Extract collinear parton distributions from lattice QCD calculations

Jianwei Qiu
Brookhaven National Laboratory
Stony Brook University

Based on work done with Tomomi Ishikawa, Yan-Qing Ma, Shinsuke Yoshida, ... arXiv:1404.6860, 1412.2688, ...

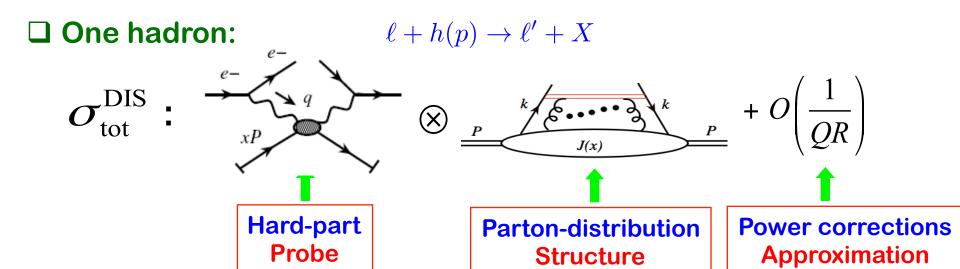
RBRC workshop on "Multi-hadron and nonlocal matrix elements in lattice QCD"

Brookhaven National Lab, Upton, NY, February 5-6, 2015

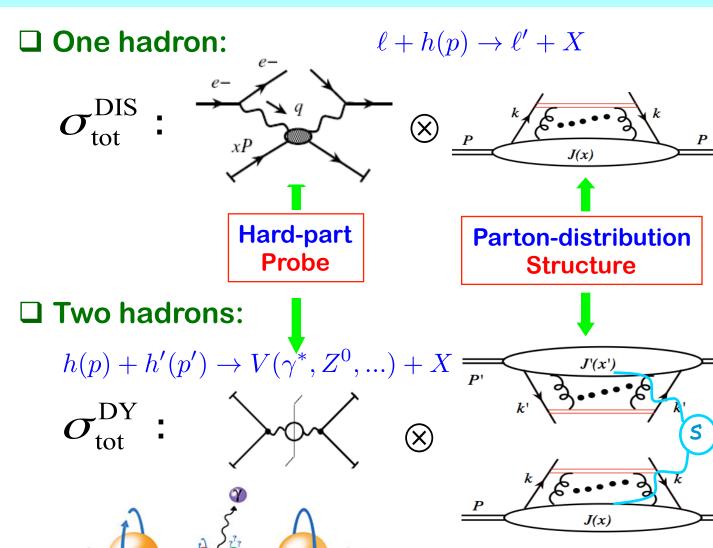
Outline

- **☐** Why Parton distribution functions (PDFs)?
 - No PDFs, no predictions for Higgs production x-sections, ...
- □ PDFs from lattice QCD calculations
- ☐ Our proposal QCD collinear factorization
- □ Case study Extract PDFs from quasi PDFs
- ☐ Summary and outlook

QCD factorization: PDFs



QCD factorization: PDFs



$$+ O\left(\frac{1}{OR}\right)$$

Power corrections

Approximation

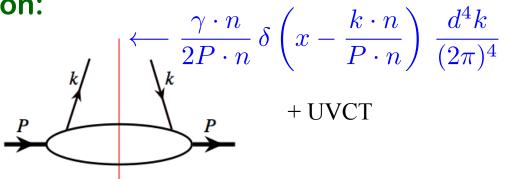
Predictive power:
Universal Parton Distributions

Operator definition of PDFs

☐ Quark distribution (spin-averaged):

$$q(x,\mu^2) = \int \frac{d\xi_-}{4\pi} e^{-ix\xi_- P_+} \langle P|\overline{\psi}(\xi_-)\gamma_+ \exp\left\{-ig\int_0^{\xi_-} d\eta_- A_+(\eta_-)\right\} \psi(0)|P\rangle + \text{UVCT}$$

☐ Cut-vertex notation:



PDFs are not direct physical observables, such as cross sections!

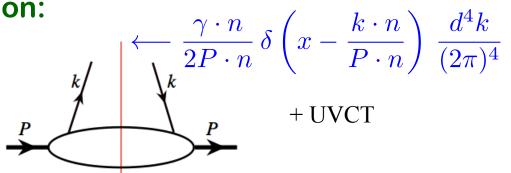
But, well-defined in QCD and process independent!

Operator definition of PDFs

☐ Quark distribution (spin-averaged):

$$q(x,\mu^2) = \int \frac{d\xi_-}{4\pi} e^{-ix\xi_- P_+} \langle P | \overline{\psi}(\xi_-) \gamma_+ \exp\left\{-ig \int_0^{\xi_-} d\eta_- A_+(\eta_-)\right\} \psi(0) |P\rangle + \text{UVCT}$$

☐ Cut-vertex notation:



PDFs are not direct physical observables, such as cross sections!

But, well-defined in QCD and process independent!

- \square Parton interpretation emerges in n.A = 0 gauge
- ☐ Independent of hadron momentum *P*
- ☐ Simplest of all parton correlation functions of the hadron

Global QCD analyses – a successful story

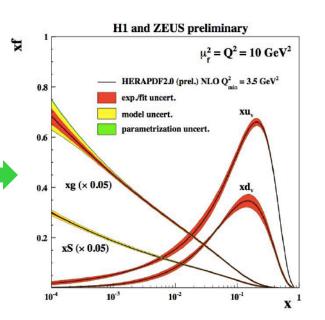
- ☐ World data with "Q" > 2 GeV
 - + Factorization:

DIS:
$$F_2(x_B, Q^2) = \sum_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \Sigma_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



Global QCD analyses – a successful story

■ World data with "Q" > 2 GeV

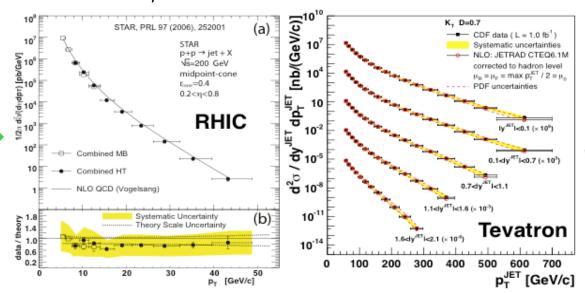
+ Factorization:

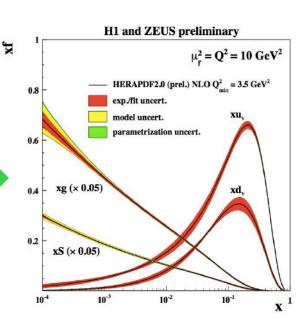
DIS:
$$F_2(x_B, Q^2) = \sum_f C_f(x_B/x, \mu^2/Q^2) \otimes f(x, \mu^2)$$

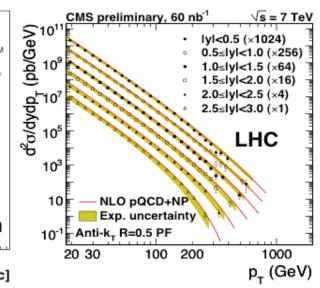
H-H:
$$\frac{d\sigma}{dydp_T^2} = \Sigma_{ff'}f(x) \otimes \frac{d\hat{\sigma}_{ff'}}{dydp_T^2} \otimes f'(x')$$

+ DGLAP Evolution:

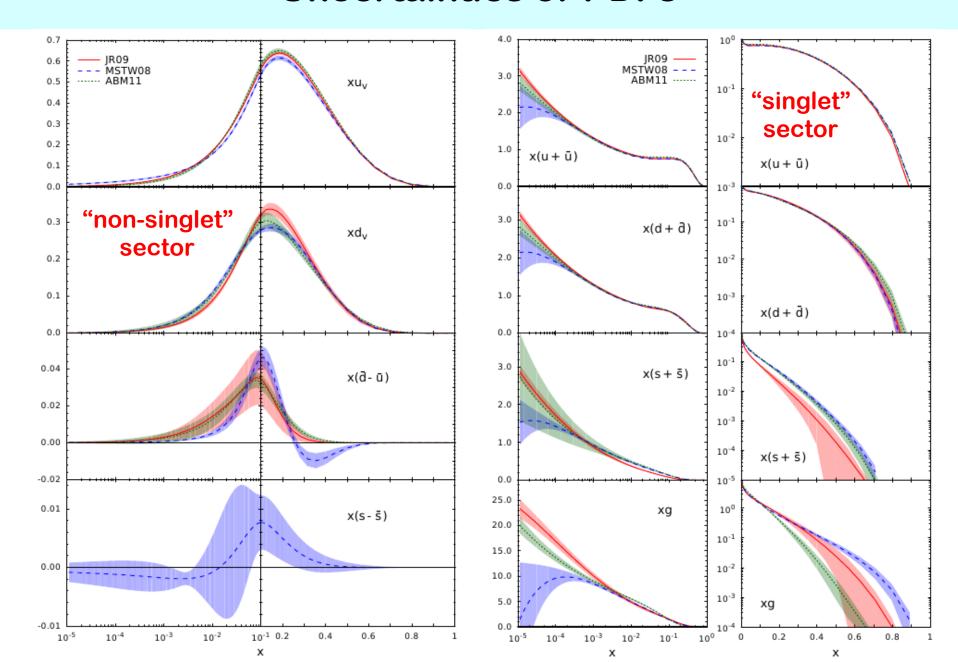
$$\frac{\partial f(x,\mu^2)}{\partial \ln \mu^2} = \sum_{f'} P_{ff'}(x/x') \otimes f'(x',\mu^2)$$



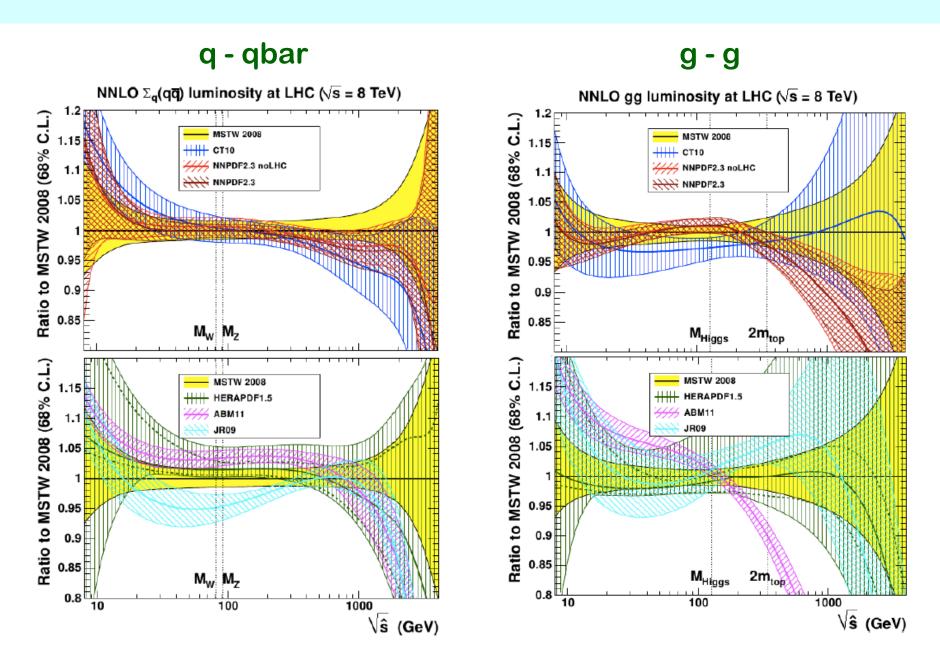




Uncertainties of PDFs



Partonic luminosities



PDFs at large x

\square Testing ground for hadron structure at $x \rightarrow 1$:

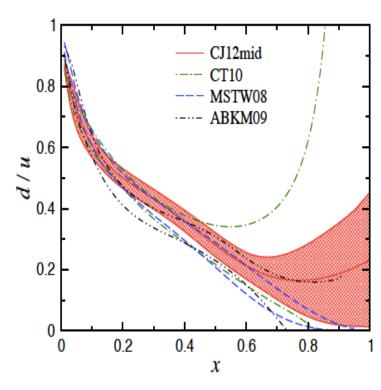
$$\Rightarrow d/u \rightarrow 1/2$$

$$\Rightarrow d/u \rightarrow 0$$

$$\Rightarrow d/u \rightarrow 1/5$$

$$\Rightarrow \ d/u \to \frac{4\mu_n^2/\mu_p^2-1}{4-\mu_n^2/\mu_p^2} \ \ \begin{array}{c} \text{Local quark-hadron} \\ \text{duality} \end{array}$$

$$\approx \ 0.42$$



PDFs at large x

 \square Testing ground for hadron structure at $\times \rightarrow 1$:

$$d/u \rightarrow 1/2$$

$$\Rightarrow d/u \rightarrow 0$$

$$\Rightarrow d/u \rightarrow 1/5$$

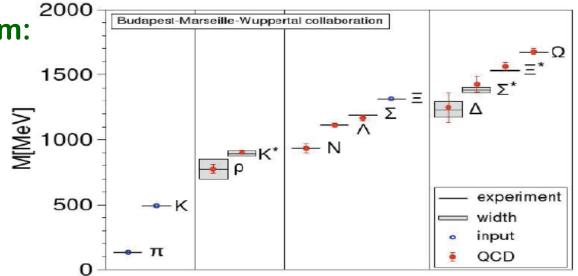
Can lattice QCD help?

