
- 41 GeV : Assume uniform acceptance for $1.0<\theta<4.5 \mathrm{mrad}$
- For protons with $0.25<p _z /($ beam momentum) <0.6 - "Off-momentum Detectors"
- Assume uniform acceptance for $0.0<\theta<2.0 \mathrm{mrad}$
- for $2.0<\theta<5.0$ mrad, only accepted for $|\varphi|>1$ radian
- Resolutions (silicon reconstruction with transfer matrix or conventional tracking).
- $\mathrm{pt} \sim 3 \%$ for $\mathrm{pt}>550 \mathrm{MeV} / \mathrm{c}, \mathrm{p} \sim 0.5 \%$

Resolution: Smearing Contributions

- Angular divergence
- Angular "spread" of the beam away from the central trajectory.
- Gives some small initial transverse momentum to the beam particles.
- Crab cavity rotation
- Can perform rotations of the beam bunches in 2D.
- Used to account for the luminosity drop due to the crossing angle allows for head-on collisions to still take place.
- Detector Choices

- Pixel size, transfer matrix, etc.

These effects introduce smearing in our momentum reconstruction.

DVCS Snapshot - 275 GeV

- 275 GeV DVCS Proton Acceptance
- Relevant detectors: Roman Pots and B0

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$-> lower lumi., smaller beam at RP

DVCS Snapshot - 275 GeV

- Reconstruction includes all smearing effects.
- Bin migration present, but the slope can still be accurately extracted.

$e+d->p+n+j / P s i$
 x_y_image_RP_Ext
 x_y_image_B0

MC_Proton_Phi

MC_Proton_Theta

Neutron spectator/leading proton case.

Good timing is assumed here (i.e. vertex smearing removed). If this contribution was not removed, the slope would be distorted.

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

$18 \times 110 \mathrm{GeV}$

t-reconstruction using double-tagging (both proton and neutron). Takes advantage of combined BO + off-momentum detector coverage.
$e+d->p+n+j / P s i$

MC_proton_p

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

$18 \times 110 \mathrm{GeV}$

MC_Proton_Theta

Proton spectator case.

Some examples of observables (light-cone momentum fraction, $\alpha)$, and missing-momentum (p_{m}).

$\mathrm{e}+{ }^{3} \mathrm{He}$ spectator proton tagging

- Acceptance looks good for double tagging the protons.
- More detailed study underway.
- Top row: $10 \times 110 \mathrm{GeV} / \mathrm{n}$ BeAGLE DIS
- Bottom row: $10 \times 110 \mathrm{GeV} / \mathrm{n}$ SRC

e+Pb Collisions in BeAGLE

Survived event count

Total events Cut1 Cut2 Cut3 Cut4 Cut5

1000000 132127 66101

66099 61487 55792

The impact of the different detectors is studied by adding one requirement / cut after the other. Cut1:
$>$ no neutron in ZDC
Cut2 :
$>$ Cut1 + no photon $E>50 \mathrm{MeV}$ in ZDC Cut3:
$>$ Cut2 + no proton in Roman Pots Cut4:
$>$ Cut3 + no proton in off-energy detector Cut5:

- Cut4 + no proton in BO

The survived events count after Cut2 with different energy cut on photon:

Survived event count
E>150 MeV 71773
$\mathrm{E}>50 \mathrm{MeV}$
66101
$\mathrm{E}>0 \mathrm{MeV}$
65278

Wan Chang

Lambda Decays

Example (10x100 GeV): ~100\% detection for protons from Lambda. Significant loss π-along the beam line (FFQs) due to low momentum of those pions.
ep -> (K) -> $e^{\prime}+\Lambda+X$ $\rightarrow p+\pi^{-}(\mathrm{Br} \sim 64 \%)$
$\rightarrow \mathrm{n}+\pi^{0}(\mathrm{Br} \sim 36 \%)$
> Detecting Lambda's decays in the target fragmentation area is very hard, due to very large decay length (meters).
$>$ Would require in addition detection of negative charged particles (pi-) at the OFFmom

All plots: accepted particles

Some comments on the "less far" Forward Region

Hadron endcap acceptance \& the beam pipe

Material in acceptance, [\%]

