Ongoing search for the H-dibaryon in two-flavor lattice QCD

Anthony Francis^{*} Jeremy Green Parikshit Junnarkar Chuan Miao Thomas Rae Hartmut Wittig

Multi-Hadron and Nonlocal Matrix Elements in Lattice QCD 06.02.2015

Helmholtz-Institut Mainz

Outline

Why the H-dibaryon?

Experimental constraints The lattice perspective A laboratory system

Our ongoing search

Local six-quark interpolating operators All-mode averaging Lattice results Extending the basis Hint of a bound state

Summary

Why the H-dibaryon?

VOLUME 38, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1977

Perhaps a Stable Dihyperon*

R. L. Jaffet

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

> In the guark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable. flavor-singlet (with strangeness of -2) $J^P = 0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H*) with $J^P = 1^+$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decav systematics of the H are discussed.

TABLE I. Quantum numbers and masses of S-wave dibaryons.

SU(6) _{cs} representation	C ₆	J 0	SU(3) _f representation	Mass in the limit $m_s = 0$ (MeV) 1760
490	144		1	
896	120	1,2	8	1986
280	96	1	10	2165
175	96	1	$\frac{10}{27}$ $\frac{35}{28}$	2165
189	80	0,2	27	2242
35	48	1	35	2507
1	0	0	28	2799

- Stable dibaryon with: $I = 0, S = -2, J^P = 0^+$
- Proposed in 1976:
 - deep binding $\rightarrow \exp$. excluded
 - shallow binding \rightarrow possible
- Interesting question for lattice QCD

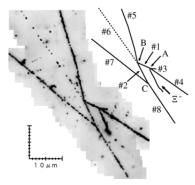


FIG. 2. Photograph and schematic drawing of NAGARA event. See text for detailed explanation.

(H. Takahashi et al., PRL 87, 212502 (2001))

"Nagara"-event at KEK (2001):

► discovery of a ⁶_{ΛΛ}He double hypernucleus

$$E_{\Lambda\Lambda} = 6.91 \pm 0.16 \mathrm{MeV}.$$

 strong constraint on the existence of the *H*-dibaryon, since

$$m_H \stackrel{!}{>} 2m_{\Lambda} - B_{\Lambda\Lambda}$$

- i.e. its binding energy E_H must be smaller than $E_{\Lambda\Lambda}$
- due to the absence of $^{6}_{\Lambda\Lambda}$ He \rightarrow^{4} He + *H*

- Shallow binding $E_H < 7$ MeV is a challenge for lattice QCD
- But: H is a good stepping stone calculation for lattice multi-hadron systems and lattice nuclear physics
- ▶ Number of Wick contractions required goes like $N = \prod_{i}^{N_f} N_{q_i}!$
 - The H = udsuds has N = 2!2!2! = 8 Wick contraction terms
 - Can be done even by brute force
 - Ideal test-bed for advanced contraction algorithms
- ▶ No antiquarks in the operator \Rightarrow No need for all-to-all propagators (counter example: $\pi\pi$ -systems)
- Rule of thumb: Operators with heavy quarks are less noisy

Evidence for a New Resonance from Polarized Neutron-Proton Scattering

WASA-at-COSY Collaboration (P. Adlarson (Uppsala U.) et al.) Show all 109 authors

ABC Effect in Basic Double-Pionic Fusion ---Observation of a new resonance?

WASA-at-COSY Collaboration (P. Adlarson (Uppsala U.) et al.) Show all 123 authors

Apr 2011

Phys.Rev.Lett. 106 (2011) 242302

DOI: 10.1103/PhysRevLett.106.242302 e-Print: arXiv:1104.0123 [nucl-ex] | PDF

Abstract (arXiv)

We report on a high-statistics measurement of the basic double prioric lusion reaction $pm \rightarrow ddr \, \lambda^{2n}$ over the energy region of the so-called ABC effect, a pronounced low-mass enhancement in the πx -invariant mass spectrum. The measurements were performed with the WASA detector setup at COSY. The data energy dependence in the integral cross section. The observables are consistent with a resonance with $U^{(f)} = Q(3^{(f)})$ in toch pn and ΔA systems. Necessary further tests of the resonance integrations entropy further

