Complementary Detectors

at EIC

E.C. Aschenauer (BNL) P.R. Newman (Birmingham)

BROOKHAVEN

We want it all

high Luminosity at full acceptance

But there are some boundary conditions

- \rightarrow accelerator
- \rightarrow experiment

2

Boundary Conditions

Interaction Region:

Table B.1: Summary of 2nd IR design requirements and their comparison to the 1st IR.

#	Parameter	EIC IR #1	EIC IR #2	Impact
1	Energy range			Facility operation
	electrons [GeV]	5 - 18	5 - 18	
	protons [GeV]	41, 100 - 275	41,100-275	
2	CM energy range			Physics priorities
	of optimum luminosity [GeV]	80 - 120	45 - 80	
3	Crossing angle [mrad]	25	25 - 50	p_T resolution, acceptance, geometry
4	Detector space symmetry [m]	-4.5/+4.5	-(3.5-4.5)/+(5.5-4.5)	Forward/rear acceptance balance
5	Forward angular acceptance [mrad]	20	20 - 30	Spectrometer dipole aperture
6	Far-forward angular acceptance [mrad]	4.5	5 - 10	Neutron cone, p_T^{max}
7	Minimum $\Delta(B\rho)/(B\rho)$ allowing for			Beam focus with dispersion,
	detection of $p_T = 0$ fragments	0.1	0.003 - 0.01	reach in x_L and p_T resolution,
				reach in x_B for exclusive processes
8	Angular beam divergence at IP,			p_T^{min} , p_T resolution
	h/v, rms [mrad]	0.1/0.2	< 0.2	
9	Low Q^2 electron acceptance	< 0.1	< 0.1	Not a hard requirement

All beams transport over full energy range

- Magnet aperture-edge fields < 4.6 T</p>
 - Detune low-beta or do not run for Ep>~180 GeV
 - Sufficient DA and momentum aperture

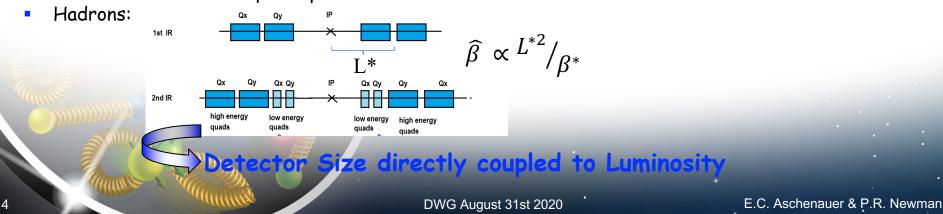
- □ Total beam-beam < 0.03 (p), 0.1 (e)
- Beam aperture >10 σ (p); >15 σ_x /20 σ_x H/V (e)
 - Electron aperture accommodates non-Gaussian tails
- Dispersion and dispersion' constraints at crab cavities

$L = \frac{h \cdot f_{rev} \cdot n \cdot n_b \cdot N_e / n \cdot N_p / n}{4\pi \cdot \frac{\sigma_x \sigma_y}{n}}$

Luminosity:

- but reduce emittances by factor n (note n_b is original number of bunches, new is $n \cdot n_b$), which requires much stronger cooling $\tau_{cool} \rightarrow \tau_{cool} / 2,4, ...$
- The original luminosity is then recovered
- Luminosity can now be increased by squeezing the betas by a factor 2 which is possible since the envelope in the final focus quadrupoles has shrunk by a factor of J2 in x and y

One is left to deal with the enhanced IR chromaticity which went up by a factor of 2 which reduces the dynamic aperture by a factor ~2

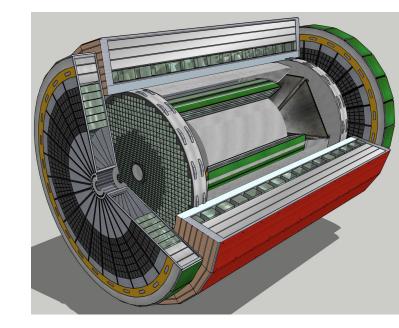

How to reduce IR chromaticity?

