EVALUATION OF THE MATRIX DETECTOR

REQUIREMENTS FOR DVMP

SYLVESTER JOOSTEN sjoosten@anl.gov

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

under contract DE-AC02-06CH11357.

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics,

Exclusive WG Meeting August 31, 2020

FAR FORWARD DETECTION SYSTEM Sufficient for J/ψ DVMP at all nominal energies

ENERGY Argonne National Eaporatory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Argonne

FAR FORWARD DETECTION SYSTEM **Same for Y DVMP**

ENERGY Argonne National Eaporatory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

FAR FORWARD DETECTION SYSTEM Good *t*-resolution using B0 & Roman pot system

FAR FORWARD DETECTION SYSTEM **Same situation for Y production**

- Possible issue in eicsmear FF detector implementation?
- TODO: track down source of this issue

EVENT RECONSTRUCTION AND AMBIGUITY Effect of scattered/decay electron ambiguity seems minimal for DVMP

- Momentum resolution in matrix detector sufficient for J/ψ invariant mass reconstruction
- Evaluated effects of finite angular resolution
 - theta: 1mrad
- phi: 4mrad
- Does not noticeably impact any reconstructed quantities
- Note: fast simulation includes radiative effects at the *vertex*, but does not include (potentially significant) effects of radiative effects in the tracker.

EVENT RECONSTRUCTION AND AMBIGUITY Invariant mass resolution for Y reasonable

Invariant mass resolution for Y slightly worse than for J/ψ , but overall fine.

S. Joosten

EVENT KINEMATICS Heavy tails on reconstructed W could be problematic?

U.S. DEPARTMENT OF ENERGY Argonne National Eaporatory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

 δW (GeV)

Argonne

8

EVENT KINEMATICS Situation similar (slightly better maybe?) for Y kinematics

Argonne

9

UNDERSTANDING THE W RESOLUTION W resolution versus pseudo rapidity of the scattered lepton

- $\eta < -3.5$ region (where we only have ECAL) not really usable to get a precise W spectrum
- $-1 < \eta < -3.5$ (backward) region) also has very heavy tails.
 - This could be problematic for physics in certain kinematic areas.

UNDERSTANDING THE W RESOLUTION Situation seems better for Y. This could imply a W (or y)-dependence

- $\eta < -3.5$ region (where we only have ECAL) looks actually usable with the low-energy setting
- $-1 < \eta < -3.5$ (backward region) looks fine for the two lower-energy settings.
 - The only kinematic difference between J/ψ and Y production is the higher threshold, meaning Y sample sits at higher average W

IMPACT OF THE W RESOLUTION Let's look at the W resolution versus W

- As expected, the *W* resolution gets much worse at lower W.
- With the current setup we can only reliably measure W in a narrow range near the maximum energy
 - This could definitely be problematic for Y near threshold...

IMPACT OF THE W RESOLUTION W-resolution versus W for near-threshold Y production

Situation identical to what we saw for J/ψ production, modulo the Y cross section near threshold.

Improved resolution for scattered electron reconstruction would strongly enhance the threshold Y program, one of the key processes to study the origin of the proton mass

CAN WE IMPROVE WITH STRICT CUTS? Scattered lepton pseudo-rapidity versus W for Y production

OTHER SCATTERED LEPTON-BASED KINEMATICS Situation for Q2 is much better

U.S. DEPARTMENT OF ENERGY Argonne National Easonatory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

15

OTHER SCATTERED LEPTON-BASED KINEMATICS Situation for Q2 is much better (same for Y)

U.S. DEPARTMENT OF ENERGY Argonne National Easonatory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

16

OTHER SCATTERED LEPTON-BASED KINEMATICS Situation for x_v is also fine

ENERGY Argonne National East atory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

 δX_V

17

Argonne

OTHER SCATTERED LEPTON-BASED KINEMATICS Same for x_v for Y DVMP.

Argonne

OTHER SCATTERED LEPTON-BASED KINEMATICS However, much worse performance near Y threshold (W < 30 GeV)

19

ENERGY Argonne National Easteratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Argonne -

DVMP KINEMATICS How well can we reconstruct t from the lepton+decay kinematics?

- Significantly worse resolution than with the recoil!
 - cf. page 4, where the resolution is < .02
- Heavy tails make this avenue to constrain *t* less attractive.
- Might be possible to improve situation with strict cuts on the event kinematics, but that will drastically lower the statistics.

DVMP KINEMATICS t from lepton+decay kinematics problematic for Y

- Orders of magnitude worse than same calculation using the recoil kinematics (*cf. page* 5)
- Overall very much limited by lepton resolution in the endcaps
- As things are right now, precision DVMP measurements only possible leaning on the **FF system!**

CONCLUSIONS ON DVMP WITH THE MATRIX DETECTOR Insufficient precision in the end-caps for lepton reconstruction

- Current iteration of FF system sufficient to precisely constrain t from recoil end
- Ambiguity decay lepton with scattered lepton minimal for DVMP. May be worse for other (lowerstatistics) channels).
- Tracker precision sufficient for exclusive DVMP event selection
- Heavily limited in W resolution by resolution in backward endcap. This significantly hurts the near-threshold program to study the origin of mass in QCD.
- No current estimate of radiative effects in the detector, but can be significant in a system already hurting for resolution.
- Muon identification in the barrel + endcaps would enhance DVMP program and mitigate the stricter event selection required to get to reasonable resolutions at lower W.
- Any improvements to tracking resolution in the end-caps will have large impact in DVMP