Lattice QCD

☐ The main non-perturbative approach to solve QCD

☐ Hadron mass spectrum:

Predict the spectrum with limited inputs

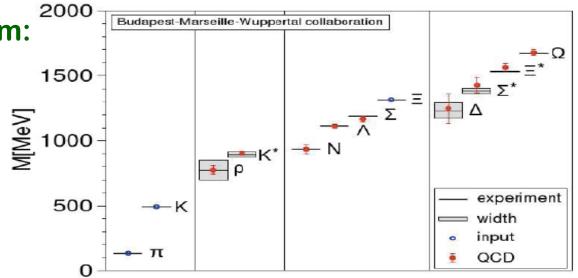


Lattice QCD

☐ The main non-perturbative approach to solve QCD

☐ Hadron mass spectrum:

Predict the spectrum with limited inputs



- ☐ An intrinsically Euclidean approach:
 - \diamond Lattice "time" is Euclidean: $\tau = i \, t$
 - ♦ No direct implementation of physical time

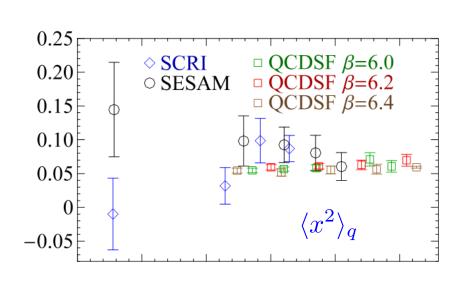
Cannot calculate PDFs directly, whose operators are time-dependent

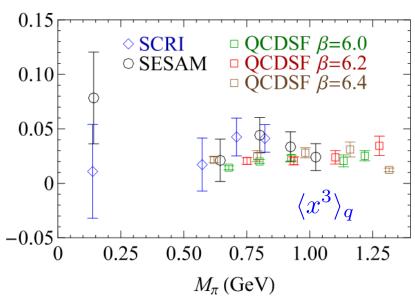
PDFs from lattice QCD

Moments of PDFs – matrix elements of local operators

$$\langle x^n(\mu^2) \rangle_q \equiv \int_0^1 dx \, x^n \, q(x, \mu^2)$$

■ Works, but, hard and limited moments:





Dolgov et al., hep-lat/0201021

Gockeler et al., hep-ph/0410187

Limited moments – hard to get the full x-dependent distributions!

From quasi-PDFs to PDFs (Ji's idea)

Ji, arXiv:1305.1539

☐ "Quasi" quark distribution (spin-averaged):

$$\tilde{q}(x,\mu^2,P_z) \equiv \int \frac{d\xi_z}{4\pi} e^{-ixP_z\xi_z} \langle P|\overline{\psi}(\xi_z)\gamma_z \exp\left\{-ig\int_0^{\xi_z} d\eta_z A_z(\eta_z)\right\} \psi(0)|P\rangle + \text{UVCT}(\mu^2)$$

- □ Features:
- Quark fields separated along the z-direction not boost invariant!
- Perturbatively UV power divergent: $\propto (\mu/P_z)^n$ with n>0 renormalizable?
- Quasi-PDFs → Normal PDFs when P_z → ∞
- Quasi-PDFs could be calculated using standard lattice method
- □ Proposed matching:

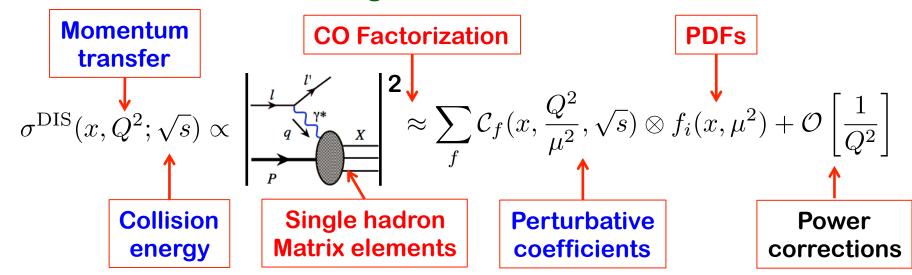
Ji, arXiv:1305. 1539

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

- Size of O(1/P_z²) terms
- UV renormalization of power divergence, and potential operator mixing, ...

Our observation

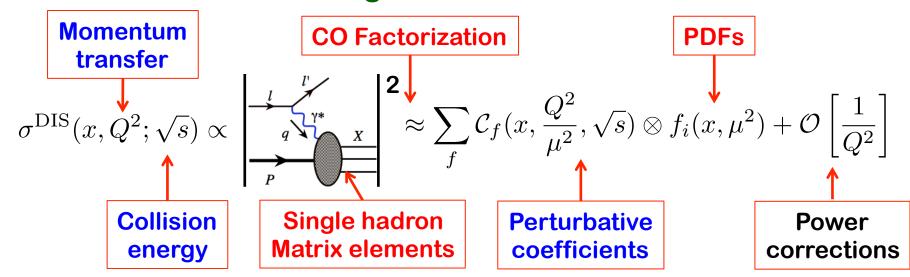
□ QCD factorization of single-hadron cross section:



- PDFs are UV and IR finite, but, absorb perturbative CO divergence!
- With a large momentum transfer, PDFs completely cover all leading power
 CO divergence of single hadron matrix elements

Our observation

□ QCD factorization of single-hadron cross section:



- PDFs are UV and IR finite, but, absorb perturbative CO divergence!
- With a large momentum transfer, PDFs completely cover all leading power
 CO divergence of single hadron matrix elements
- □ Collinear divergences are from the region when $k_T \rightarrow 0$:

Leading power perturbative CO divergences of single hadron matrix elements are logarithmic, $\propto \int dk_T^2/k_T^2$, and are the same for both Minkowski and Euclidean time

