Light nuclei from lattice QCD

K.-I. Ishikawa, Y. Kuramashi, and A. Ukawa

Refs: PRD81:111504(R)(2010); PRD84:054506(2011); PRD86:074514(2012)

Multi-Hadron and Nonlocal Matrix Elements in Lattice QCD RIKEN BNL Research Center Workshop @ Brookhaven National Laboratory, February 5–6 2015

Outline

- 1. Introduction
- 2. Problems of nuclei in lattice QCD
- 3. Simulation parameters
- 4. (Preliminary) Results
 - ⁴He and ³He channels
 - NN channels
- 5. Summary and future work

Introduction

Binding force $\begin{cases} \text{protons and neutrons} \rightarrow \text{nuclei} \\ \text{quarks and gluons} \rightarrow \text{protons and neutrons} \end{cases}$

both from fundamental strong interaction of quark and gluon well known in experiment

Spectrum of nuclei

success of Shell model: Jensen and Mayer (1949) degrees of freedom of protons and neutrons

Spectrum of proton and neutron (nucleons) success of non-perturbative calculation of QCD such as lattice QCD

degrees of freedom of quarks and gluons

Shell model quarks and gluons \rightarrow protons and neutrons \rightarrow nuclei lattice QCD

2

Introduction

Binding force $\begin{cases} \text{protons and neutrons} \rightarrow \text{nuclei} \\ \text{quarks and gluons} \rightarrow \text{protons and neutrons} \end{cases}$

both from fundamental strong interaction of quark and gluon well known in experiment

Spectrum of nuclei

success of Shell model: Jensen and Mayer (1949) degrees of freedom of protons and neutrons

Spectrum of proton and neutron (nucleons) success of non-perturbative calculation of QCD such as lattice QCD

degrees of freedom of quarks and gluons

goal: quantitatively understand property of nuclei from QCD

Shell model

quarks and gluons \rightarrow protons and neutrons \rightarrow nuclei

lattice QCD

Ultimate goal of lattice QCD

http://www.jicfus.jp/jp/promotion/pr/mj/2014-1/

quantitatively understand property of nuclei

from first principle of strong interaction

Introduction

Motivation :

Understand property of nuclei from QCD

If we can study nuclei from QCD, we may be able to

- 1. reproduce spectrum of nuclei
- 2. predict property of nuclei hard to calculate or observe such as neutron rich nuclei

So far not so many works for multi-baryon bound states. Before studying such difficult problems, we should study

 \rightarrow Can we reproduce known binding energy in light nuclei?

Multi-baryon bound state from lattice QCD

Not observed before '09 (except H-dibaryon '88 Iwasaki et al.)

1. ⁴He and ³He

'10 PACS-CS $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$ PRD81:111504(R)(2010)

Exploratory study of three- and four-nucleon systems PACS-CS Collaboration, PRD81:111504(R)(2010)

Several systematic errors included, e.g., $N_f = 0$, $m_{\pi} = 0.8$ GeV

Multi-baryon bound state from lattice QCD

Not calculated before '09 (except H-dibaryon '88 Iwasaki et al.)

1. ⁴He and ³He

'10 PACS-CS $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$ PRD81:111504(R)(2010) '12 HALQCD N_f = 3 m_{π} = 0.47 GeV, m_{π} > 1 GeV ⁴He '12 NPLQCD N_f = 3 m_π = 0.81 GeV '12 TY et al. $N_f = 2 + 1 \ m_{\pi} = 0.51 \ \text{GeV} \ \text{PRD86:074514(2012)}$ 2. H dibaryon in $\Lambda\Lambda$ channel (S=-2, I=0) '11 NPLQCD $N_f = 2 + 1 m_{\pi} = 0.39 \text{ GeV}$ '11 HALQCD $N_f = 3 m_{\pi} = 0.67 - 1.02 \text{ GeV}$ '11 Luo et al. $N_f = 0 \ m_{\pi} = 0.5 - 1.3 \ \text{GeV}$ '12 NPLQCD N_f = 3 m_{π} = 0.81 GeV 3. NN '11 PACS-CS $N_f = 0 \ m_{\pi} = 0.8 \text{ GeV}$ PRD84:054506(2011) '12 NPLQCD $N_f = 2 + 1 m_{\pi} = 0.39$ GeV (Possibility) '12 NPLQCD $N_f = 3 m_\pi = 0.81$ GeV

