Perturbative matching for quasi-PDFs between continuum and lattice

Tomomi Ishikawa (RBRC)

tomomi@quark.phy.bnl.gov

Collaborators: Jianwei Qiu (BNL) Shinsuke Yoshida (RIKEN/BNL)

Multi-Hadron and Nonlocal Matrix Elements in Lattice QCD RIKEN BNL Research Center Workshop
February 5-6, 2015 at Brookhaven National Laboratory

normal-PDFs v.s. quasi-PDFs

- normal-PDFs

$$
\begin{gathered}
q(x, \mu)=\int \frac{d \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}}\langle\mathcal{N}(P)| O\left(\xi^{-}\right)|\mathcal{N}(P)\rangle, \\
O\left(\xi^{-}\right)=\bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{+}\left(\xi^{-}, 0\right) \psi(0)
\end{gathered}
$$

- $\xi^{ \pm}=(t \pm z) / \sqrt{2}$: light-cone coordinate
- Time-dependent. $\Rightarrow \mathrm{It}$ cannot be calculated on the lattice directly.
- quasi-PDFs [Ji (2013)]

$$
\begin{gathered}
\widetilde{q}\left(\tilde{x}, \mu, P_{z}\right)=\int \frac{d \delta z}{2 \pi} e^{-i \tilde{x} P_{z} \delta z}\left\langle\mathcal{N}\left(P_{z}\right)\right| \widetilde{O}(\delta z)\left|\mathcal{N}\left(P_{z}\right)\right\rangle, \\
\widetilde{O}(\delta z)=\bar{\psi}(\delta z) \gamma^{z} U_{z}(\delta z, 0) \psi(0)
\end{gathered}
$$

- P_{z} may not be infinite.
- Time-independent. It is computable on the lattice.

Lattice quasi-PDFs, so far

- Non-local matrix element

$$
\left\langle\mathcal{N}\left(P_{z}\right)\right| O(\delta z)\left|\mathcal{N}\left(P_{z}\right)\right\rangle
$$

Figure 4: Real part of the matrix element for the first two momenta with 1000 measurements.
[Wiese (2014)]

FIG. 1. The real (top) and imaginary (bottom) parts of the nonlocal isovector matrix element h of Eq. 3 computed on a lattice with the nucleon momentum P_{z} (in units of $\left.2 \pi / L\right)=$ 1 (red triangles), 2 (green squares), 3 (cyan diamonds).

Matching between continuum and lattice has not been implemented.

Matching overview

- Matching in continuum Minkowski space has been done.
[Ji (2013), Xiong et. al. (2013), Ma and Qiu (2014)]
- Minkowski and Euclidean space should be equivalent in quasi-PDF.

Momentum space v.s. Coordinate space

$$
\begin{gathered}
\widetilde{q}\left(\tilde{x}, \mu, P_{z}\right)=\int \frac{d \delta z}{2 \pi} e^{-i \tilde{x} P_{z} \delta z}\left\langle\mathcal{N}\left(P_{z}\right)\right| \widetilde{O}(\delta z)\left|\mathcal{N}\left(P_{z}\right)\right\rangle, \\
\widetilde{O}(\delta z)=\bar{\psi}(\delta z) \gamma^{z} U_{z}(\delta z, 0) \psi(0)
\end{gathered}
$$

- Matching in momentum space

$$
\widetilde{q}_{\text {cont }}\left(\tilde{x}, \mu, P_{z}\right) \quad \Longleftrightarrow \widetilde{q}_{\text {latt }}\left(\tilde{x}, a^{-1}, P_{z}\right)
$$

- z-component of the momentum is restricted to be P_{z}.
- Loop-momentum becomes 3-dimensional.
- Matching in coordinate space

$$
\widetilde{O}_{\text {cont }}(\delta z) \Longleftrightarrow \widetilde{O}_{\text {latt }}(\delta z)
$$

- There is no restriction on momenta.

Momentum space v.s. Coordinate space

- momentum space

- z-component of the momentum is restricted to be $x P_{z}$.
- Loop-momentum becomes 3-dimensional.

Shinsuke Yoshida is working on this.

- coordinate space

- No restriction on momentum.
- Loop-momentum is 4-dimensional.