Our ideas

☐ Lattice QCD can calculate "single" hadron matrix elements:

$$\langle 0|\mathcal{O}(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z}\int\mathcal{D}A\mathcal{D}\overline{\psi}\mathcal{D}\psi\ e^{iS(\overline{\psi},\psi,A)}\mathcal{O}(\overline{\psi},\psi,A)$$

$$\sum_{P'}|P'\rangle\langle P'|\sum_{P}|P\rangle\langle P|$$

$$\langle P_z|\mathcal{O}(\overline{\psi},\psi,A)|P_z\rangle \ \text{Ma and Qiu, arXiv:1404.6860}$$

$$1412.2688$$
 With an Euclidean time

- \diamond Operators made of conserved currents Physical No need for UVCT Need a large scale, $\,\mu^2$, e.g., the offshellness of the current(s)
- ♦ Operators lead to perturbative UV divergence Renormalizable!

$$\widetilde{\sigma}(\widetilde{x}, P_z; \mu^2)_{\!\!
m E} \equiv {
m F.T. \, of \,} \langle P_z | \mathcal{O}(\overline{\psi}, \psi, A)(\delta_z) | P_z \rangle + {
m UVCT}(\mu^2)$$
 quasi-PDFs

Our ideas

☐ Lattice QCD can calculate "single" hadron matrix elements:

$$\langle 0|\mathcal{O}(\overline{\psi},\psi,A)|0\rangle = \frac{1}{Z}\int \mathcal{D}A\mathcal{D}\overline{\psi}\mathcal{D}\psi \ e^{iS(\overline{\psi},\psi,A)}\mathcal{O}(\overline{\psi},\psi,A)$$

$$\sum_{P'}|P'\rangle\langle P'|\sum_{P}|P\rangle\langle P|$$

$$\langle P_z|\mathcal{O}(\overline{\psi},\psi,A)|P_z\rangle \ \text{Ma and Qiu, arXiv:1404.6860}$$

$$\text{1412.2688}$$
 With an Euclidean time

- \diamond Operators made of conserved currents Physical No need for UVCT Need a large scale, $\,\mu^2$, e.g., the offshellness of the current(s)
- ♦ Operators lead to perturbative UV divergence Renormalizable!

$$\widetilde{\sigma}(\widetilde{x}, P_z; \mu^2)_{\!\!\! \mathrm{E}} \equiv \mathrm{F.T.}\,\mathrm{of}\,\langle P_z | \mathcal{O}(\overline{\psi}, \psi, A)(\delta_z) | P_z \rangle + \mathrm{UVCT}(\mu^2)$$
 quasi-PDFs

Normal PDFs

Collinear factorization:

$$\widetilde{\sigma}(\widetilde{x}, P_z; \mu^2)_{E} = \Sigma_f \int_0^1 \frac{dx}{x} \, \mathcal{C}_f\left(\frac{\widetilde{x}}{x}, \frac{\overline{\mu}^2}{\mu^2}, \alpha_s; P_z\right) f(x, \overline{\mu}^2) + \mathcal{O}\left[\frac{1}{\mu^{\alpha}}\right]$$

- \diamond Perturbatively, $\widetilde{\sigma}(\tilde{x},P_z;\mu^2)_{\!\!E}$ and $f(x,\bar{\mu}^2)$ have the same CO divergence
- \diamond Matching coefficients, \mathcal{C}_f , are IR safe and perturbatively calculable

Extract PDFs from lattice "cross sections"

☐ Lattice "cross section":

$$\widetilde{\sigma}_{\rm E}^{\rm Lat}(\widetilde{x}, 1/a, P_z) \propto {\rm F.T. of } \langle P_z | \mathcal{O}(\overline{\psi}, \psi, A) | P_z \rangle + {\rm UVCT}(1/a)$$

- ♦ Its continuum limit is UV renormalizable
- It is calculable in lattice QCD with an Euclidean time, "E"
- ♦ It is infrared (IR) safe, calculated in lattice perturbation theory
- \diamond All CO divergences of its continuum limit ($a \to 0$) can be factorized into the normal PDFs with perturbatively calculable hard coefficients

"Collision energy" $P_z\sim "\sqrt{s}"$ "rapidity" $\tilde x\sim "y"$ "Hard momentum transfer" $1/a\sim \tilde \mu\sim "Q"$

□ UV renormalization:

- \diamond No UVCT needed if $\mathcal{O}(\overline{\psi},\psi,A)$ is made of conserved currents
- ♦ The quasi-PDFs are not made of conserved currents UVCT needed
- □ CO Factorization IR safe matching coefficients:

$$\widetilde{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\widetilde{x}, \frac{1}{a}, P_z) \approx \sum_{i} \int_{0}^{1} \frac{dx}{x} f_{i/h}(x, \mu^2) \widetilde{\mathcal{C}}_{i}(\frac{\widetilde{x}}{x}, \frac{1}{a}, \mu^2, P_z)$$

QCD Global analysis of lattice data

Differences between Ji's approach and ours

☐ For the quasi-PDFs:

 \Rightarrow Ji's approach – high P_z effective field theory:

Ji, arXiv:1305.1539 1404.6680

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

♦ Our approach – QCD collinear factorization:

Ma and Qiu, arXiv:1404.6860 1412.2688

$$\tilde{q}(x,\mu^2,P_z) = \sum_f \int_0^1 \frac{dy}{y} \, \mathcal{C}_f\left(\frac{x}{y},\frac{\mu^2}{\bar{\mu}^2},P_z\right) f(y,\bar{\mu}^2) + \mathcal{O}\left(\frac{1}{\mu^2}\right)$$

Parameter like \sqrt{s}

Factorization scale

High twist **Power corrections**

$$\sigma^{\mathrm{DIS}}(x,Q^2;\sqrt{s}) \propto \left| \begin{array}{c} \downarrow \\ \chi \end{array} \right|^{2} \approx \sum_{f} \mathcal{C}_f(x,\frac{Q^2}{\mu^2},\sqrt{s}) \otimes f_i(x,\mu^2) + \mathcal{O}\left[\frac{1}{Q^2}\right]$$

Differences between Ji's approach and ours

☐ For the quasi-PDFs:

 \diamond Ji's approach – high P_z effective field theory:

Ji, arXiv:1305.1539 1404.6680

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

♦ Our approach – QCD collinear factorization:

Ma and Qiu, arXiv:1404.6860 1412.2688

$$\tilde{q}(x,\mu^2,P_z) = \sum_f \int_0^1 \frac{dy}{y} \, \mathcal{C}_f\left(\frac{x}{y},\frac{\mu^2}{\bar{\mu}^2},P_z\right) f(y,\bar{\mu}^2) + \mathcal{O}\left(\frac{1}{\mu^2}\right)$$