Feb 27, 2014 - 6 pages

Phys.Rev.Lett. 112 (2014) 202301 (2014-05-23) DOI: 10.1103/PhysRevLett.112.202301 e-Print: arXiv:1402.6844 [nucl-ex] | PDE Experiment: WASA-COSY

Abstract (APS)

Exclusive and kinematically complete high-statistics have been performed in the energy region of the narrow resonancelike structure d* with I(JP)=0(3+). M≈2380 MeV, and F≈70 MeV observed recently in the double-pionic fusion channels $pn \rightarrow d\pi 0\pi 0$ and $pn \rightarrow d\pi$ +π-. The experiment was carried out with the WASA detector setup at COSY having a polarized deuteron beam impinged on the hydrogen pellet target and utilizing the guasifree process d→p→np+pspectator. This allowed the np analyzing power, Ay, to be measured over a broad angular range. The obtained Av angular distributions deviate systematically from the current SAID SP07 NN partial-wave solution. Incorporating the new Av data into the SAID analysis produces a pole in the D33-G33 waves in support of the d* resonance hypothesis.

- Evidence of a resonance (dibaryon?) in the $\Delta\Delta$ channel at COSY
- Here we have $\Delta \Delta = uuuuuu$ with 6! = 720 Wick contraction terms
- Much harder for lattice \Rightarrow Gain experience with *udsuds*

- ▶ Past lattice efforts have found a bound *H*-dibaryon at $M_{\pi} > M_{\pi}^{\text{phys.}}$
- It is not clear yet if it is bound or unbound at the physical point

Group	Method	N _f	$N_{\rm vol}$	$M_{\pi}[{ m MeV}]$	$B_H[MeV]$
HALQCD	B-B potentials	3	1	1171	49.1(3.4)(5.5)
			3	1015	37.2(3.7)(2.4)
			1	837	37.8(3.1)(4.1)
			1	672	33.6(4.8)(3.5)
			1	469	26(4.4)(4.8)
NPLQCD	2pt	3	3	806	74.6(3.3)(3.4)
		2 + 1	4	390	13.2(1.8)(4.0)
			1	230	-0.6(8.9)(10.3)

• Our search so far has been focused on $N_f = 2$ ensembles with $M_{\pi} = 451$ MeV and $M_{\pi} = 1$ GeV \rightarrow here only $M_{\pi} = 1$ GeV shown

Our ongoing search

We use six parity-projected quarks to form six-quark interpolating operators of the form:

$$[abcdef] = \epsilon^{ijk} \epsilon^{lmn} (b_i^T C \gamma_5 P_+ c_j) (e_i^T C \gamma_5 P_+ f_m) (a_k^T C \gamma_5 P_+ d_n),$$

In the case $m_u = m_d$, two operators can be formed in this way that couple to the *H*-dibaryon:

$$\begin{aligned} H^{1} &= \frac{1}{48} \left([sudsud] - [udusds] - [dudsus] \right) \\ H^{27} &= \frac{1}{48\sqrt{3}} \left(3[sudsud] + [udusds] + [dudsus] \right), \end{aligned}$$

these belong to the singlet and 27-plet irreps of flavour $SU(3)_f$.

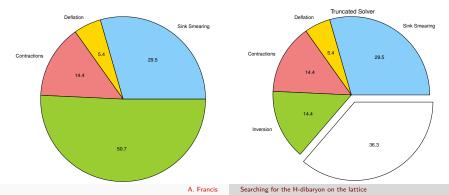
An efficient way to contract the six-quark operators into correlation functions is to use a blocking algorithm:

 Form blocks of three propagators contracted into a color-singlet at the source

$$B(\alpha_1,\xi_1',\xi_2',\xi_3') = \epsilon_{c_1,c_2,c_3}(C\gamma_5 P_+)_{\alpha_2\alpha_3}S_l(\xi_1,\xi_1')S_l(\xi_2,\xi_2')S_s(\xi_3,\xi_3')$$

> Then sum over all permutations when contracting at the sink

sudsud] =
$$(C\gamma_5P_+)_{\alpha\beta} \times \epsilon_{c'_1,c'_2,c'_3} \epsilon_{c'_4,c'_5,c'_6} (C\gamma_5P_+)_{\alpha'_2\alpha'_3} (C\gamma_5P_+)_{\alpha'_5\alpha'_6}$$