'12 TY et al. $N_f = 2 + 1$ $m_{\pi} = 0.51$ GeV PRD86:074514(2012) Other states: $\Xi\Xi$, '12 NPLQCD; spin-2 $N\Omega$, ¹⁶O and ⁴⁰Ca, '14 HALQCD

Extend our works to $N_f = 2 + 1$ QCD with smaller m_{π}

Traditional method for example ⁴He channel
$$\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow[t\gg1]{} A_{0} e^{-E_{0}t}$$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$

2. Calculation cost

Wick contraction for ⁴He =
$$p^2n^2 = (udu)^2(dud)^2$$
: 518400
proton = $p = (udu)$: 2

3. Identification of bound state on finite volume

Finite volume effect of attractive scattering state

$$\Delta E_L = E_0 - N_N m_N = O(L^{-3}) < 0 \leftrightarrow \text{binding energy}$$

Traditional method for example ⁴He channel
$$\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow[t\gg1]{} A_{0} e^{-E_{0}t}$$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$

2. Calculation cost

Wick contraction for ⁴He =
$$p^2n^2 = (udu)^2(dud)^2$$
: 518400
proton = $p = (udu)$: 2

Most severe problem before '09: (every t)× $N_{meas} \sim O(10^6)$

3. Identification of bound state on finite volume Finite volume effect of attractive scattering state

 $\Delta E_L = E_0 - N_N m_N = O(L^{-3}) < 0 \leftrightarrow \text{binding energy}$

Traditional method for example ⁴He channel
$$\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow[t\gg1]{} A_{0} e^{-E_{0}t}$$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$ \rightarrow heavy quark $m_\pi = 0.8-0.3$ GeV + large # of measurements 2. Calculation cost PACS-CS PRD81:111504(R)(2010) Wick contraction for ⁴He = $p^2n^2 = (udu)^2(dud)^2$: 518400 \rightarrow 1107 \rightarrow reduction using $p(n) \leftrightarrow p(n) \ p \leftrightarrow n, \ u(d) \leftrightarrow u(d)$ in p(n)Multi-meson: '10 Detmold and Savage Multi-baryon: '12 Doi and Endres; Detmold and Orginos; '13 Günther et al.

3. Identification of bound state on finite volume attractive scattering state $\Delta E_L = E_0 - N_N m_N = O(L^{-3}) < 0$

'86,'91 Lüscher, '07 Beane et al.

 \rightarrow Volume dependence of $\Delta E_L \rightarrow \Delta E_\infty \neq 0 \rightarrow$ bound state

Spectral weight: '04 Mathur et al., Anti-PBC '05 Ishii et al.

Traditional method for example ⁴He channel
$$\langle 0|O_{4}_{He}(t)O_{4}^{\dagger}_{He}(0)|0\rangle = \sum_{n} \langle 0|O_{4}_{He}|n\rangle \langle n|O_{4}^{\dagger}_{He}|0\rangle e^{-E_{n}t} \xrightarrow[t\gg1]{} A_{0} e^{-E_{0}t}$$

Difficulties for multi-nucleon calculation

1. Statistical error Statistical error $\propto \exp\left(N_N\left[m_N - \frac{3}{2}m_\pi\right]t\right)$

Most severe problem

2. Calculation cost

Wick contraction for ⁴He =
$$p^2n^2 = (udu)^2(dud)^2$$
: 518400
proton = $p = (udu)$: 2

Used to be most severe problem

3. Identification of bound state on finite volume Finite volume effect of attractive scattering state

 $\Delta E_L = E_0 - N_N m_N = O(L^{-3}) < 0 \leftrightarrow \text{binding energy}$

Simulation parameters

$$\begin{split} N_f &= 2 + 1 \text{ QCD} \\ \text{Iwasaki gauge action at } \beta &= 1.90 \\ a^{-1} &= 2.194 \text{ GeV with } m_\Omega = 1.6725 \text{ GeV} \quad \text{'10 PACS-CS} \\ \text{non-perturbative } O(a)\text{-improved Wilson fermion action} \\ m_\pi &= 0.51 \text{ GeV and } m_N = 1.32 \text{ GeV} \quad \text{PRD86:074514(2012)} \\ m_\pi &= 0.30 \text{ GeV and } m_N = 1.05 \text{ GeV} \quad \text{arXiv:150X.XXXX} \\ m_s &\sim \text{physical strange quark mass} \end{split}$$