Parameter like \sqrt{s}

Factorization scale

High twist **Power corrections**

$$\sigma^{\mathrm{DIS}}(x,Q^2;\sqrt{s}) \propto \left| \begin{array}{c} \mathbf{Z} \\ \mathbf{Z} \end{array} \right|^{\gamma*} \approx \sum_{f} \mathcal{C}_f(x,\frac{Q^2}{\mu^2},\sqrt{s}) \otimes f_i(x,\mu^2) + \mathcal{O}\left[\frac{1}{Q^2}\right]$$

☐ Beyond quasi-PDFs:

Lattice "cross-sections" – lattice calculable single hadron matrix elements

UV and IR safe with a large momentum transfer, CO factorized into PDFs

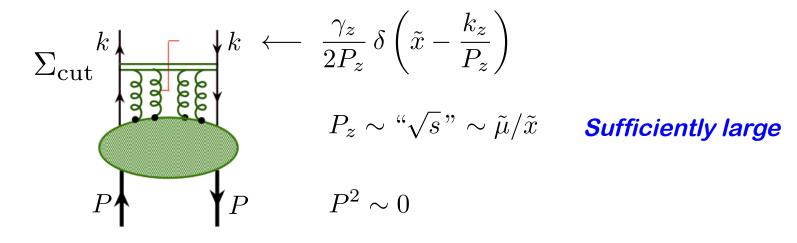
Case study – factorization of quasi-PDFs

☐ The "Quasi-quark" distribution, as an example:

Ma and Qiu, arXiv:1404.6860 1412.2688

$$\tilde{q}(\tilde{x}, \tilde{\mu}^2, P_z) = \int \frac{dy_z}{4\pi} e^{i\tilde{x}P_z y_z} \langle P | \overline{\psi}(y_z) \gamma_z \exp\left\{-ig \int_0^{y_z} dy_z' A_z(y_z')\right\} \psi(0) | P \rangle$$

 \Leftrightarrow Feynman diagram representation: $\Phi_{n_z}^{(f,a)}(\{\xi_z,0\}) = \Phi_{n_z}^{\dagger(f,a)}(\{\infty,\xi_z\}) \Phi_{n_z}^{(f,a)}(\{\infty,0\})$



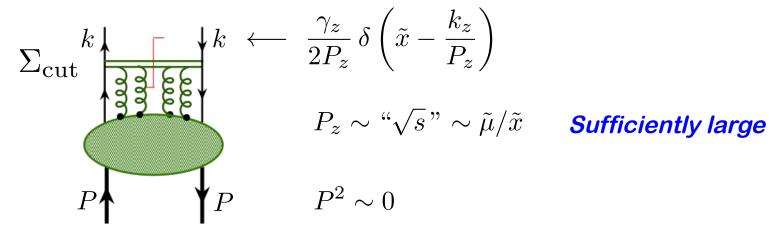
Case study – factorization of quasi-PDFs

☐ The "Quasi-quark" distribution, as an example:

Ma and Qiu, arXiv:1404.6860 1412.2688

$$\tilde{q}(\tilde{x}, \tilde{\mu}^2, P_z) = \int \frac{dy_z}{4\pi} e^{i\tilde{x}P_z y_z} \langle P | \overline{\psi}(y_z) \gamma_z \exp\left\{-ig \int_0^{y_z} dy_z' A_z(y_z')\right\} \psi(0) | P \rangle$$

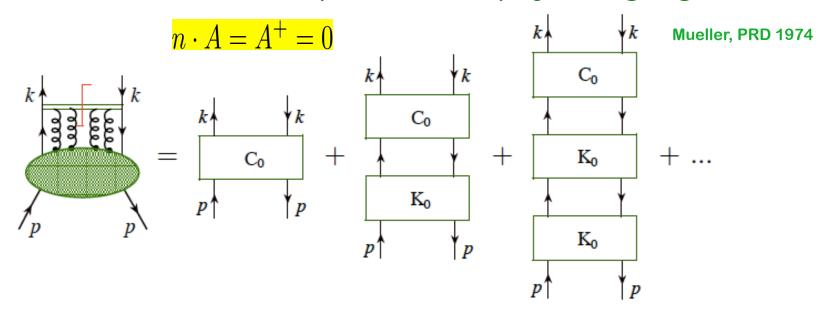
 \Leftrightarrow Feynman diagram representation: $\Phi_{n_z}^{(f,a)}(\{\xi_z,0\}) = \Phi_{n_z}^{\dagger(f,a)}(\{\infty,\xi_z\}) \Phi_{n_z}^{(f,a)}(\{\infty,0\})$



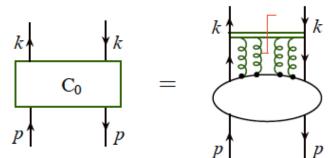
- **♦ Like PDFs, it is IR finite**
- Like PDFs, it is UV divergent, but, worse (linear UV divergence)
 Potential trouble! mixing with the Log UV of PDFs?
- Like PDFs, it is CO divergent factorizes CO divergence into PDFs Show to all orders in perturbation theory

Ma and Qiu, arXiv:1404.6860

Generalized ladder decomposition in a physical gauge



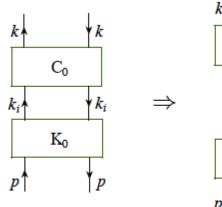
- $lue{}$ $C_0,\ K_0$:2PI kernels
 - **♦ Only process dependence:**



♦ 2PI are finite in a physical gauge for fixed k and p:

☐ 2PI kernels – Diagrams:

lacksquare Ordering in virtuality: $P^2 \ll k^2 \lesssim ilde{\mu}^2$ – Leading power in $rac{1}{ ilde{\mu}}$



$$K_0$$
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0
 K_0

$$\leftarrow \frac{1}{2}\gamma \cdot p$$

$$\leftarrow \frac{\gamma \cdot n}{2p \cdot n} \delta\left(x_i - \frac{k_i \cdot n}{p \cdot n}\right) + \text{power suppressed}$$

Cut-vertex for normal quark distribution Logarithmic UV and CO divergence

☐ Renormalized kernel - parton PDF:

$$K \equiv \int d^4k_i \,\delta\left(x_i - \frac{k^+}{p^+}\right) \operatorname{Tr}\left[\frac{\gamma \cdot n}{2p \cdot n} \,K_0 \,\frac{\gamma \cdot p}{2}\right] + \operatorname{UVCT}_{\operatorname{Logarithmic}}$$