Increase crossing angle to get final focus quadrupoles closer to IP

 $\theta_{\rm cross} \rightarrow \theta_{\rm cross} \times 2$

→ Impact on detector: asymmetric material budget in outgoing hadron beam direction asymmetric and reduced acceptance for high η hadrons

Electrons: final focus quadrupoles in the detector


General Purpose Detector

Overall detector requirements:

- Large rapidity (-4 < η < 4) coverage; and far beyond in especially far-forward detector regions
- High precision low mass tracking
 - small (μ-vertex) and large radius (gaseous-based) tracking
- Electromagnetic and Hadronic Calorimetry
 - equal coverage of tracking and EM-calorimetry
- High performance PID to separate π, K, p on track level
 - also need good e/p separation for electronscattering
- Large acceptance for diffraction, tagging, neutrons from nuclear breakup: critical for physics program
 - Many ancillary detector integrated in the beam line: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter,
- High control of systematics

5

luminosity monitors, electron & hadron Polarimetry

To date no argument was presented why to go away from this overall concept

DWG August 31st 2020

E.C. Aschenauer & P.R. Newman

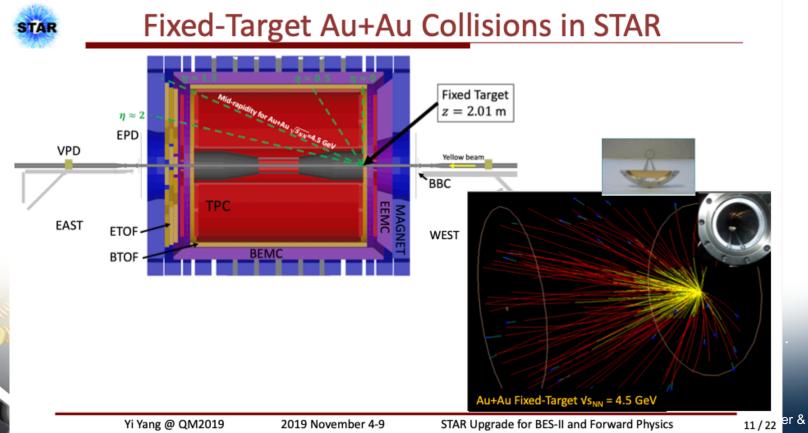
General Purpose Detector: Refined Requirements

View Matrix View Model View Help Login to Edit												
	Nomenclature			Tracking			Electrons		π/К/р		HCAL	
η				Resolution	Allowed X/XO	Si-Vertex	Resolution σ_E/E	PID	p-Range (GeV/c)	Separation	Resolution σ _E /E	Muons
-6.9 to -5.8			low-Q2 tagger	<u>σθ/θ < 1.5%; 10-6 < Q2 < 10-2 GeV2</u>								
	↓ p/A	Auxiliary										
-4.5 to -4.0	+ P/A	Detectors	Instrumentation to separate charged particles									
-4.0 to -3.5			from photons				<u>2%/√E</u>					
-3.5 to -3.0			Backward Detector	<u>σp/p ~ 0.1%⊕0.5%</u>		TBD	270/ 12		<u>≤7 GeV/c</u>		<u>~50%/√E</u>	
-3.0 to -2.5							<u>2%/√E</u>	2%/√E 7%/√E 7%/√E 106/√E 1004				
-2.5 to -2.0	-			<u>σp/p 0.1%⊕0.5%</u>								
-2.0 to -1.5				<u>σ_p/p 0.05%⊕0.5%</u>			<u>7%/√E</u>					
-1.5 to -1.0							<u>7%/√E</u>			-		
-1.0 to -0.5												
-0.5 to 0.0		Central Detector	Barrel	<u>σ_p/p ~0.05%×p+0.5%</u>	~5% or less X	<u>σxyz ~ 20 μm, dO(z) ~dO(rΦ) ~ 20/pTGeV</u>			≤ 5 GeV/c	<u>≥3 σ</u>		TBD
0.0 to 0.5		central Detector	Durret	<u>vp.k. cieuro p. ciero</u>		<u>µm + 5 µm</u>	<u>(10−12)%/√E</u>		<u>≤ 8 GeV/c</u> <u>≤ 20 GeV/c</u>		<u>~50%/√E</u>	100
0.5 to 1.0												
1.0 to 1.5			Envard Detectors	<u>σ_p/p ~0.05%×p+1.0%</u>		TBD						
1.5 to 2.0												
2.0 to 2.5												
2.5 to 3.0				<u>σp/p ~ 0.1%×p+2.0%</u>								
3.0 to 3.5				∞ h <u>vis ou vo is muo vo</u>					<u>≤ 45 GeV/c</u>			
3.5 to 4.0		Auxiliary	Instrumentation to separate charged particles									
4.0 to 4.5			from photons									
	↑e	Detectors	Neutron Detection									
> 6.2			Proton Spectrometer	<u>ø</u> intrinsic(<u> t)/ t < 1%: Acceptance: 0.2 < pt <</u> <u>1.2 GeV/c</u>								