Covariant gauge v.s. Axial gauge

$$
\widetilde{O}(\delta z)=\bar{\psi}(\delta z) \gamma^{z} U_{z}(\delta z, 0) \psi(0)
$$

- Axial gauge $A_{z}(x)=0$
- It looks convenient, because $U_{z}(\delta z, 0)=1$

- No free lunch, because gluon propagators introduce complication.

$$
G_{\mu \nu}(k)=\frac{1}{k^{2}}\left(\delta_{\mu \nu}-\frac{\delta_{\mu, z} k_{\nu}+k_{\mu} \delta_{\nu, z}}{k_{z}}+\frac{k_{\mu} k_{\nu}}{k_{z}^{2}}\right) .
$$

- Spurious pole exists. Pole prescription is required in many cases.

$$
k_{z} \longrightarrow 0
$$

Feynman rules in covariant gauge

$$
\widetilde{O}(\delta z)=\bar{\psi}(\delta z) \gamma^{z} U_{z}(\delta z, 0) \psi(0)
$$

- Tree, one-gluon, two-gluon (at one-loop level)

Diagrams at 1-loop

Momentum dependent v.s. independent

$$
\langle P| \widetilde{O}(\delta z)|P\rangle_{\mathrm{cont}}=Z(\delta z, \widehat{P})\langle P| \widetilde{O}(\delta z)|P\rangle_{\mathrm{latt}}
$$

- Momentum dependence
- The difference of momentum dependence between continuum and lattice is related to UV-divergences in loop integral. $\int d k f(k, p)$
When the loop-integral involves UV-log divergence at most,
$\int_{-\pi / a}^{\pi / a} d k \underbrace{\left[f^{\text {latt }}(k, p+\Delta p)-f^{\text {latt }}(k, p)\right]}_{\text {no UV-divergence }} \underset{a \rightarrow 0}{\longrightarrow} \int_{-\infty}^{\infty} d k\left[f^{\text {cont }}(k, p+\Delta p)-f^{\text {cont }}(k, p)\right]$

Common momentum dependence between continuum and lattice.

Momentum dependent v.s. independent

- Momentum dependence

- $\delta \Gamma_{2}$ has UV-linear divergence, but external momentum is not involved in the loop integral.

$$
\begin{aligned}
& \text { continuum } \\
& \begin{array}{l}
\delta \Gamma_{2}=-g^{2} C_{F} \int_{k} \frac{1}{k^{2}}\left(\frac{1-e^{i k_{z} \delta z}}{k_{z}^{2}}-\frac{\delta z}{i k_{z}}\right) \\
\text { same as on the lattice }
\end{array}
\end{aligned}
$$

Common momentum dependence between continuum and lattice.

$$
\delta \Gamma_{0}(p=0) \quad \delta \Gamma_{1}(p=0)
$$

$$
\begin{aligned}
& \text { tree-level } \\
& e^{-i P_{z} \delta z} \frac{\langle P| \widetilde{O}(\delta z)|P\rangle_{\text {cont }}}{\langle P| \widetilde{O}(\delta z)|P\rangle_{0}}=1+g^{2} \mathcal{A}_{\text {cont }}(\delta z)+g^{2} \mathcal{B}(\delta z, P) \\
& \frac{\langle P| \widetilde{O}(\delta z)|P\rangle_{\text {latt }}}{\langle P| \widetilde{O}(\delta z)|P\rangle_{0}}=1+g^{2} \mathcal{A}_{\text {latt }}(\delta z)+g^{2} \mathcal{B}(\delta z, P)
\end{aligned}
$$

common. vanished in the matching.

$$
\langle P| \widetilde{O}(\delta z)|P\rangle_{\mathrm{cont}}=Z(\delta z, \text { X })\langle P| \widetilde{O}(\delta z)|P\rangle_{\mathrm{latt}}
$$