Projection operator for CO divergence:

$$\widehat{\mathcal{P}}\,K$$
 Pick up the logarithmic CO divergence of K

Factorization of CO divergence:

$$\begin{split} \tilde{f}_{q/p} &= \lim_{m \to \infty} C_0 \sum_{i=0}^m K^i + \text{UVCT s} \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=0}^{m-1} K^i (1 - \widehat{\mathcal{P}}) K \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \end{split}$$

$$\widetilde{f}_{q/P} = \left[C_0 \frac{1}{1 - (1 - \widehat{\mathcal{P}})K} \right]_{\text{ren}} \left[\frac{1}{1 - \widehat{\mathcal{P}}K} \right] \longleftarrow \begin{array}{c} \text{Normal Quark} \\ \text{distribution} \end{array}$$

CO divergence free

All CO divergence of quasi-quark distribution

Projection operator for CO divergence:

$$\widehat{\mathcal{P}}\,K$$
 Pick up the logarithmic CO divergence of K

Factorization of CO divergence:

$$\begin{split} \tilde{f}_{q/p} &= \lim_{m \to \infty} C_0 \sum_{i=0}^m K^i + \text{UVCTs} \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=0}^{m-1} K^i (1 - \widehat{\mathcal{P}}) K \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \\ &= \lim_{m \to \infty} C_0 \left[1 + \sum_{i=1}^m \left[(1 - \widehat{\mathcal{P}}) K \right]^i \right]_{\text{ren}} + \tilde{f}_{q/p} \widehat{\mathcal{P}} K \end{split}$$

$$\widetilde{f}_{q/P} = \left[C_0 \frac{1}{1 - (1 - \widehat{\mathcal{P}})K} \right]_{\text{ren}} \left[\frac{1}{1 - \widehat{\mathcal{P}}K} \right]$$
Normal Quark distribution

CO divergence free

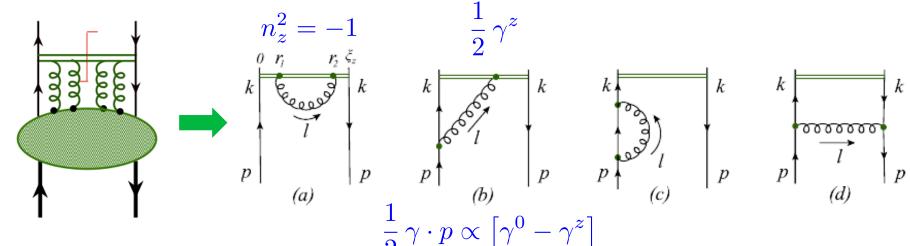
All CO divergence of quasi-quark distribution

$$\tilde{\sigma}_{\mathrm{M}}(\tilde{x},\tilde{\mu}^2,P_z) \approx \sum_{i} \int_{0}^{1} \frac{dx}{x} \, f_{i/h}(x,\mu^2) \, \mathcal{C}_i(\frac{\tilde{x}}{x},\tilde{\mu}^2,\mu^2,P_z)$$
 UV finite?

UV renormalization

Ma and Qiu, arXiv:1404.6860, ...

☐ UV divergences (difference in gauge link):



□ Renormalization:

$$\left[C_0 \frac{1}{1 - (1 - \hat{\mathcal{P}})K}\right]_{\text{ron}} \equiv C_0 \frac{1}{1 - (1 - \hat{\mathcal{P}})K} + \text{UVCTs}$$

In coordinate space:

Independence!

 \diamond Power divergence: Diagram (a) – independent of ξ_z

Removed by "mass" renormalization of a test particle – the gauge link

♦ Left-over log divergence:

Dotsenko and Vergeles NPB, (1980)

Dimensional regularization – ξ_z independence of 1/ ε – finite CTs

 \Rightarrow Log(ξ_{7}) – term: Artifact of dimensional regularization

One-loop example: quark → quark

Ma and Qiu, arXiv:1404.6860

□ Expand the factorization formula:

$$\tilde{f}_{q/q}^{(1)}(\tilde{x}) = f_{q/q}^{(0)}(x) \otimes \mathcal{C}_{q/q}^{(1)}(\tilde{x}/x) + f_{q/q}^{(1)}(x) \otimes \mathcal{C}_{q/q}^{(0)}(\tilde{x}/x)$$

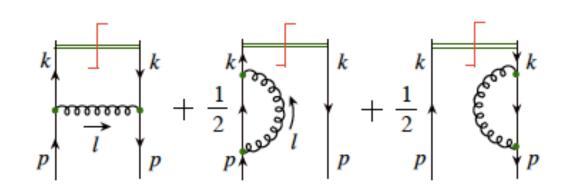
$$\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^2,\mu^2,P_z) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^2,P_z) - f_{q/q}^{(1)}(t,\mu^2)$$

☐ Feynman diagrams:

Same diagrams for both

$$ilde{f}_{q/q}$$
 and $f_{q/q}$

But, in different gauge



☐ Gauge choice:

$$n_z \cdot A = 0$$
 for $\tilde{f}_{a/a}$

$$n \cdot A = 0$$
 for $f_{a/a}$

Gluon propagator:

$$\tilde{d}^{\alpha\beta}(l) = -g^{\alpha\beta} + \frac{l^{\alpha}n_z^{\beta} + n_z^{\alpha}l^{\beta}}{l_z} - \frac{n_z^2 l^{\alpha}l^{\beta}}{l_z^2}$$

$$\quad \text{with} \quad n_z^2 = -1$$

One-loop "quasi-quark" distribution in a quark

Ma and Qiu, arXiv:1404.6860

□ Real + virtual contribution:

$$\tilde{f}_{q/q}^{(1)}(\tilde{x}, \tilde{\mu}^2, P_z) = C_F \frac{\alpha_s}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1 - \epsilon)} \int_0^{\tilde{\mu}^2} \frac{dl_{\perp}^2}{l_{\perp}^{2+2\epsilon}} \int_{-\infty}^{+\infty} \frac{dl_z}{P_z} \left[\delta \left(1 - \tilde{x} - y \right) - \delta \left(1 - \tilde{x} \right) \right] \left\{ \frac{1}{y} \left(1 - y + \frac{1 - \epsilon}{2} y^2 \right) \right\} \\
\times \left[\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} \right] + \frac{(1 - y)\lambda^2}{2y^2 \sqrt{\lambda^2 + y^2}} + \frac{\lambda^2}{2y\sqrt{\lambda^2 + (1 - y)^2}} + \frac{1 - \epsilon}{2} \frac{(1 - y)\lambda^2}{[\lambda^2 + (1 - y)^2]^{3/2}} \right\}$$

where
$$y = l_z/P_z$$
, $\lambda^2 = l_\perp^2/P_z^2$, $C_F = (N_c^2 - 1)/(2N_c)$

☐ Cancelation of CO divergence:

$$\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} = 2\theta(0 < y < 1) - \left[\operatorname{Sgn}(y) \frac{\sqrt{\lambda^2 + y^2} - |y|}{\sqrt{\lambda^2 + y^2}} + \operatorname{Sgn}(1 - y) \frac{\sqrt{\lambda^2 + (1 - y)^2} - |1 - y|}{\sqrt{\lambda^2 + (1 - y)^2}} \right]$$

Only the first term is CO divergent for 0 < y < 1, which is the same as the divergence of the normal quark distribution – necessary!

