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‣ normal-PDFs 

‣ quasi-PDFs

-       may not be infinite. 
- Time-independent. It is computable on the lattice.
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-                              : light-cone coordinate 
- Time-dependent.        It cannot be calculated on the lattice directly.

normal-PDFs v.s. quasi-PDFs
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‣ Non-local matrix element
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Lattice quasi-PDFs, so far

Matching between continuum and lattice has not been implemented.

Hadron structure Christian Wiese
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Figure 4: Real part of the matrix element for the first two momenta with 1000 measurements.

4. Results from Nf = 2+1+1 ensemble

After these initial tests we continued with a larger ETMC production ensemble [10]. We de-
cided to use the stochastic method because, although both methods yield equal results, the stochas-
tic method is more flexible concerning the study of larger momenta. The matrix elements are com-
puted on a 323× 64 lattice with Nf = 2+ 1+ 1 flavors of maximally twisted mass fermions. This
ensemble has β = 1.95, which corresponds to a lattice spacing of a ≈ 0.078 fm and the twisted
mass parameter µ = 0.0055, which is a pion mass of mPS ≈ 373 MeV. All the results presented are
computed with a source-sink separation of 10a. With our current statistics of Ncon f = 1000 we are
able to extract the matrix element for the first two momenta. We display the result in Fig. 4. Note
that the value for ∆z= 0, which can be identified with the local vector current at Q2 = 0, has to be
renormalized with ZV , which is for this ensemble ZV = 0.627(4) [11]. After renormalization the
condition Fu−d1 (Q2 = 0) = 1 (see e.g. [12]) is fulfilled within errors.

5. Conclusion and outlook

We have investigated a new method for the computation of quasi parton distributions and have
shown that using a stochastic estimator for the all-to-all propagator is a well-suited method for the
computation of the necessary matrix elements. Smearing is shown not to improve the statistical
uncertainty and was thus dropped.

Given the first results obtained using 1000 measurements, we are currently increasing statis-
tics, which can reach up to 30 000 measurements.
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features resembling the experimental data, particularly
in the unpolarized and polarized sea. This demonstrates
the feasibility of the approach and will motivate lattice-
QCD studies with improved systematics in the future.

For the quark distributions, the starting point is the
momentum-dependent nonlocal static correlation

q̃(x, µ, P
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where x = k/P
z

, µ is the renormalization scale, ~P is
the momentum of the nucleon moving in the z-direction.
When the nucleon momentum approaches infinity, the
quasi-distribution becomes the physical parton distribu-
tion when ultraviolet (UV) divergences are ignored. At
finite momentum and taking into account renormaliza-
tion, one has the factorization theorem [9]
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where the Z function is a perturbation series in ↵
s

de-
pending on the UV regularization for q̃(x, µ, P

z

). Z
has been calculated to one-loop order in the transverse-
momentum cut-o↵ scheme.

In this study, we use clover valence fermions on an
ensemble of 243 ⇥ 64 gauge configurations with lattice
spacing a ⇡ 0.12 fm, box size L ⇡ 3 fm and pion
mass M

⇡

⇡ 310 MeV with N
f

= 2 + 1 + 1 flavors of
highly improved staggered quarks (HISQ) generated by
MILC Collaboration [10] and apply hypercubic (HYP)
smearing [11] to the gauge links. HYP smearing has
been shown to significantly improve the discretization ef-
fects on operators and shift their corresponding renor-
malizations toward their tree-level values (near unity for
quark bilinear operators) [12]. We calculate the quasi-
distributions with long straight gauge-link products be-
tween the quark and antiquark in the inserted current,
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where U
µ

is a discrete gauge link in the µ direction.
We generate the results using 1383 measurements

(among 461 lattice configurations). The extracted ma-
trix elements for various z for our lattice setup are shown
in Fig. 1 with P

z

(in units of 2⇡/L) 1 (red), 2 (green), 3
(cyan). The statistical error becomes noticeably bigger
as the nucleon momentum becomes larger, as typically
seen in lattice hadron calculations. We Fourier transform

FIG. 1. The real (top) and imaginary (bottom) parts of the
nonlocal isovector matrix element h of Eq. 3 computed on a
lattice with the nucleon momentum Pz (in units of 2⇡/L) =
1 (red triangles), 2 (green squares), 3 (cyan diamonds).

the z coordinate into momentum k to obtain the quasi-
distribution q̃

lat

(x, µ, P
z

). Since the matrix element goes
to zero within the error bar beyond about 12 (in units of
a), our range is su�cient for the present calculation.

Unlike the physical distributions, the quasi-
distributions do not vanish for x > +1 and x < �1, and
have a strong dependence on the nucleon momentum
P
z

. Thus, considerable analytical as well as numerical
work is needed to convert from q̃

lat

(x, µ, P
z

) to q(x, µ).
Here we accomplish this in several steps: First, we
make the matching correction Z using the one-loop
result from cut-o↵ regularization. Although a proper
renormalization factor has to be calculated using the
specific lattices and fermions used in our simulations,
it is not yet presently available. The Z factor from the
cut-o↵ scheme is correct to the leading log, but not
for the numerical constant. This is a compromise that
we make at the moment and will be rectified in the
future. Next, we correct for the nucleon mass e↵ects,
which interestingly can be done to all orders in M2

N

/P 2

z

.
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extrapolation.

