Jet Substructure at EIC

Mriganka Mouli Mondal Stony Brook University

In Collaboration with :

<u>Stony Brook University, Stony Brook</u> Theorists : Yang-Ting Chien, George Sterman Experimentalists : Abhay Deshpande, Roli Esha, Henry Klest, Meng Jia Ou, Jinlong Zhang

<u>University of California, Riverside</u> Experimentalists : Miguel Arratia, Sean Preins

<u>Wayne State Universy, Detroit</u> Experimentalist : Raghav Kunnawalkam Elayavalli

Introduction

- Jets and their structure
 - Correlations in momentum, charge and flavor : leading and next to leading particles in a jet
 - $\circ~$ access to the dynamics of fragmentation and color entanglement in QCD

Observable

- \circ Charge asymmetry
- $\,\circ\,$ Connection to dihedron fragmentation function

• Pythia event studies

- $\,\circ\,$ Acceptance of Jet and constituent particles
- Charge asymmetry and in combination of various particle species
- $\,\circ\,$ At various center of mass energies at EIC

• Summary and Outlook

Momentum-charge correlations

Leading particle (L) and next-to-leading (NL) are **both pions generated in two pictures**

i) "random" picture : L is fixed and NL is random and both L and NL pions are charged

 $C\overline{C}$ indicates opposite charges CC same charge

Ii) "alternating" picture : perturbative shower gives q_L followed by $\bar{q'}_{NL}$, which form pions by sharing a soft pair: $q_L + \bar{q}_{NL} \rightarrow q_L + (\bar{q}_s + q_s) + \bar{q'}_{NL} \rightarrow \pi(q_L, \bar{q}_s) + \pi(q_s, \bar{q'}_{NL})$

$$N_{C\overline{C}}^{\text{alternating}} = N^{\text{alternating}}$$
 and $N_{CC}^{\text{alternating}} = 0$

The observable :

$$r_{\text{asy}} \equiv \frac{N_{CC} - N_{C\overline{C}}}{N_{CC} + N_{C\overline{C}}} = \frac{1-a}{2} - \left(\frac{1-a}{2} + a\right) = -a$$

✓ provided every event results from one of these two processes, with no interference

✓ percentage of "alternating" = a; and percentage of random events = 1-a

r_{asy} is a measurement of the fraction of hadronizations that are "string-like", alternating between quark and antiquark (classical picture)

Measurements of r_{asy} and expressing in terms of di-hadron fragmentation functions

- **D** Measurements of r_{asy} : differentially in fractions z_L and z_{NL} in a jet,
 - "transverse" kinematic variables:
 - ✓ relative transverse momentum
 - \checkmark pair invariant mass
 - ✓ pair formation time
 - ✓ including polarization where applicable

I r_{asy} and its connection with generalized di-hadron fragmentation functions

generalized di-hadron fragmentation functions for any hadrons h₁, h₂: $D_{h_L,h_{NL}}^{>}(z_L z_{NL})$

$$N_{h_L,h_{NL}}^{>} = \int_0^1 dz_L \int^{\min(z_L,1-z_L)} dz_{NL} D_{h_1,h_2}^{>}(z_L,z_{NL},Q)$$

When z_L and z_{NL} are large enough, this is the usual di-hadron distribution $D^>(x_1, x_2, Q) = D(x_1, x_2, Q)$ when $x_2 > 1 - x_1 - x_2$

$$r_S = \frac{\sum_{h_1, h_2 \in S} Q_{h_1} Q_{h_2} N^{>}_{h_1, h_2}}{\sum_{h_1, h_2 \in S} |Q_{h_1} Q_{h_2}| N^{>}_{h_1, h_2}}$$

PYTHIA-6 : 1M events : Q2 > 65 GeV

Jet Reconstruction : anti-kt R = 0.7 Jet pt > 8GeV pt-tracks > 0.2GeV track |eta| < 3.5 Jet |eta| < 2.8

$$r_{\rm asy} \equiv \frac{N_{CC} - N_{C\overline{C}}}{N_{CC} + N_{C\overline{C}}}$$