One-loop "quasi-quark" distribution in a quark

Ma and Qiu, arXiv:1404.6860

☐ Real + virtual contribution:

$$\tilde{f}_{q/q}^{(1)}(\tilde{x}, \tilde{\mu}^2, P_z) = C_F \frac{\alpha_s}{2\pi} \frac{(4\pi)^{\epsilon}}{\Gamma(1 - \epsilon)} \int_0^{\tilde{\mu}^2} \frac{dl_{\perp}^2}{l_{\perp}^{2+2\epsilon}} \int_{-\infty}^{+\infty} \frac{dl_z}{P_z} \left[\delta \left(1 - \tilde{x} - y \right) - \delta \left(1 - \tilde{x} \right) \right] \left\{ \frac{1}{y} \left(1 - y + \frac{1 - \epsilon}{2} y^2 \right) \right\} \\
\times \left[\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} \right] + \frac{(1 - y)\lambda^2}{2y^2 \sqrt{\lambda^2 + y^2}} + \frac{\lambda^2}{2y\sqrt{\lambda^2 + (1 - y)^2}} + \frac{1 - \epsilon}{2} \frac{(1 - y)\lambda^2}{[\lambda^2 + (1 - y)^2]^{3/2}} \right\}$$

where
$$y = l_z/P_z$$
, $\lambda^2 = l_\perp^2/P_z^2$, $C_F = (N_c^2 - 1)/(2N_c)$

☐ Cancelation of CO divergence:

$$\frac{y}{\sqrt{\lambda^2 + y^2}} + \frac{1 - y}{\sqrt{\lambda^2 + (1 - y)^2}} = 2\theta(0 < y < 1) - \left[\operatorname{Sgn}(y) \frac{\sqrt{\lambda^2 + y^2} - |y|}{\sqrt{\lambda^2 + y^2}} + \operatorname{Sgn}(1 - y) \frac{\sqrt{\lambda^2 + (1 - y)^2} - |1 - y|}{\sqrt{\lambda^2 + (1 - y)^2}} \right]$$

Only the first term is CO divergent for 0 < y < 1, which is the same as the divergence of the normal quark distribution – necessary!

□ UV renormalization:

Different treatment for the upper limit of $~l_{\perp}^2~$ integration - "scheme"

Here, a UV cutoff is used – other scheme is discussed in the paper

One-loop coefficient functions

Ma and Qiu, arXiv:1404.6860

lacksquare MS scheme for $f_{q/q}(x,\mu^2)$:

$$\mathcal{C}_{q/q}^{(1)}(t,\tilde{\mu}^2,\mu^2,P_z) = \tilde{f}_{q/q}^{(1)}(t,\tilde{\mu}^2,P_z) - f_{q/q}^{(1)}(t,\mu^2)$$

$$\frac{\mathcal{C}_{q/q}^{(1)}(t)}{C_F \frac{\alpha_s}{2\pi}} = \left[\frac{1+t^2}{1-t} \ln \frac{\tilde{\mu}^2}{\mu^2} + 1 - t \right]_+ + \left[\frac{t\Lambda_{1-t}}{(1-t)^2} + \frac{\Lambda_t}{1-t} + \frac{\mathrm{Sgn}(t)\Lambda_t}{\Lambda_t + |t|} \right]$$

$$- \frac{1+t^2}{1-t} \left[\mathrm{Sgn}(t) \ln \left(1 + \frac{\Lambda_t}{2|t|} \right) + \mathrm{Sgn}(1-t) \ln \left(1 + \frac{\Lambda_{1-t}}{2|1-t|} \right) \right]_{N}$$

where $\Lambda_t = \sqrt{\tilde{\mu}^2/P_z^2 + \underline{t^2}} - |t|$, $\mathrm{Sgn}(t) = 1$ if $t \geq 0$, and -1 otherwise.

figspace Generalized "+" description: $t = \tilde{x}/x$

$$\int_{-\infty}^{+\infty} dt \Big[g(t)\Big]_N h(t) = \int_{-\infty}^{+\infty} dt \, g(t) \, [h(t) - h(1)] \qquad \qquad \text{For a testing function} \\ h(t)$$

■ Explicit verification of the factorization at one-loop:

Coefficient functions for all partonic channels are IR safe and finite!

$$C_{i/j}^{(1)}(t, \tilde{\mu}^2, \mu, P_z)$$
 with $i, j = q, \bar{q}, g$

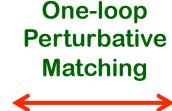
From Lattice quasi-PDFs to PDFs

BNL - RBRC efforts:

$$\tilde{f}_{i/h}^{\text{Latt.}}(\tilde{x}, \frac{1}{a}, P_z)_{\text{E}}$$

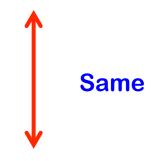
$$f_{i/h}(x,\bar{\mu}^2)_{\mathrm{M}}$$

Tomomi's talk



This talk

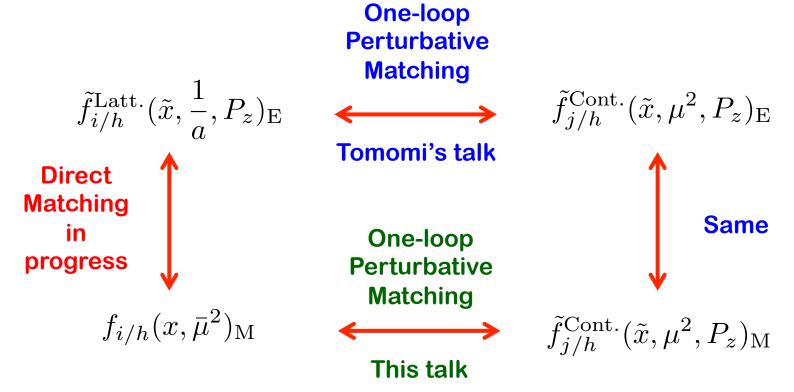
$$\widetilde{f}_{j/h}^{\text{Cont.}}(\widetilde{x},\mu^2,P_z)_{\text{E}}$$



$$\rightarrow$$
 $\tilde{f}_{j/h}^{\text{Cont.}}(\tilde{x}, \mu^2, P_z)_{\text{M}}$