1-loop in continuum

- Divergence structure ($\mathrm{P}=0$)

$$
\begin{aligned}
\delta \Gamma_{0} & =\left.\frac{1}{8 \pi^{2}}\left(\operatorname{Ei}\left(-k_{\perp}\right)-\left(2+k_{\perp}\right) e^{-k_{\perp}}\right)\right|_{\lambda|\delta z|} ^{\mu|\delta z|} \xrightarrow[\delta z \rightarrow 0]{ } \frac{1}{8 \pi^{2}} \ln \frac{\mu}{\lambda} \\
\delta \Gamma_{1} & =\left.\frac{1}{4 \pi^{2}}\left(\ln \left(k_{\perp}\right)-\operatorname{Ei}\left(-k_{\perp}\right)+e^{-k_{\perp}}\right)\right|_{\lambda|\delta z|} ^{\mu|\delta z|} \xrightarrow[\delta z \rightarrow 0]{ } 0
\end{aligned}
$$

$$
\delta \Gamma_{2}=\left.\frac{1}{4 \pi^{2}}\left(\ln \left(k_{\perp}\right)-\operatorname{Ei}\left(-k_{\perp}\right)-k_{\perp}\right)\right|_{\lambda|\delta z|} ^{\mu|\delta z|} \xrightarrow[\delta z \rightarrow 0]{ } 0
$$

- Local case ($\delta z \rightarrow 0$) can be safely reproduced.
- Linear divergence from the tad-pole like diagram.
- $\mathrm{UV}(\mu)$ and $\operatorname{IR}(\lambda)$ regulators are introduced in $\perp=(t, x, y)$ direction.

Back to the Axial gauge

- 1-loop correction

$$
\begin{aligned}
& \delta \Gamma+\left.\frac{\partial \Sigma(p)}{\partial \not p}\right|_{p=0}=+g^{2} C_{F} \int_{k} \frac{1}{k^{4}}\left(1-\frac{4 k_{z}^{2}}{k^{2}} e^{-i k_{z} \delta z}\right) \\
&-g^{2} C_{F} \int_{k} \frac{1}{k^{2}}\left(\frac{1-e^{i k_{z} \delta z}}{k_{z}^{2}}-\frac{\delta z}{i k_{z}}\right)+g^{2} C_{F} \int_{k} \frac{1}{k^{2}} \frac{\delta z}{i k_{z}} \\
& \text { same as Feynman gauge extra part }
\end{aligned}
$$

- The extra term includes a spurious pole.
- The spurious pole needs a prescription to be dealt with:

$$
\int_{k} \frac{1}{k^{2}} \frac{1}{k_{z}}=\int_{k_{\perp}} \frac{1}{k_{\perp}^{2}} \int_{k_{z}} \frac{1}{k_{z}} .
$$

- Do not use axial gauge to avoid the pole prescription ambiguity.

1-loop matching

- 1-loop matching coefficients
- UV cut-off is set to be $\mu=a^{-1}$.
- Naive fermion is used.
(not practical, but OK.)

$$
\delta \Gamma_{\mathrm{cont}}-\delta \Gamma_{\mathrm{latt}} \equiv \frac{g^{2}}{16 \pi^{2}} C_{F} \gamma_{z} \delta \gamma
$$

1-loop matching

- 1-loop matching coefficients

$$
\delta \Gamma_{\mathrm{cont}}-\delta \Gamma_{\mathrm{latt}} \equiv \frac{g^{2}}{16 \pi^{2}} C_{F} \gamma_{z} \delta \gamma
$$

- There is a mismatch in linear divergence between continuum and lattice.
- The linear divergence should be subtracted, otherwise the continuum limit cannot be taken.

1-loop matching

- 1-loop matching coefficients

$$
\delta \Gamma_{\text {cont }}-\delta \Gamma_{\text {latt }} \equiv \frac{g^{2}}{16 \pi^{2}} C_{F} \gamma_{z} \delta \gamma
$$

Wave function part is not included. (It is the same as usual local operator case.)

- Comments

- MF-improvement should be used in the actual matching factor.
- Other lattice actions and link smearings can be easily implemented.
- In the Large Momentum Effective Theory (Ji's context), non-perturbative subtraction of the linear divergence would be required, once $O\left(1 / P_{z}^{2}\right)$ correction is included.
(Mixing with lower dimensional operators cannot be treated perturbatively.)

Summary and outlook

- 1-loop perturbative matching factor of quasi-PDFs between continuum and lattice is discussed.
- Matching method in coordinate space is applied in this talk.
- When axial gauge is used, there is a prescription ambiguity to deal with a spurious pole.
- External momentum dependence is common between continuum and lattice, which results in momentum independent matching factor.
- Linear divergent behavior can be seen. This linear divergent should be subtracted, otherwise continuum limit cannot be taken.
- We are preparing numerical simulations of the quasi-PDFs.