□ Construct r_{asy} with particle compositions with various <u>parameters</u>

- ✓ Leading particle (π) and next leading particles ($\pi/K/p$)
- \checkmark Leading particle (K) and next leading particles (K/ π /p)
- \checkmark Leading particle (p) and next leading particles (p/\pi/K)

Looking via

- ✓ Momentum-next lead particle/momentum of leading particle
- ✓ Faction of jet momentum carried by leading particle
- Angle between the leading and next to leading particles ($\Delta \theta$)
- ✓ relative transverse momentum (k_{perp})
- ✓ pair invariant mass
- ✓ Formation time : $[2z(1-z) P] / k_{perp}^2$

 $\mathbf{\eta}_{\mathsf{all particles}}$

120

100

800

600

200

4

3.422

4

100

800

1.625

4

2

2

x 0.6896

an y

2

9.76

Momentum cuts on tracks for approximate PID requirement at EIC at different η regions

η - range	Momentum cut (GeV/c²)
-3.5 to -1.0	7
-1.0 to 1.0	5
1.0 to 2.0	8
2.0 to 2.0	25
3.0 to 3.5	45

Correlation with different particles

p-next-lead/p-lead

p-lead/p-jet

• The strength of Ζ correlations are different decrease as an acceptance effect

 $^{\scriptscriptstyle 1}$

 Γ_{asy}

• Acceptance changes in certain regions due to momentum cuts

 Γ_{asy}

Dependence on $\Delta\theta$ and z

 r_{asy} values remain almost flat opening angle and z with some little variations

Formation time

Formation time, $\tau_{form} = [2z(1-z) P] / k_{perp}^2$

Formation time

Formation time, $\tau_{form} = [2z(1-z) P] / k_{perp}^2$

 τ_{form} < 1fm : L and NL particles seem to separate after a very short time, which might decorrelate their hadronization.

 $\tau_{\rm form}$ > 10 fm (K_{perp}< 200 MeV) : nonperturbative transverse momenta in the jet, and we don't think that going to longer $\tau_{\rm form}$ or smaller k_{perp} leads to new dynamics

Important region to study in data τ_{form} = "a few fermi" and "a few dozen fermi", k_{perp} = "a few GeV" to "several hundred MeV"

Combination of different leading particles

Invariant mass

πΚ, Κπ

At different collision energies

0.2

4

0.2

0.2

0.4

4

0.4

0.4

0.8

0.8

0.8

p-lead/p-jet

p-lead/p-jet

p-lead/p-jet

0.6

0.6

0.6

 At various center of mass energies r_{asy} looks similar

Summary

- Correlations in momentum, charge and flavor of leading particles in jet carry information of non perturbative aspect of jet fragmentation
- At EIC this can be measured with high momentum PID capabilities
- The embedded correlations in PYTHIA is studied at different set of collision energies for pions, kaons and protons
- We plan to study :
 - ✓ Bringing neutral particle in the correlations
 - ✓ other fragmentation models using HERWIG
 - ✓ Inclusion of jet charge in our study
- We would like to include the studies in Yellow Report activities

backup

NO momentum cuts

After momentum cuts

π K vs K π - with p cut

24

$\pi P vs P\pi$ - with p cut

25

Kp vs pK - with p cut

26

 $Q^2 = 65 \text{ GeV}^2$ Maximum Cross section = 2.2 x 10⁴ mb

 $2.2 \times 10^{-4} \text{ mb}$ $2.2 \times 10^{8} \text{ fb}$ Integrated luminosity = 10 fb⁻¹ = 2.2 \times 10^{9} \text{ events}

- = 2.2x10⁹ events
- = 2200 M events

Formation time

 $z = P_{NL}/(P_{NL}+P_L)$ $P_L = (1-z)P$ $P_{NL} = zP$

formation time = $[2z(1-z) P] / k_{perp}^2$

What is the interpretation of tau_form? It's the inverse of the "energy deficit" in the lab frame if we imagine that two massless particles with 3-momenta $\overrightarrow{P_L}$ and $\overrightarrow{P_{NL}}$ emerged from the decay of an off-shell massless particle with total momentum \overrightarrow{P} .

Long formation times should correspond to particles that "stayed together" for a long time before separating.