General Purpose Detector: Technology Possibilities

			-					
system	system components	reference detectors	detectors, alternative options considered by the co	mmunity				
	vertex	MAPS, 20 um pitch	MAPS, 10 um pitch					
tracking	barrel	TPC	TPC surrounded by a micro-RWELL tracker	MAPS, 20 um pitch	set of coaxial cylindrical MICROMEGAS			
	forward & backward	MAPS, 20 um pitch	GEMs with Cr electrodes					
	barrel	Pb/Sc Shashlyk	SciGlass	W powder/ScFi	W/Sc Shashlyk			
ECal	forward	W powder/ScFi	SciGlass	Pb/Sc Shashlyk	W/Sc Shashlyk			
i.c.a.	backward, inner	PbWO ₄	SciGlass					
	backward, outer	SciGlass	PbWO4	W powder/ScFi	W/Sc Shashlyk	Pb/Sc Shashlyk		
	barrel	High performance DIRC & dE/dx (TPC)	reuse of BABAR DIRC bars	fine resolution TOF				
	forward, high p	fluorocarbon gaseous RJCH	double RICH combining aerogel and fluorocarbon	high pressure Ar RICH				
h-PID	forward, medium p	aerogel	double Richt combining aeroget and nuorocarbon					
	forward, low p	TOF	dE/dx					
	backward	modular RICH (aerogel)						
e/h separation at low p	forward	TOF & areogel & gaseous RICH	adding TRD					
e) it separation at row p	backward	modular RJCH & TRD	Hadron Blind Detector					
	barrel	Fe/Sc	RPC/DHCAL	Pb/Sc				
HCal	forward	Fe/Sc	RPC/DHCAL	Pb/Sc				
	backward	Fe/Sc	RPC/DHCAL	Pb/Sc				

To get two detectors complementary in technology but with equal performance one needs to optimize the full detector and not only push individual subdetectors performances


Additional Science Opportunities

Integrate fixed target into collider: → done at LHC (ALICE and LHCb) and STAR@RHIC

for EIC on can do

8

- \rightarrow ep/A fixed target --> access to high x
- \rightarrow pp/A important to test universality for TMDs, GPDs,

Complementarity Matrix

Collect information neatly via a 'Physics Topic' v 'Detector Component' matrix

	Tracking	PID	Calorimetry	h-Beamline	e-Beamline	Magnet	Lumi	\sqrt{s}
Inclusive								
SIDIS		Click to						
		add content						
Jets								
Heavy Flavours								
Exclusive								
Diffractive								

- Each element clickable to add content (could leads to a page with list of files / links)

- \rightarrow complementarity ideas (see list of questions asked to Working Groups)
- \rightarrow problems arising from baseline design
- \rightarrow ...
- May need more rows, subdividing some of the PWGs (eg for SIDIS)
- ECA and PRN populate based on material from Complementarity meetings so far
- Invite others to add material before / during / after CUA meeting

DWG August 31st 2020

E.C. Aschenauer & P.R. Newman