⁴ He,	³ He,	NN(3)	$^{8}S_{1}$	and	${}^{1}S_{0})$	

<u> </u>	T	- 07				
		$m_{\pi} = 0.5 \text{ GeV}$		$m_{\pi} = 0.3 \text{ GeV}$		R
	L [fm]	N _{conf}	Nmeas	N _{conf}	Nmeas	
32	2.9	200	192			
40	3.6	200	192			
48	4.3	200	192	400	1152	12
64	5.8	190	256	160	1536	5
$R = (N_{\text{conf}} \cdot N_{\text{meas}})_{0.3 \text{GeV}} / (N_{\text{conf}} \cdot N_{\text{meas}})_{0.5 \text{GeV}}$						

Computational resources

PACS-CS, T2K-Tsukuba, HA-PACS, COMA at Univ. of Tsukuba

T2K-Tokyo and FX10 at Univ. of Tokyo, and K at AICS

Results Effective mass of nucleon on L = 5.8 fm Effective $m_N = \log \left(\frac{C_N(t)}{C_N(t+1)}\right)$

 $\Delta E_L = E_0 - N_N m_N$ in ⁴He and ³He channels at $m_{\pi} = 0.5$ GeV on L = 5.8 fm TY et al., PRD86:074514(2012) $\Delta E_L = \log\left(\frac{R_{4\text{He}}(t)}{R_{4\text{He}}(t+1)}\right) \text{ with } R_{4\text{He}}(t) = \frac{C_{4\text{He}}(t)}{(C_N(t))^4}$ 0.1 0.08 ³He ⁴He 0.08 0.06 θ 0.06 0.04 健 0.04 θθ € 0.02 θ 0.02 € 0 **₽**₽₽ -0.02 -0.02 -0.04 -0.06 -0.04 12 16 20 16 Ω 12 20 8 8 t t

- Larger error in ⁴He channel
- Statistical error under control in t < 12
- Negative ΔE_L in both channels

⁴He and ³He channels $\Delta E_L = E_0 - N_N m_N$ at $m_\pi = 0.5$ GeV TY *et al.*, PRD86:074514(2012)

• $\Delta E_L < 0$ and mild volume dependence

• Infinite volume extrapolation with $\Delta E_L = -\Delta E_{bind} + C/L^3$

10

⁴He and ³He channels $\Delta E_L = E_0 - N_N m_N$ at $m_\pi = 0.5$ GeV TY *et al.*, PRD86:074514(2012)

Observe bound state in both channels

- Statistical error under control in $t \leq 12$
- Smaller error than ⁴He and ³He channels
- Negative ΔE_L in both channels

NN (${}^{3}S_{1}$ and ${}^{1}S_{0}$) channels $\Delta E_{L} = E_{0} - 2m_{N}$ at $m_{\pi} = 0.5$ GeV TY *et al.*, PRD86:074514(2012)

- Negative ΔE_L
- Infinite volume extrapolation of ΔE_L '04 Beane et al., '06 Sasaki & TY

$$\Delta E_L = -\frac{\gamma^2}{m_N} \left\{ 1 + \frac{C_{\gamma}}{\gamma L} \sum_{\vec{n}}' \frac{\exp(-\gamma L \sqrt{\vec{n}^2})}{\sqrt{\vec{n}^2}} \right\}, \ \Delta E_{\text{bind}} = \frac{\gamma^2}{m_N}$$

based on Lüscher's finite volume formula

NN (³S₁ and ¹S₀) channels $\Delta E_L = E_0 - 2m_N$ at $m_\pi = 0.5$ GeV TY *et al.*, PRD86:074514(2012)

 $\Delta E_{^{3}S_{1}} = 11.5(1.1)(0.6) \text{ MeV}$

 $\Delta E_{1S_0} = 7.4(1.3)(0.6) \text{ MeV}$

Preliminary results at $m_{\pi} = 0.3 \text{GeV}$ with two volumes

Comparison of ³He and ⁴He nuclei with preliminary results

 $L^3 \rightarrow \infty$ results only

Light nuclei likely formed in 0.3 GeV $\leq m_{\pi} \leq$ 0.8 GeV Same order of ΔE to experiments

Comparison of ³He and ⁴He nuclei with preliminary results

PACS-CS, PRD81:111504(R)(2010); TY et al., PRD86:074514(2012); NPLQCD, PRD87:034506(2013)

 $L^3 \to \infty$ results only

Light nuclei likely formed in 0.3 GeV $\leq m_{\pi} \leq$ 0.8 GeV Same order of ΔE to experiments \rightarrow relatively easier than NNlarge $|\Delta E|$ makes less V dependence at physical m_{π}

touchstone of quantitative understanding of nuclei from lattice QCD Investigations of m_{π} dependence $\rightarrow m_{\pi} = 0.14$ GeV on $L \sim 8$ fm