From Lattice quasi-PDFs to PDFs

□ BNL – RBRC efforts:



☐ To do list:

- Matching with more realistic lattice fermion (no principle difficulty)
- **♦ Lattice numerical simulations of the quasi-PDFs**
- → First physics project: d(x)/u(x) at large x

Summary and outlook

☐ "lattice cross sections" = single hadron matrix elements calculable in Lattice QCD and factorizable in QCD

Key difference from Ji's idea:

Expansion in $1/\mu$ instead of that in $1/P_z$

☐ Extract PDFs by global analysis of data on "Lattice cross sections". Same should work for other distributions

$$\widetilde{\sigma}_{\mathrm{E}}^{\mathrm{Lat}}(\widetilde{x}, \frac{1}{a}, P_z) \approx \sum_{i} \int_{0}^{1} \frac{dx}{x} f_{i/h}(x, \mu^2) \widetilde{\mathcal{C}}_{i}(\frac{\widetilde{x}}{x}, \frac{1}{a}, \mu^2, P_z)$$

☐ Conservation of difficulties – complementarity:

High energy scattering experiments

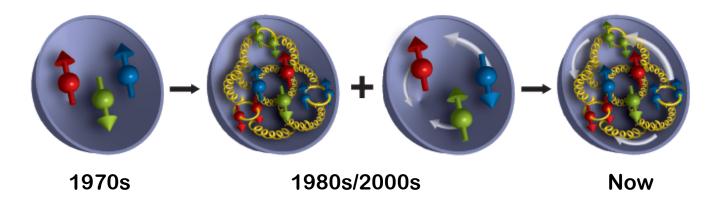
- less sensitive to large x parton distribution/correlation
- "Lattice factorizable cross sections"
 - more suited for large x PDFs, and more: PDFs of meson?
- ☐ Lattice QCD can calculate PDFs, but, more works are needed!

Thank you!

BACKUP SLIDES

Nucleon's internal structure

☐ Our understanding of the nucleon evolves



Nucleon is a strongly interacting, relativistic bound state of quarks and gluons

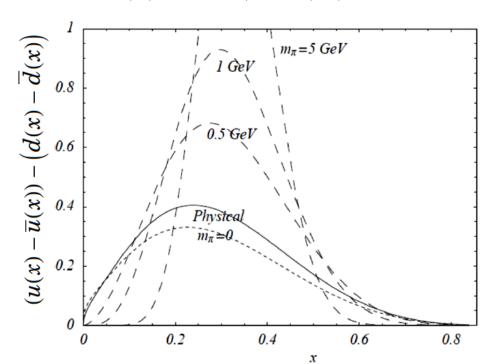
- QCD bound states:
 - Neither quarks nor gluons appear in isolation!
 - Understanding such systems completely is still beyond the capability of the best minds in the world
- ☐ The great intellectual challenge:

Probe nucleon structure without "seeing" quarks and gluons?

PDFs from lattice QCD

- □ How to get x-dependent PDFs with a limited moments?
 - ♦ Assume a smooth functional form with some parameters
 - ♦ Fix the parameters with the lattice calculated moments

$$xq(x) = a x^b (1 - x)^c (1 + \epsilon \sqrt{x} + \gamma x)$$



W. Dermold et al., Eur.Phys.J.direct C3 (2001) 1-15

Cannot distinguish valence quark contribution from sea quarks

"Quasi-PDFs" have no parton interpretation

□ Normal PDFs conserve parton momentum:

$$M = \sum_{q} \left[\int_{0}^{1} dx \, x f_{q}(x) + \int_{0}^{1} dx \, x f_{\bar{q}}(x) \right] + \int_{0}^{1} dx \, x f_{g}(x)$$

$$= \sum_{q} \int_{-\infty}^{\infty} dx \, x f_{q}(x) + \frac{1}{2} \int_{-\infty}^{\infty} dx \, x f_{g}(x)$$

$$= \frac{1}{2(P^{+})^{2}} \langle P | T^{++}(0) | P \rangle = \text{constant}$$
Energy-momentum tensor

☐ "Quasi-PDFs" do not conserve "parton" momentum:

$$\widetilde{\mathcal{M}} = \sum_{q} \left[\int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{\bar{q}}(\tilde{x}) \right] + \int_{0}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x})$$

$$= \sum_{q} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{q}(\tilde{x}) + \frac{1}{2} \int_{-\infty}^{\infty} d\tilde{x} \, \tilde{x} \tilde{f}_{g}(\tilde{x})$$

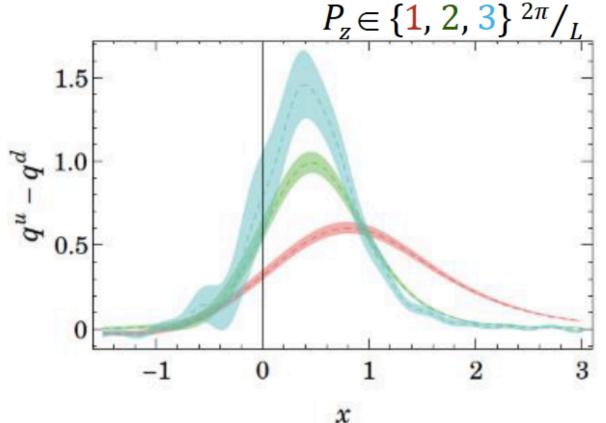
$$= \frac{1}{2(P_{z})^{2}} \langle P | \left[T^{zz}(0) - g^{zz}(...) \right] | P \rangle \neq \text{constant}$$

Note: "Quasi-PDFs" are not boost invariant

The first try

§ Exploratory study

$$\int \frac{dz}{4\pi} e^{-izk_z} \left\langle P \left| \overline{\psi}(z) \gamma_z \exp \left(-ig \int_0^z dz' A_z(z') \right) \psi(0) \right| P \right\rangle$$



Distribution gets sharper as P_{τ} increases

Artifacts due to finite P_z on the lattice

Improvement?

Work out leading- P_z corrections