+/- 60 mrad

Max space available for Si tracker, [cm]

$$
\text { +/- } 60 \text { mrad }
$$

Max B*dl for Si tracker, [T*m]

+/- 60 mrad

Slide credit: A. Kiselev

- What can be the realistic η reach is a good question

Also: do not forget about the fiducial volume cut and lateral leakage close to the beam pipe

$\|\eta\|=3.00$	$\|\eta\|=3.50$	$\|\eta\|=4.00$	$\|\eta\| \sim 4.38$	$\|\eta\|=4.50$
$\sim 99.5 \mathrm{mrad}$	$\sim 60.4 \mathrm{mrad}$	$\sim 36.6 \mathrm{mrad}$	25.0 mrad	$\sim 22.2 \mathrm{mrad}$

Azimuthal acceptance asymmetry in the h-endcap

remember: η in the h-endcap is counted relative to the hadron beam axis!
Single axis solenoid:

- Aligned with the incoming electron beam (want to minimize the synchrotron radiation) ...
- ... therefore 25 mrad field axis slope in the h-endcap ...
- ... therefore dramatically different bending for $\phi^{\sim} 180^{\circ}$ and $\phi^{\sim} 0^{0}$ at large η
- A two-coil solenoid (with the halves aligned relative to the [eh]-going directions) is presently out of consideration:
- Must be a very challenging design
- Inevitable (and large) energy-dependent vertical excursion of the incoming electron beam
- Certainly not an option for the existing BaBar magnet

Slide credit: A. Kiselev
Forward silicon tracker momentum resolution study

Takeaways

- Acceptances in the FF region of the EIC IR are wellunderstood.
- Changes at this point will be minor and mostly to do with the addition of the final vacuum design.
- Resolutions for FF detectors look very good.
- Not the limiting factor in performing analysis.
- Several studies done, most comprehensive is on the arXiv:2005.14706.
- EIC R\&D groups studying detector technologies for the FF region.

Backup

${ }^{\prime}\left({ }^{\prime}\right.$

How does the crab smearing affect reconstruction of t ?

Notes: 1) Above $|\mathrm{t}|=0.2, \mathrm{BO}$ begins to be mainly used. 2) the peak at 0.35 is due to the acceptance gap between the Roman Pots and BO.

How does the crab smearing affect reconstruction of t ?

Note: The first few bins are cutoff, where the ratio is dominated by acceptance.

How does the crab smearing
 $18 \times 275 \mathrm{GeV}$
 $0.9<\mathrm{Q}^{2}<50 \mathrm{GeV}^{2}$
 $0.0016<x<0.0025$
 HD (v2) - new
 parameters from C-AD crossing angle $=50 \mathrm{mrad}$

MC/Reco

Reminder: Timing

For exclusive reactions measured with the Roman Pots we need good timing to resolve the position of the interaction within the proton bunch. But what should the timing be?

RMS hadron bunch length $\sim 10 \mathrm{~cm}$ *
*based on "ultimate" machine performance.

Looking along the beam with no crabbing.
~1.25mm

What the RP sees.

- Because of the rotation, the Roman Pots see the bunch crossing smeared in \mathbf{x}.
- Vertex smearing $=12.5 \mathrm{mrad}$ (half the crossing angle) $* 10 \mathrm{~cm}=1.25 \mathrm{~mm}$
- If the effective vertex smearing was for a $\mathbf{1 c m}$ bunch, we would have $\mathbf{0 . 1 2 5 m m}$ vertex smearing.
- The simulations were done with these two extrema and the results compared.
$>$ From these comparisons, reducing the effective vertex smearing to that of the 1 cm bunch length reduces the momentum smearing to a negligible amount from this contribution.
$>$ This can be achieved with timing of ~ 35 ps ($1 \mathrm{~cm} /$ speed of light).

Conclusions from Timing

- With improved optics, the angular divergence and vertex smearing contributions become comparable.
- Note: we expect improved optics for the Roman Pots for both the HD and HA configurations - we need the resolution to be good for both since the HD configuration helps populate the tails.
- A larger crossing angle (up to 50 mrad) is under consideration.
- This would make the vertex smearing the dominant contribution, and it has a clear effect on the t-resolution.
- Timing will also be required for background rejection, which is being investigated now.