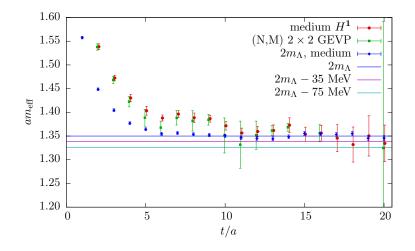

$$\sum_{\sigma_u,\sigma_d,\sigma_s} B(\alpha,\xi'_{\sigma_u(1)},\xi'_{\sigma_d(2)},\xi'_{\sigma_s(3)})B(\beta,\xi'_{\sigma_u(4)},\xi'_{\sigma_d(5)},\xi'_{\sigma_s(6)})$$

Boosting the calculation: All-mode averaging

- Computing the propagator is the most costly part of the calculation
- ► AMA: Reduce the precision of propagator on multiple source locations ⇒ correct the introduced bias via

$$\mathcal{O} = \mathcal{O}_{x_0}^{\mathsf{high prec.}} - \mathcal{O}_{x_0}^{\mathsf{low prec.}} + rac{1}{N_{\Delta x}} \sum_{\Delta x} \mathcal{O}_{x_0 + \Delta x}^{\mathsf{low prec.}}$$

 \blacktriangleright Depending on the ensemble we gain a factor $\sim 1.5-2$ in speed



- L = 32, T = 64 at a = 0.063 fm
- $M_{\pi} = 1 \text{GeV}$ and $M_{\pi}L = 10$
- $N_{\rm conf} = 168$
- One high precision/low precision propagator solves for AMA bias
- $N_{src} = 128$ with low precision solves
- Double statistics using P₊ and P₋ for the forward/backward propagating states
- In total this makes:

 $168 \times 128 \times 2 = 43008$ measurements

▶ $\kappa_s = \kappa_{ud}$ implies no mixing between the singlet and 27-plet irreps

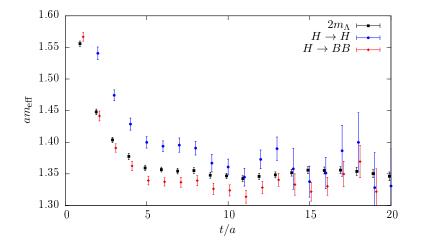
• Multiple sets of smearing \Rightarrow GEVP for ground state determination

At this point: No bound state seen with local six-quark operators

This was the status of our study using local six-quark operators, as presented at Lat'14. Possible issues:

- Insufficient statistics? Finite volume effects?
- Quenched strange quark

But, most importantly,


• we used only $\langle qqqqqqq(x), \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}(0) \rangle$ operators

Now, we extend our analysis and

- include $\langle qqq(x)qqq(y), \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}(0) \rangle$ operators,
- more specifically, we compute the $SU(3)_f$ singlet combination:

$$H^1 = -rac{1}{\sqrt{3}}\Lambda\Lambda + \Sigma\Sigma + rac{2}{\sqrt{3}}\Xi N$$

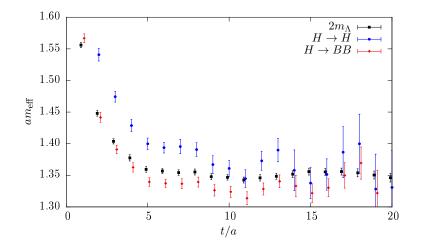
Results: Hint of a bound state

• At this point: Hint of a bound state using the new operators

Next step, combine both analyses (combined fit? Matrix Prony?)

Summary

Summary


Status

- H-dibaryon is an interesting challenge for lattice QCD
- \blacktriangleright Laboratory system for learning to do e.g. the $\Delta\Delta$ or nuclear physics
- On our heavy $(M_{\pi} = 1 {
 m GeV})$ lattice we
 - calculated $\langle qqqqqqq(x), \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}(0) \rangle$ operators
 - extended our basis to $\langle qqq(x)qqq(y), \bar{q}\bar{q}\bar{q}\bar{q}\bar{q}\bar{q}(0) \rangle$ operators
 - \Rightarrow Hint of bound state

Outlook

- Combine analyses to determine ground state
- ▶ Reduce the mass (again) to $M_{\pi} = 451 \text{MeV}$ (E5) and further to $M_{\pi} = 270$ (F7)

Lots to do!