To take into account the matching corrections, we use
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, µ
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Eqs. 4 and 10 (Eqs. 20 and 22) of Ref. [9] for the unpolar-
ized (polarized) distribution. The factorization formula
relates q̃(x, µ, P

z

) of di↵erent µ and P
z

. Thus, we evolve
q̃(x, µ, P

z

) from a finite to infinite P
z

in similar fash-

hN (Pz)|O(�z)|N (Pz)i

[Lin (2014)]
[Wiese (2014)]



Matching overview

- Matching in continuum Minkowski space has been done. 

- Minkowski and Euclidean space should be equivalent in quasi-PDF.
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quasi-PDF

normal-PDF

quasi-PDF

quasi-PDF

continuum

lattice

Minkowski

Euclidean

[Ji (2013), Xiong et. al. (2013), Ma and Qiu (2014)]
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‣ Matching in momentum space 

‣ Matching in coordinate space

- z-component of the momentum is restricted to be        . 
- Loop-momentum becomes 3-dimensional.
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Momentum space v.s. Coordinate space
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‣ momentum space ‣ coordinate space

- z-component of the 
momentum is restricted to 
be        . 
- Loop-momentum 
becomes 3-dimensional.
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Momentum space v.s. Coordinate space

- No restriction on 
momentum. 
- Loop-momentum is 
4-dimensional.

Shinsuke Yoshida 
is working on this.

This talk
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‣ Axial gauge
- It looks convenient, because  

- No free lunch, because gluon propagators introduce 
complication. 

- Spurious pole exists. Pole prescription is required in many 
cases.
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Covariant gauge v.s. Axial gauge
eO(�z) =  (�z)�zUz(�z, 0) (0)
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‣ Tree, one-gluon, two-gluon (at one-loop level)
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Feynman rules in covariant gauge
eO(�z) =  (�z)�zUz(�z, 0) (0)
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Diagrams at 1-loop
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‣ Momentum dependence
- The difference of momentum dependence between continuum 
and lattice is related to UV-divergences in loop integral.
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Momentum dependent v.s. independent
hP | eO(�z)|P i
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‣ Momentum dependence
-         has UV-linear divergence, but external momentum is not 
involved in the loop integral.
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Momentum dependent v.s. independent

hP | eO(�z)|P i
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in the matching.
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‣ Divergence structure (P=0)

- Local case (            ) can be safely reproduced. 
- Linear divergence from the tad-pole like diagram. 
- UV(    ) and IR(   ) regulators are introduced in                   direction.
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1-loop in continuum
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‣ 1-loop correction

- The extra term includes a spurious pole. 
- The spurious pole needs a prescription to be dealt with: 

- Do not use axial gauge to avoid the pole prescription ambiguity.
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Back to the Axial gauge

��+
@⌃(p)

@ 6p

����
p=0

= +g2CF

Z

k

1

k4

✓
1� 4k2z

k2
e�ikz�z

◆

�g2CF

Z

k

1

k2

✓
1� eikz�z

k2z
� �z

ikz

◆
+ g2CF

Z

k

1

k2
�z

ikz

same as Feynman gauge extra part

Z

k

1

k2
1

kz
=

Z

k?

1

k2?

Z

kz

1

kz
.

1

kz
�! 1

2

✓
1

kz � i✏
+

1

kz + i✏

◆



‣ 1-loop matching coefficients
- UV cut-off is set to be             . 
- Naive fermion is used.                          
( not practical, but OK.)
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1-loop matching
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‣ 1-loop matching coefficients
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- There is a mismatch in 
linear divergence between 
continuum and lattice. 
- The linear divergence 
should be subtracted, 
otherwise the continuum limit 
cannot be taken.
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1-loop matching
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‣ 1-loop matching coefficients 

‣ Comments
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1-loop matching
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Wave function part is not included.  
(It is the same as usual local 
operator case.)

- MF-improvement should be used in the actual matching factor. 
- Other lattice actions and link smearings can be easily implemented. 
- In the Large Momentum Effective Theory (Ji’s context),                    
non-perturbative subtraction of the linear divergence would be 
required, once               correction is included.                           
(Mixing with lower dimensional operators cannot be treated 
perturbatively.)

O(1/P 2
z )



‣ 1-loop perturbative matching factor of quasi-PDFs between 
continuum and lattice is discussed. 

‣ Matching method in coordinate space is applied in this talk. 

‣ When axial gauge is used, there is a prescription ambiguity to deal 
with a spurious pole. 

‣ External momentum dependence is common between continuum 
and lattice, which results in momentum independent matching 
factor. 

‣ Linear divergent behavior can be seen. This linear divergent 
should be subtracted, otherwise continuum limit cannot be taken. 

‣ We are preparing numerical simulations of the quasi-PDFs.
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Summary and outlook