Some Comparisons - High Divergence

Move sensors closer to beam in increments of " 1σ ".

$$
1 \sigma=3.58 \mathrm{~mm}
$$

(for the high divergence optics)

> Moving the sensors $\sim 7.2 \mathrm{~mm}$ closer (from 10 to 8σ) gains about 100 MeV in pt-acceptance.

Reminder: Divergences and Optics Parameters

- Two configurations
- High divergence (HD) - beta functions tuned such that small beam at IP (higher luminosity), at the cost of larger beam at Roman Pots (meaning worse low-pt acceptance).
- High acceptance (HA) - Larger beam at IP, Iower luminosity, better low-pt acceptance at the Roman Pots.

	$18 \times 275 \mathrm{GeV}$		$10 \times 100 \mathrm{GeV}$	
	HA	HD	HA	HD
RMS $\Delta \theta_{H}$, (urad)	65	133	180	203
RMS $\Delta \theta_{\mathrm{V},}$ (urad)	277	251	243	227
Luminosity $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	0.94	1.93	4.07	4.35

Note: there are ongoing discussions with C-AD about different configurations that significantly reduce divergence. One of those test cases was used previously to see what it did to the smearing.

Reminder: Comparison

- The various contributions add in quadrature (this was checked empirically, measuring each effect independently).

$\Delta p_{t, t}$	$t a l=\sqrt{(\Delta p}$ Angular diverge	Primary ve from crab	smearing ty rotation.	mearing from ite pixel size.	These studies based on the "ultimate" machine performance with strong hadron cooling.	
	Ang Div. (HD)	Ang Div. (HA)	Vtx Smear	250um pxl	500um pxI	1.3 mm pxI
$\Delta p_{t, \text { total }}[\mathrm{MeV} / \mathrm{c}]-275 \mathrm{GeV}$	40	28*	20	6	11	26
$\Delta p_{t, \text { total }}[\mathrm{MeV} / \mathrm{c}]-100 \mathrm{GeV}$	22	11	9	9	11	16
$\Delta p_{t, \text { total }}[\mathrm{MeV} / \mathrm{c}]-41 \mathrm{GeV}$	14	-	10	9	10	12

- Beam angular divergence
- Beam property, can't correct for it - sets the lower bound of smearing.
- Subject to change (i.e. get better) - beam parameters not yet set in stone
- *using symmetric divergence parameters in x and y at 100urad.
- Vertex smearing from crab rotation
- Correctable with good timing (~35ps).
- With timing of $\sim 70 \mathrm{ps}$, effective bunch length is $2 \mathrm{~cm}->.25 \mathrm{~mm}$ vertex smearing ($\sim 7 \mathrm{MeV} / \mathrm{c}$)
- Finite pixel size on sensor
- 500 um seems like the best compromise between potential cost and smearing

Current Parameters in Use

	275 GeV	275 GeV	275 GeV		100 GeV
	100 GeV				
Configuration	HA	HD	HD v2	HA	HD
RMS $\Delta \theta_{H}$, (urad)	65	132	119	180	203
RMS $\Delta \theta_{\sqrt{ },}$ (urad)	229	253	119	243	227

Angular Divergence
$>$ The above divergences are essentially unchanged compared to what was studied previously.

- "HD v2" is a new set of parameters we are using to evaluate the effect of symmetric divergences, and smaller divergences.
>500 um $\times 500$ um pixels used for the Roman Pots.
$>20 u m \times 20 u m$ pixels used for the BO sensors (in backup).
$>$ The smaller angular divergence configuration(s) cause the overall smearing contribution from divergences and crab cavity/vertex smearing to be comparable in magnitude.

100 GeV DVCS protons

Need both detector systems together here!

Improves low p_{t} acceptance.

41 GeV DVCS protons

- Only one beam configuration for now.
- Acceptance gap still observed.
- Lower acceptance at high p_{t}.
- BO plays largest role at this beam energy.