Comparison of NN channels with preliminary results

Comparison of NN channels with preliminary results

Comparison of NN channels with preliminary results

Large finite volume effect expected even on $L \sim 8$ fm '86 Lüscher, '04 Beane ³S₁: $\Delta E_{exp} = 2.2$ MeV $\Delta E_L = -(\Delta E_{exp} + \mathcal{O}(exp(-L\sqrt{m_N\Delta E_{exp}}))) \sim -4$ MeV ¹S₀: $a_0^{exp} = 23.7$ fm $\Delta E_L = -\frac{4\pi a_0^{exp}}{m_N L^3} + \mathcal{O}(1/L^4) \sim -2$ MeV

Summary

 $N_f = 2 + 1$ lattice QCD at $m_\pi = 0.5$ and 0.3 GeV

• Volume dependence of ΔE

 $\Delta E \neq 0$ of 0th state in infinite volume limit \rightarrow bound state in ⁴He, ³He, ³S₁ and ¹S₀ at $m_{\pi} = 0.5$ and 0.3 GeV

- ΔE larger than experiment and small m_{π} dependence
- Bound state in ${}^{1}S_{0}$ not observed in experiment Deep bound state in $N_{f} = 3$ at $m_{\pi} = 0.8$ GeV ('12 NPLQCD)
- No bound state in HALQCD method

Need further investigations *e.g.* quark mass dependence

 $N_f = 2 + 1 \ m_{\pi} \sim 0.14$ GeV on $L \sim 8$ fm calculation is ongoing.

Very preliminary results of $\Delta E = E_0 - N_N m_N$

at $m_\pi \sim$ 0.14 GeV on $L \sim$ 8 fm

17

Back up

Uncertainty of Lüscher's method

current study: smeared quark field $+ C_{NN}(t)/(C_N(t))^2$ in large $t \Delta E(t)$ from + to $- \rightarrow$ plateau \rightarrow large statistical fluctuation

• Oth state energy from variational method

Uncertainty of Lüscher's method

TY et al. and NPLQCD Lüscher's method $\sim \Delta E$ of 0th state and $L^3 \rightarrow \infty$ \rightarrow same as traditional method to obtain hadron mass

• Oth state energy from variational method

• 2.9 σ difference of ΔE at $m_{\pi} = 0.8$ GeV ($N_f = 0$ and $N_f = 3$)

• Investigation of m_{π} dependence Bound state in ${}^{1}S_{0}$ vanishes at physical m_{π} ?

3. Preliminary results Effective nucleon mass at L = 5.8 fm $m_N = \log \left(\frac{C_N(t)}{C_N(t+1)} \right)$

3. Preliminary results Effective energy in ⁴He and ³He channels at L = 5.8 fm $E_0 = \log \left(\frac{C_{4}_{He}(t)}{C_{4}_{He}(t+1)}\right)$

Effective mass @ $m_{\pi} = 0.3 \text{GeV}$ Preliminary result of $N_f = 2 + 1$ TY *et al.*

effective ΔE_L @ $m_{\pi} = 0.3 \text{GeV}$ on L = 48Preliminary result of $N_f = 2 + 1$ TY *et al.*

Current status of NN channels

 $a_0 < 0$ at $m_\pi = 0.8 \text{ GeV} \rightarrow \text{bound state in each channel}$

c.f. Beane et al., PLB585:106(2004); Sasaki and TY, PRD74:114507(2006)

	PACS-CS, $N_f = 0^*$	NPLQCD, $N_f = 3$
$a_0^{{}^{3}S_1}$ [fm]	$-1.05(24)\left({5\atop65} ight)$	$-1.82\binom{14}{13}\binom{17}{12}$
$a_0^{{}^1S_0}$ [fm]	$-1.62(24) \left(\begin{smallmatrix} 1 \\ 75 \end{smallmatrix} ight)$	$-2.33\binom{19}{17}\binom{27}{20}$

* from L = 6.1 fm PACS-CS, PRD84:054506(2011)

NPLQCD, PRD87:034506(2013)

Expectation of large quark mass dependence radii from form factors F_1 and F_2 Constantinou, Lat14 plenary

Expectation of large quark mass dependence rms radii from form factors F_1 and F_2 '09 RBC+UKQCD

